메뉴 건너뛰기




Volumn 13, Issue 1, 2017, Pages

Genomic Bayesian functional regression models with interactions for predicting wheat grain yield using hyper-spectral image data

Author keywords

Band environment interaction; Bayesian functional regression; Fourier regression; Genomic information; Genotype environment interaction; Hyper spectral data; Prediction accuracy; Spline regression; Vegetation indices

Indexed keywords


EID: 85026240057     PISSN: None     EISSN: 17464811     Source Type: Journal    
DOI: 10.1186/s13007-017-0212-4     Document Type: Article
Times cited : (46)

References (22)
  • 2
    • 84891372768 scopus 로고    scopus 로고
    • Field high-throughput phenotyping: the new crop breeding frontier
    • Araus JL, Cairns JE. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 2014;19(1):52-61.
    • (2014) Trends Plant Sci , vol.19 , Issue.1 , pp. 52-61
    • Araus, J.L.1    Cairns, J.E.2
  • 4
    • 85019024543 scopus 로고    scopus 로고
    • One step at a time: stage-wise analysis of a series of experiments
    • Damesa TM, Möhring J, Worku M, Piepho H. One step at a time: stage-wise analysis of a series of experiments. Agron J. 2017;109:845-57.
    • (2017) Agron J , vol.109 , pp. 845-857
    • Damesa, T.M.1    Möhring, J.2    Worku, M.3    Piepho, H.4
  • 5
    • 84944150108 scopus 로고    scopus 로고
    • Bayesian generalized linear regression
    • R package version 1.0.4.
    • de los Campos G, Pérez-Rodríguez P. Bayesian generalized linear regression. R package version 1.0.4. http://CRAN.R-project.org/package=BGLR (2014).
    • (2014)
    • de los Campos, G.1    Pérez-Rodríguez, P.2
  • 6
    • 84923536786 scopus 로고    scopus 로고
    • Lights, camera, action: high-throughput plant phenotyping is ready for a close-up
    • Fahlgren N, Gehan MA, Baxter I. Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol. 2015;24:93-9.
    • (2015) Curr Opin Plant Biol , vol.24 , pp. 93-99
    • Fahlgren, N.1    Gehan, M.A.2    Baxter, I.3
  • 7
    • 84868156165 scopus 로고    scopus 로고
    • Statistical computing in functional data analysis: the R package fda.usc
    • Febrero-Bande M, Oviedo de la Fuente M. Statistical computing in functional data analysis: the R package fda.usc. J Stat Softw. 2012;51(4):1-28.
    • (2012) J Stat Softw , vol.51 , Issue.4 , pp. 1-28
    • Febrero-Bande, M.1    Oviedo de la Fuente, M.2
  • 8
    • 83055180602 scopus 로고    scopus 로고
    • Phenomics-technologies to relieve the phenotyping bottleneck
    • Furbank RT, Tester M. Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011;16(12):635-44.
    • (2011) Trends Plant Sci , vol.16 , Issue.12 , pp. 635-644
    • Furbank, R.T.1    Tester, M.2
  • 9
    • 50749093820 scopus 로고
    • The incidence of alkatonuria: a study in chemical individuality
    • Garrod AE. The incidence of alkatonuria: a study in chemical individuality. Lancet. 1902;160:1616-20.
    • (1902) Lancet , vol.160 , pp. 1616-1620
    • Garrod, A.E.1
  • 10
  • 14
    • 84867969427 scopus 로고    scopus 로고
    • A stage-wise approach for the analysis of multi-environment trials
    • Piepho HP, Möhring J, SchulzStreeck T, Ogutu JO. A stage-wise approach for the analysis of multi-environment trials. Biom J. 2012;54(6):844-60.
    • (2012) Biom J , vol.54 , Issue.6 , pp. 844-860
    • Piepho, H.P.1    Möhring, J.2    SchulzStreeck, T.3    Ogutu, J.O.4
  • 16
    • 84994235616 scopus 로고    scopus 로고
    • Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat
    • Rutkoski J, Poland J, Mondal S, Autrique E, Crossa J, Reynolds M, Singh R. Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3 Genes Genomes Genet. 2016;6(9):2799-808.
    • (2016) G3 Genes Genomes Genet , vol.6 , Issue.9 , pp. 2799-2808
    • Rutkoski, J.1    Poland, J.2    Mondal, S.3    Autrique, E.4    Crossa, J.5    Reynolds, M.6    Singh, R.7
  • 17
    • 0035645784 scopus 로고    scopus 로고
    • Applications: the analysis of crop variety evaluation data in Australia
    • Smith A, Cullis B, Gilmour A. Applications: the analysis of crop variety evaluation data in Australia. Aust N Z J Stat. 2001;43(2):129-45.
    • (2001) Aust N Z J Stat , vol.43 , Issue.2 , pp. 129-145
    • Smith, A.1    Cullis, B.2    Gilmour, A.3
  • 18
    • 85024491435 scopus 로고    scopus 로고
    • Multi-trait, random regression, or simply repeatability model in high-throughput phenotyping data improve genomic prediction for grain yield in wheat
    • Sun J, Rutkoski J, Poland JA, Crossa J, Jannink JL, Sorrels ME. Multi-trait, random regression, or simply repeatability model in high-throughput phenotyping data improve genomic prediction for grain yield in wheat. Plant Genome. 2017;10(2):1-12.
    • (2017) Plant Genome , vol.10 , Issue.2 , pp. 1-12
    • Sun, J.1    Rutkoski, J.2    Poland, J.A.3    Crossa, J.4    Jannink, J.L.5    Sorrels, M.E.6
  • 19
    • 84977255802 scopus 로고
    • The genotypical response of the plant species to the habitat
    • Turesson G. The genotypical response of the plant species to the habitat. Hereditas. 1922;3:211-350.
    • (1922) Hereditas , vol.3 , pp. 211-350
    • Turesson, G.1
  • 20
    • 55849129528 scopus 로고    scopus 로고
    • Genomic measures of relationship and inbreeding
    • Van Raden PM. Genomic measures of relationship and inbreeding. Interbul Annu Meet Proc. 2007;37:33-6.
    • (2007) Interbul Annu Meet Proc , vol.37 , pp. 33-36
    • Raden, P.M.1
  • 21
    • 55849133422 scopus 로고    scopus 로고
    • Efficient mtehods to compute genomic predictions
    • Van Raden PM. Efficient mtehods to compute genomic predictions. J Dairy Sci. 2008;91(11):4414-23.
    • (2008) J Dairy Sci , vol.91 , Issue.11 , pp. 4414-4423
    • Raden, P.M.1
  • 22
    • 77954124147 scopus 로고    scopus 로고
    • A comparison of analysis methods for late-stage variety evaluation trials
    • Welham SJ, Gogel BJ, Smith AB, Thompson R, Cullis BR. A comparison of analysis methods for late-stage variety evaluation trials. Aust N Z J Stat. 2010;52(2):125-49.
    • (2010) Aust N Z J Stat , vol.52 , Issue.2 , pp. 125-149
    • Welham, S.J.1    Gogel, B.J.2    Smith, A.B.3    Thompson, R.4    Cullis, B.R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.