메뉴 건너뛰기




Volumn 26, Issue 2, 2019, Pages 275-301

Soft Computing Techniques for Land Use and Land Cover Monitoring with Multispectral Remote Sensing Images: A Review

Author keywords

[No Author keywords available]

Indexed keywords

DEFORESTATION; FEATURE EXTRACTION; IMAGE FUSION; LAND USE; OBJECT DETECTION; SOFT COMPUTING;

EID: 85022220656     PISSN: 11343060     EISSN: 18861784     Source Type: Journal    
DOI: 10.1007/s11831-017-9239-y     Document Type: Article
Times cited : (55)

References (160)
  • 1
    • 84878499480 scopus 로고    scopus 로고
    • Integration of gibbs Markov random field and hopfield-type neural networks for unsupervised change detection in remotely sensed multitemporal images
    • Ghosh A, Subudhi BN, Bruzzone L (2013) Integration of gibbs Markov random field and hopfield-type neural networks for unsupervised change detection in remotely sensed multitemporal images. IEEE Trans Image Process 22 (8):3087–3096
    • (2013) IEEE Trans Image Process , vol.22 , Issue.8 , pp. 3087-3096
    • Ghosh, A.1    Subudhi, B.N.2    Bruzzone, L.3
  • 2
    • 80955164584 scopus 로고    scopus 로고
    • High-resolution satellite image classification and segmentation using laplacian graph energy
    • IEEE, New Jersey
    • Meng Z, Xiao B (2011) High-resolution satellite image classification and segmentation using laplacian graph energy. In: 2011 IEEE International geoscience and remote sensing symposium (IGARSS). IEEE, New Jersey, pp 605–608
    • (2011) 2011 IEEE International geoscience and remote sensing symposium (IGARSS) , pp. 605-608
    • Meng, Z.1    Xiao, B.2
  • 5
    • 84861161549 scopus 로고    scopus 로고
    • Very high-resolution remote sensing: challenges and opportunities
    • Benediktsson JA, Chanussot J, Moon WM (2012) Very high-resolution remote sensing: challenges and opportunities. Proc IEEE 100(6):1907–1910
    • (2012) Proc IEEE , vol.100 , Issue.6 , pp. 1907-1910
    • Benediktsson, J.A.1    Chanussot, J.2    Moon, W.M.3
  • 6
    • 85062744697 scopus 로고    scopus 로고
    • Accessed 14 April
    • http://www.seos-project.eu/modules/remotesensing/remotesensing-c03-p02.html. Accessed 14 April 2017
    • (2017)
  • 8
    • 85062751049 scopus 로고    scopus 로고
    • Accessed 15 April 2017
    • http://glcf.umd.edu/data/landsat. Accessed 15 April 2017
  • 9
    • 85062747553 scopus 로고    scopus 로고
    • Accessed 15 April
    • http://landsat.gsfc.nasa.gov/landsat-8/landsat-8-bands/. Accessed 15 April 2017
    • (2017)
  • 10
    • 85062749916 scopus 로고    scopus 로고
    • Accessed 15 April 2017
    • http://www.bhuvan.nrse.gov.in. Accessed 15 April 2017
  • 11
    • 85062748961 scopus 로고    scopus 로고
    • Accessed 15 April
    • http://www.satimagingcorp.com/gallery/more-imagery/spot-5/. Accessed 15 April 2017
    • (2017)
  • 12
    • 85062751738 scopus 로고    scopus 로고
    • Accessed 15 April
    • http://www.satimagingcorp.com/satellite-sensors/quickbird/. Accessed 15 April 2017
    • (2017)
  • 13
    • 85062736934 scopus 로고    scopus 로고
    • Accessed 15 April 2017
    • http://www.esa.int/spaceinimages/Missions/Envisat. Accessed 15 April 2017
  • 14
    • 85062743689 scopus 로고    scopus 로고
    • Accessed 15 April
    • https://Earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers. Accessed 15 April 2017
    • (2017)
  • 15
    • 85062744676 scopus 로고    scopus 로고
    • Accessed 15 April
    • http://aviris.jpl.nasa.gov/html/overview.html. Accessed 15 April 2017
    • (2017)
  • 16
    • 85062744584 scopus 로고    scopus 로고
    • Accessed 15 April
    • http://www.isro.gov.in/category-spacecraft/irs-p6-resourcesat-1. Accessed 15 April 2017
    • (2017)
  • 17
    • 85062749309 scopus 로고    scopus 로고
    • Accessed 15 April
    • https://www.asf.alaska.edu/sar-data/jers-1/. Accessed 15 April 2017
    • (2017)
  • 18
    • 85062749383 scopus 로고    scopus 로고
    • Accessed 15 April
    • https://eo1.gsfc.nasa.gov/. Accessed 15 April 2017
    • (2017)
  • 19
