-
1
-
-
85026224294
-
Use of hyper-spectral image data outperforms vegetation indices in prediction of maize yield
-
Aguate FM, Trachsel S, González-Pérez L, Burgueño J, Crossa J, Balzarini M, Gouache D, Bogard M, de los Campos G. Use of hyper-spectral image data outperforms vegetation indices in prediction of maize yield. Crop Sci. 2017;57(5):1-8.
-
(2017)
Crop Sci.
, vol.57
, Issue.5
, pp. 1-8
-
-
Aguate, F.M.1
Trachsel, S.2
González-Pérez, L.3
Burgueño, J.4
Crossa, J.5
Balzarini, M.6
Gouache, D.7
Bogard, M.8
de los Campos, G.9
-
2
-
-
84891372768
-
Field high-throughput phenotyping: the new crop breeding frontier
-
Araus JL, Cairns JE. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 2014;19(1):52-61.
-
(2014)
Trends Plant Sci
, vol.19
, Issue.1
, pp. 52-61
-
-
Araus, J.L.1
Cairns, J.E.2
-
3
-
-
84990955014
-
Genomic prediction of genotype × environment interaction kernel regression models
-
Cuevas J, Crossa J, Soberanis V, Pérez-Elizalde S, Pérez-Rodríguez P, de los Campos G, Montesinos-López OA, Burgueño J. Genomic prediction of genotype × environment interaction kernel regression models. Plant Genome. 2016;9(3):1-20.
-
(2016)
Plant Genome
, vol.9
, Issue.3
, pp. 1-20
-
-
Cuevas, J.1
Crossa, J.2
Soberanis, V.3
Pérez-Elizalde, S.4
Pérez-Rodríguez, P.5
Campos, G.6
Montesinos-López, O.A.7
Burgueño, J.8
-
4
-
-
85019024543
-
One step at a time: stage-wise analysis of a series of experiments
-
Damesa TM, Möhring J, Worku M, Piepho H. One step at a time: stage-wise analysis of a series of experiments. Agron J. 2017;109:845-57.
-
(2017)
Agron J
, vol.109
, pp. 845-857
-
-
Damesa, T.M.1
Möhring, J.2
Worku, M.3
Piepho, H.4
-
5
-
-
84944150108
-
Bayesian generalized linear regression
-
R package version 1.0.4.
-
de los Campos G, Pérez-Rodríguez P. Bayesian generalized linear regression. R package version 1.0.4. http://CRAN.R-project.org/package=BGLR (2014).
-
(2014)
-
-
de los Campos, G.1
Pérez-Rodríguez, P.2
-
6
-
-
84923536786
-
Lights, camera, action: high-throughput plant phenotyping is ready for a close-up
-
Fahlgren N, Gehan MA, Baxter I. Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol. 2015;24:93-9.
-
(2015)
Curr Opin Plant Biol
, vol.24
, pp. 93-99
-
-
Fahlgren, N.1
Gehan, M.A.2
Baxter, I.3
-
7
-
-
84868156165
-
Statistical computing in functional data analysis: the R package fda.usc
-
Febrero-Bande M, Oviedo de la Fuente M. Statistical computing in functional data analysis: the R package fda.usc. J Stat Softw. 2012;51(4):1-28.
-
(2012)
J Stat Softw
, vol.51
, Issue.4
, pp. 1-28
-
-
Febrero-Bande, M.1
Oviedo de la Fuente, M.2
-
8
-
-
83055180602
-
Phenomics-technologies to relieve the phenotyping bottleneck
-
Furbank RT, Tester M. Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011;16(12):635-44.
-
(2011)
Trends Plant Sci
, vol.16
, Issue.12
, pp. 635-644
-
-
Furbank, R.T.1
Tester, M.2
-
9
-
-
50749093820
-
The incidence of alkatonuria: a study in chemical individuality
-
Garrod AE. The incidence of alkatonuria: a study in chemical individuality. Lancet. 1902;160:1616-20.
-
(1902)
Lancet
, vol.160
, pp. 1616-1620
-
-
Garrod, A.E.1
-
10
-
-
84905591226
-
A reaction norm model for genomic selection using high-dimensional genomic and environmental data
-
Jarquín D, Crossa J, Lacaze X, Du Cheyron P, Daucourt J, Lorgeou J, Burgueño J. A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet. 2014;127(3):595-607.
-
(2014)
Theor Appl Genet
, vol.127
, Issue.3
, pp. 595-607
-
-
Jarquín, D.1
Crossa, J.2
Lacaze, X.3
Cheyron, P.4
Daucourt, J.5
Lorgeou, J.6
Burgueño, J.7
-
11
-
-
84879858533
-
Agriculture: feeding the future
-
McCouch S, Baute GJ, Bradeen J, Bramel P, Bretting PK, Buckler E, Dempewolf H. Agriculture: feeding the future. Nature. 2013;499(7456):23-4.
