메뉴 건너뛰기




Volumn , Issue , 2017, Pages 3-18

Membership Inference Attacks Against Machine Learning Models

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); LEARNING SYSTEMS;

EID: 85024479480     PISSN: 10816011     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SP.2017.41     Document Type: Conference Paper
Times cited : (3911)

References (38)
  • 5
    • 84920025979 scopus 로고    scopus 로고
    • Private empirical risk minimization: Efficient algorithms and tight error bounds
    • R. Bassily, A. Smith, and A. Thakurta, "Private empirical risk minimization: Efficient algorithms and tight error bounds, " in FOCS, 2014.
    • (2014) FOCS
    • Bassily, R.1    Smith, A.2    Thakurta, A.3
  • 6
    • 84905174579 scopus 로고    scopus 로고
    • Private predictive analysis on encrypted medical data
    • J. Bos, K. Lauter, and M. Naehrig, "Private predictive analysis on encrypted medical data, " J. Biomed. Informatics, vol. 50, pp. 234-243, 2014.
    • (2014) J. Biomed. Informatics , vol.50 , pp. 234-243
    • Bos, J.1    Lauter, K.2    Naehrig, M.3
  • 8
    • 84858769465 scopus 로고    scopus 로고
    • Privacy-preserving logistic regression
    • K. Chaudhuri and C. Monteleoni, "Privacy-preserving logistic regression, " in NIPS, 2009.
    • (2009) NIPS
    • Chaudhuri, K.1    Monteleoni, C.2
  • 9
    • 79955858775 scopus 로고    scopus 로고
    • Differentially private empirical risk minimization
    • K. Chaudhuri, C. Monteleoni, and A. Sarwate, "Differentially private empirical risk minimization, " JMLR, vol. 12, pp. 1069-1109, 2011.
    • (2011) JMLR , vol.12 , pp. 1069-1109
    • Chaudhuri, K.1    Monteleoni, C.2    Sarwate, A.3
  • 10
    • 84965174696 scopus 로고    scopus 로고
    • Differentially private learning of structured discrete distributions
    • I. Diakonikolas, M. Hardt, and L. Schmidt, "Differentially private learning of structured discrete distributions, " in NIPS, 2015.
    • (2015) NIPS
    • Diakonikolas, I.1    Hardt, M.2    Schmidt, L.3
  • 11
    • 33645584057 scopus 로고    scopus 로고
    • Privacy-preserving multivariate statistical analysis: Linear regression and classification
    • W. Du, Y. Han, and S. Chen, "Privacy-preserving multivariate statistical analysis: Linear regression and classification. " in SDM, 2004.
    • (2004) SDM
    • Du, W.1    Han, Y.2    Chen, S.3
  • 13
    • 33746086554 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • C. Dwork, F. McSherry, K. Nissim, and A. Smith, "Calibrating noise to sensitivity in private data analysis, " in TCC, 2006.
    • (2006) TCC
    • Dwork, C.1    McSherry, F.2    Nissim, K.3    Smith, A.4
  • 14
    • 79959952201 scopus 로고    scopus 로고
    • On the difficulties of disclosure prevention in statistical databases or the case for differential privacy
    • C. Dwork and M. Naor, "On the difficulties of disclosure prevention in statistical databases or the case for differential privacy, " J. Privacy and Confidentiality, vol. 2, no. 1, pp. 93-107, 2010.
    • (2010) J. Privacy and Confidentiality , vol.2 , Issue.1 , pp. 93-107
    • Dwork, C.1    Naor, M.2
  • 16
    • 84954097669 scopus 로고    scopus 로고
    • Model inversion attacks that exploit confidence information and basic countermeasures
    • M. Fredrikson, S. Jha, and T. Ristenpart, "Model inversion attacks that exploit confidence information and basic countermeasures, " in CCS, 2015.
    • (2015) CCS
    • Fredrikson, M.1    Jha, S.2    Ristenpart, T.3
  • 17
  • 18
    • 84998546946 scopus 로고    scopus 로고
    • Train faster, generalize better: Stability of stochastic gradient descent
    • M. Hardt, B. Recht, and Y. Singer, "Train faster, generalize better: Stability of stochastic gradient descent, " in ICML, 2016.
    • (2016) ICML
    • Hardt, M.1    Recht, B.2    Singer, Y.3
  • 19
    • 85161148381 scopus 로고    scopus 로고