    • 85062738041 scopus 로고    scopus 로고
    • Accessed 15 April
    • http://www.asc-csa.gc.ca/eng/satellites/radarsat2/. Accessed 15 April 2017
    • (2017)
  • 20
    • 85062737956 scopus 로고    scopus 로고
    • Accessed 15 April
    • http://www.satimagingcorp.com/gallery/ikonos/. Accessed 15 April 2017
    • (2017)
  • 21
    • 85062743805 scopus 로고    scopus 로고
    • April
    • https://Earth.esa.int/web/guest/missions/3rd-party-missions/historical-missions/alos/instruments/avnir-2. Accessed 15 April 2017
    • (2017)
  • 22
    • 85062742760 scopus 로고    scopus 로고
    • Accessed 15 April
    • https://directory.eoportal.org/web/eoportal/satellite-missions/h/hj-1. Accessed 15 April 2017
    • (2017)
  • 23
    • 85062740700 scopus 로고    scopus 로고
    • Accessed 15 April
    • http://asterweb.jpl.nasa.gov/. Accessed 15 April 2017
    • (2017)
  • 24
    • 85062749758 scopus 로고    scopus 로고
    • Accessed 15 April
    • http://www.itres.com/casi-1500/. Accessed 15 April 2017
    • (2017)
  • 25
    • 85062735957 scopus 로고    scopus 로고
    • Accessed 15 April
    • http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10008/. Accessed 15 April 2017
    • (2017)
  • 27
    • 84856975181 scopus 로고    scopus 로고
    • Local binary patterns as texture descriptors for user attitude recognition
    • Eisa M, ElGamal A, Ghoneim R, Bahey A (2010) Local binary patterns as texture descriptors for user attitude recognition. Int J ComputSci Netw Secur 10(6):222–229
    • (2010) Int J ComputSci Netw Secur , vol.10 , Issue.6 , pp. 222-229
    • Eisa, M.1    ElGamal, A.2    Ghoneim, R.3    Bahey, A.4
  • 28
    • 0033723420 scopus 로고    scopus 로고
    • Exploiting spatial correlation features for SAR image analysis
    • Vaccaro R, Smits PC, Dellepiane SG (2000) Exploiting spatial correlation features for SAR image analysis. IEEE Trans Geosci Remote Sens 38(3):1212–1223
    • (2000) IEEE Trans Geosci Remote Sens , vol.38 , Issue.3 , pp. 1212-1223
    • Vaccaro, R.1    Smits, P.C.2    Dellepiane, S.G.3
  • 29
    • 67349176070 scopus 로고    scopus 로고
    • Automatic music genre classification based on modulation spectral analysis of spectral and cepstral features
    • Lee C-H, Shih J-L, Yu K-M, Lin H-S (2009) Automatic music genre classification based on modulation spectral analysis of spectral and cepstral features. IEEE Trans Multimed 11(4):670–682
    • (2009) IEEE Trans Multimed , vol.11 , Issue.4 , pp. 670-682
    • Lee, C.-H.1    Shih, J.-L.2    Yu, K.-M.3    Lin, H.-S.4
  • 30
    • 70350653608 scopus 로고    scopus 로고
    • Magnitude-and shape-related feature integration in hyperspectral mixture analysis to monitor weeds in citrus orchards
    • Somers B, Delalieux S, Verstraeten WW, Verbesselt J, Lhermitte S, Coppin P (2009) Magnitude-and shape-related feature integration in hyperspectral mixture analysis to monitor weeds in citrus orchards. IEEE Trans Geosci Remote Sens 47(11): 3630–3642
    • (2009) IEEE Trans Geosci Remote Sens , vol.47 , Issue.11 , pp. 3630-3642
    • Somers, B.1    Delalieux, S.2    Verstraeten, W.W.3    Verbesselt, J.4    Lhermitte, S.5    Coppin, P.6
  • 31
    • 77953744716 scopus 로고    scopus 로고
    • Analysis of wheezes using wavelet higher order spectral features
    • Taplidou SA, Hadjileontiadis LJ (2010) Analysis of wheezes using wavelet higher order spectral features. IEEE Trans Biomed Eng 57(7): pp 1596–1610
    • (2010) IEEE Trans Biomed Eng , vol.57 , Issue.7 , pp. 1596-1610
    • Taplidou, S.A.1    Hadjileontiadis, L.J.2
  • 32
    • 84943804725 scopus 로고    scopus 로고
    • Unsupervised feature selection via nonnegative spectral analysis and redundancy control
    • Li Z, Tang J (2015) Unsupervised feature selection via nonnegative spectral analysis and redundancy control. IEEE Trans Image Process 24(12):5343–5355
    • (2015) IEEE Trans Image Process , vol.24 , Issue.12 , pp. 5343-5355
    • Li, Z.1    Tang, J.2
  • 34
    • 84978219437 scopus 로고    scopus 로고