-
(2013)
Nature
, vol.499
, Issue.7456
, pp. 23-24
-
-
McCouch, S.1
Baute, G.J.2
Bradeen, J.3
Bramel, P.4
Bretting, P.K.5
Buckler, E.6
Dempewolf, H.7
-
12
-
-
84922334893
-
Threshold models for genome-enabled prediction of ordinal categorical traits in plant breeding
-
Montesinos-López OA, Montesinos-López A, Pérez-Rodríguez P, de los Campos G, Eskridge K, Crossa J. Threshold models for genome-enabled prediction of ordinal categorical traits in plant breeding. G3 Genes Genomes Genet. 2015;5(2):291-300.
-
(2015)
G3 Genes Genomes Genet
, vol.5
, Issue.2
, pp. 291-300
-
-
Montesinos-López, O.A.1
Montesinos-López, A.2
Pérez-Rodríguez, P.3
Campos, G.4
Eskridge, K.5
Crossa, J.6
-
13
-
-
85010210779
-
Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data
-
Montesinos-López OA, Montesinos-López A, Crossa J, de los Campos G, Alvarado G, Suchismita M, Rutkoski J, González-Pérez L, Burgueño J. Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data. Plant Methods. 2017;13(4):1-23.
-
(2017)
Plant Methods
, vol.13
, Issue.4
, pp. 1-23
-
-
Montesinos-López, O.A.1
Montesinos-López, A.2
Crossa, J.3
Campos, G.4
Alvarado, G.5
Suchismita, M.6
Rutkoski, J.7
González-Pérez, L.8
Burgueño, J.9
-
14
-
-
84867969427
-
A stage-wise approach for the analysis of multi-environment trials
-
Piepho HP, Möhring J, SchulzStreeck T, Ogutu JO. A stage-wise approach for the analysis of multi-environment trials. Biom J. 2012;54(6):844-60.
-
(2012)
Biom J
, vol.54
, Issue.6
, pp. 844-860
-
-
Piepho, H.P.1
Möhring, J.2
SchulzStreeck, T.3
Ogutu, J.O.4
-
16
-
-
84994235616
-
Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat
-
Rutkoski J, Poland J, Mondal S, Autrique E, Crossa J, Reynolds M, Singh R. Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3 Genes Genomes Genet. 2016;6(9):2799-808.
-
(2016)
G3 Genes Genomes Genet
, vol.6
, Issue.9
, pp. 2799-2808
-
-
Rutkoski, J.1
Poland, J.2
Mondal, S.3
Autrique, E.4
Crossa, J.5
Reynolds, M.6
Singh, R.7
-
17
-
-
0035645784
-
Applications: the analysis of crop variety evaluation data in Australia
-
Smith A, Cullis B, Gilmour A. Applications: the analysis of crop variety evaluation data in Australia. Aust N Z J Stat. 2001;43(2):129-45.
-
(2001)
Aust N Z J Stat
, vol.43
, Issue.2
, pp. 129-145
-
-
Smith, A.1
Cullis, B.2
Gilmour, A.3
-
18
-
-
85024491435
-
Multi-trait, random regression, or simply repeatability model in high-throughput phenotyping data improve genomic prediction for grain yield in wheat
-
Sun J, Rutkoski J, Poland JA, Crossa J, Jannink JL, Sorrels ME. Multi-trait, random regression, or simply repeatability model in high-throughput phenotyping data improve genomic prediction for grain yield in wheat. Plant Genome. 2017;10(2):1-12.
-
(2017)
Plant Genome
, vol.10
, Issue.2
, pp. 1-12
-
-
Sun, J.1
Rutkoski, J.2
Poland, J.A.3
Crossa, J.4
Jannink, J.L.5
Sorrels, M.E.6
-
19
-
-
84977255802
-
The genotypical response of the plant species to the habitat
-
Turesson G. The genotypical response of the plant species to the habitat. Hereditas. 1922;3:211-350.
-
(1922)
Hereditas
, vol.3
, pp. 211-350
-
-
Turesson, G.1
-
20
-
-
55849129528
-
Genomic measures of relationship and inbreeding
-
Van Raden PM. Genomic measures of relationship and inbreeding. Interbul Annu Meet Proc. 2007;37:33-6.
-
(2007)
Interbul Annu Meet Proc
, vol.37
, pp. 33-36
-
-
Raden, P.M.1
-
21
-
-
55849133422
-
Efficient mtehods to compute genomic predictions
-
Van Raden PM. Efficient mtehods to compute genomic predictions. J Dairy Sci. 2008;91(11):4414-23.
-
(2008)
J Dairy Sci
, vol.91
, Issue.11
, pp. 4414-4423
-
-
Raden, P.M.1
-
22
-
-
77954124147
-
A comparison of analysis methods for late-stage variety evaluation trials
-
Welham SJ, Gogel BJ, Smith AB, Thompson R, Cullis BR. A comparison of analysis methods for late-stage variety evaluation trials. Aust N Z J Stat. 2010;52(2):125-49.
-
(2010)
Aust N Z J Stat
, vol.52
, Issue.2
, pp. 125-149
-
-
Welham, S.J.1
Gogel, B.J.2
Smith, A.B.3
Thompson, R.4
Cullis, B.R.5
|