    • The elements of statistical learning: Data mining, inference and prediction
    • T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, "The elements of statistical learning: Data mining, inference and prediction, " The Mathematical Intelligencer, vol. 27, no. 2, pp. 83-85, 2005.
    • (2005) The Mathematical Intelligencer , vol.27 , Issue.2 , pp. 83-85
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3    Franklin, J.4
  • 22
    • 32344446366 scopus 로고    scopus 로고
    • Privacy-preserving distributed k-means clustering over arbitrarily partitioned data
    • G. Jagannathan and R. Wright, "Privacy-preserving distributed k-means clustering over arbitrarily partitioned data, " in KDD, 2005.
    • (2005) KDD
    • Jagannathan, G.1    Wright, R.2
  • 26
    • 0003625004 scopus 로고    scopus 로고
    • Privacy preserving data mining
    • Y. Lindell and B. Pinkas, "Privacy preserving data mining, " in CRYPTO, 2000.
    • (2000) CRYPTO
    • Lindell, Y.1    Pinkas, B.2
  • 28
    • 84877781092 scopus 로고    scopus 로고
    • Learning in a large function space: Privacy-preserving mechanisms for SVM learning
    • B. Rubinstein, P. Bartlett, L. Huang, and N. Taft, "Learning in a large function space: Privacy-preserving mechanisms for SVM learning, " J. Privacy and Confidentiality, vol. 4, no. 1, p. 4, 2012.
    • (2012) J. Privacy and Confidentiality , vol.4 , Issue.1 , pp. 4
    • Rubinstein, B.1    Bartlett, P.2    Huang, L.3    Taft, N.4
  • 29
    • 69349086735 scopus 로고    scopus 로고
    • Genomic privacy and limits of individual detection in a pool
    • S. Sankararaman, G. Obozinski, M. I. Jordan, and E. Halperin, "Genomic privacy and limits of individual detection in a pool, " Nature Genetics, vol. 41, no. 9, pp. 965-967, 2009.
    • (2009) Nature Genetics , vol.41 , Issue.9 , pp. 965-967
    • Sankararaman, S.1    Obozinski, G.2    Jordan, M.I.3    Halperin, E.4
  • 30
    • 84954108845 scopus 로고    scopus 로고
    • Privacy-preserving deep learning
    • R. Shokri and V. Shmatikov, "Privacy-preserving deep learning, " in CCS, 2015.
    • (2015) CCS
    • Shokri, R.1    Shmatikov, V.2
  • 31
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting, " JMLR, vol. 15, no. 1, pp. 1929-1958, 2014.
    • (2014) JMLR , vol.15 , Issue.1 , pp. 1929-1958
    • Srivastava, N.1    Hinton, G.2    Krizhevsky, A.3    Sutskever, I.4    Salakhutdinov, R.5
  • 33
    • 45749132089 scopus 로고    scopus 로고
    • Privacy-preserving Naive Bayes classification
    • J. Vaidya, M. Kantarcoglu, and C. Clifton, "Privacy-preserving Naive Bayes classification, " VLDB, vol. 17, no. 4, pp. 879-898, 2008.
    • (2008) VLDB , vol.17 , Issue.4 , pp. 879-898
    • Vaidya, J.1    Kantarcoglu, M.2    Clifton, C.3
  • 36
    • 84956988054 scopus 로고    scopus 로고
    • Participatory cultural mapping based on collective behavior data in location-based social networks
    • D. Yang, D. Zhang, and B. Qu, "Participatory cultural mapping based on collective behavior data in location-based social networks, " ACM TIST, vol. 7, no. 3, p. 30, 2016.
    • (2016) ACM TIST , vol.7 , Issue.3 , pp. 30
    • Yang, D.1    Zhang, D.2    Qu, B.3
  • 37
    • 84873178476 scopus 로고    scopus 로고
    • Functional mechanism: Regression analysis under differential privacy
    • J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett, "Functional mechanism: Regression analysis under differential privacy, " VLDB, vol. 5, no. 11, pp. 1364-1375, 2012.
    • (2012) VLDB , vol.5 , Issue.11 , pp. 1364-1375
    • Zhang, J.1    Zhang, Z.2    Xiao, X.3    Yang, Y.4    Winslett, M.5
  • 38
    • 0347585601 scopus 로고    scopus 로고
    • Kernel logistic regression and the import vector machine
    • J. Zhu and T. Hastie, "Kernel logistic regression and the import vector machine, " in NIPS, 2001.
    • (2001) NIPS
    • Zhu, J.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.