    • Remote sensing optical image registration using modified uniform robust SIFT
    • Paul S, Pati UC (2016) Remote sensing optical image registration using modified uniform robust SIFT. IEEE Geosci Remote Sens Lett 13(9):1300–1304
    • (2016) IEEE Geosci Remote Sens Lett , vol.13 , Issue.9 , pp. 1300-1304
    • Paul, S.1    Pati, U.C.2
  • 35
    • 84890370371 scopus 로고    scopus 로고
    • Robust texture analysis using multi-resolution gray-scale invariant features for breast sonographic tumor diagnosis
    • Yang M-C, Moon WK, Wang Y-CF, Bae MS, Huang C-S, Chen J-H, Chang R-F (2013) Robust texture analysis using multi-resolution gray-scale invariant features for breast sonographic tumor diagnosis. IEEE Trans Med Imaging 32(12):2262–2273
    • (2013) IEEE Trans Med Imaging , vol.32 , Issue.12 , pp. 22622273
    • Yang, M.-C.1    Moon, W.K.2    Wang, Y.-C.F.3    Bae, M.S.4    Huang, C.-S.5    Chen, J.-H.6    Chang, R.-F.7
  • 38
    • 85011623873 scopus 로고    scopus 로고
    • Automatically evolving rotation-invariant texture image descriptors by genetic programming
    • Al-Sahaf H, Al-Sahaf A, Xue B, Johnston M, Zhang M (2016) Automatically evolving rotation-invariant texture image descriptors by genetic programming. IEEE Trans Evol Comput. doi:10.1109/TEVC.2016.2577548
    • (2016) IEEE Trans Evol Comput
    • Al-Sahaf, H.1    Al-Sahaf, A.2    Xue, B.3    Johnston, M.4    Zhang, M.5
  • 41
    • 78650941566 scopus 로고    scopus 로고
    • Satellite image classification via two-layer sparse coding with biased image representation
    • Dai D, Yang W (2011) Satellite image classification via two-layer sparse coding with biased image representation. IEEE Remote Sens Lett 8(1): 173–176
    • (2011) IEEE Remote Sens Lett , vol.8 , Issue.1 , pp. 173-176
    • Dai, D.1    Yang, W.2
  • 44
    • 84876475583 scopus 로고    scopus 로고
    • Cluster structured sparse representation for high resolution satellite image classification
    • IEEE, New Jersey
    • Sheng G, Yang W, Yu L, Sun H (2012) Cluster structured sparse representation for high resolution satellite image classification. In 2010 ICSP2012 Proceedings. IEEE, New Jersey, pp 693–696
    • (2012) 2010 ICSP2012 Proceedings , pp. 693-696
    • Sheng, G.1    Yang, W.2    Yu, L.3    Sun, H.4
  • 47
    • 84947868503 scopus 로고    scopus 로고
    • Multi-temporal land use classification using hybrid approach
    • Kantakumar LN, Neelamsetti P (2015) Multi-temporal land use classification using hybrid approach. Egypt J Remote Sens Space Sci 18:289–295
    • (2015) Egypt J Remote Sens Space Sci , vol.18 , pp. 289-295
    • Kantakumar, L.N.1    Neelamsetti, P.2
  • 48
    • 70350352159 scopus 로고    scopus 로고
    • Fuzzy logic analysis of flood disaster monitoring and assessment of damage in SE Anatolia Turkey
    • IEEE, New Jersey
    • Bayraktar H, Bayram B (2009) Fuzzy logic analysis of flood disaster monitoring and assessment of damage in SE Anatolia Turkey. In: 2009 4th international conference on recent advances in space technologies. IEEE, New Jersey, pp 13–17. ISBN: 978-1-4244-3628-6
    • (2009) 2009 4th international conference on recent advances in space technologies , pp. 13-17
    • Bayraktar, H.1    Bayram, B.2
  • 50
    • 84919782701 scopus 로고    scopus 로고
    • Multiobjective PSO based adaption of neural network topology for pixel classification in satellite imagery
    • Agrawala RK, Bawane NG (2015) Multiobjective PSO based adaption of neural network topology for pixel classification in satellite imagery. Appl Soft Comput 28:217–225
    • (2015) Appl Soft Comput , vol.28 , pp. 217-225
    • Agrawala, R.K.1    Bawane, N.G.2
  • 51
    • 79951850444 scopus 로고    scopus 로고
    • Wavelet-fuzzy hybridization: feature-extraction and land-cover classification of remote sensing images
    • Uma Shankar B, Meher SK, Ghosh A (2011) Wavelet-fuzzy hybridization: feature-extraction and land-cover classification of remote sensing images. Appl Soft Comput 11:2999–3011
    • (2011) Appl Soft Comput , vol.11 , pp. 2999-3011
    • Uma Shankar, B.1    Meher, S.K.2    Ghosh, A.3
  • 52
    • 80053558329 scopus 로고    scopus 로고
    • Rough-wavelet granular space and classification of multispectral remote sensing image
    • Mehera SK, Pal SK (2011) Rough-wavelet granular space and classification of multispectral remote sensing image. Appl Soft Comput 11:5662–5673
    • (2011) Appl Soft Comput , vol.11 , pp. 5662-5673
    • Mehera, S.K.1    Pal, S.K.2
  • 53
    • 84655163233 scopus 로고    scopus 로고
    • Hybrid bio-inspired techniques for land cover feature extraction: A remote sensing perspective
    • Goel L, Gupta D, Panchal VK (2012) Hybrid bio-inspired techniques for land cover feature extraction: A remote sensing perspective. Appl Soft Comput 12:832–849
    • (2012) Appl Soft Comput , vol.12 , pp. 832-849
    • Goel, L.1    Gupta, D.2    Panchal, V.K.3
  • 54
    • 84880118450 scopus 로고    scopus 로고
    • Self-adaptive differential evolution for feature selection in hyper spectral image data
    • Ghosh A, Datta A, Ghosh S (2013) Self-adaptive differential evolution for feature selection in hyper spectral image data. Appl Soft Comput 13:1969–1977
    • (2013) Appl Soft Comput , vol.13 , pp. 1969-1977
    • Ghosh, A.1    Datta, A.2    Ghosh, S.3
  • 55
    • 84885310392 scopus 로고    scopus 로고
    • Biogeography and geo-sciences based land cover feature extraction
    • Goel L, Gupta D, Panchal VK (2013) Biogeography and geo-sciences based land cover feature extraction. Appl Soft Comput 13:4194–4208
    • (2013) Appl Soft Comput , vol.13 , pp. 4194-4208
    • Goel, L.1    Gupta, D.2    Panchal, V.K.3
  • 56
    • 84891609873 scopus 로고    scopus 로고
    • An efficient automatic SAR image segmentation framework in AIS using kernel clustering index and histogram statistics
    • Yang D, Wang L, Hei X, Gong M (2014) An efficient automatic SAR image segmentation framework in AIS using kernel clustering index and histogram statistics. Appl Soft Comput 16:63–79
    • (2014) Appl Soft Comput , vol.16 , pp. 63-79
    • Yang, D.1    Wang, L.2    Hei, X.3    Gong, M.4
  • 57
    • 84922519910 scopus 로고    scopus 로고
    • Using an unsupervised approach of Probabilistic Neural Network (PNN) for land use classification from multitemporal satellite images
    • Iounousse J, Er-Raki E, Motassadeq AE, Chehouani H (2015) Using an unsupervised approach of Probabilistic Neural Network (PNN) for land use classification from multitemporal satellite images. Appl Soft Comput 30:1–13
    • (2015) Appl Soft Comput , vol.30 , pp. 1-13
    • Iounousse, J.1    Er-Raki, E.2    Motassadeq, A.E.3    Chehouani, H.4
  • 58
    • 84936864347 scopus 로고    scopus 로고
    • Automatic classification of high resolution land cover using a new data weighting procedure: the combination of K-means clustering algorithm and central tendency measures (KMC–CTM)
    • Durduran SS (2015) Automatic classification of high resolution land cover using a new data weighting procedure: the combination of K-means clustering algorithm and central tendency measures (KMC–CTM). Appl Soft Comput 35:136–150
    • (2015) Appl Soft Comput , vol.35 , pp. 136-150
    • Durduran, S.S.1
  • 59
    • 80053572788 scopus 로고    scopus 로고
    • Supervised and unsupervised landuse map generation from remotely sensed images using ant based systems
    • Halder A, Ghosh A, Ghosh S (2011) Supervised and unsupervised landuse map generation from remotely sensed images using ant based systems. Appl Soft Comput 11:5770–5781
    • (2011) Appl Soft Comput , vol.11 , pp. 5770-5781
    • Halder, A.1    Ghosh, A.2    Ghosh, S.3
  • 60
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251
    • (2016) IEEE Trans Geosci Remote Sens , vol.54 , Issue.10 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5
  • 61
    • 67349088428 scopus 로고    scopus 로고
    • Distinguishing blueberry bushes from mixed vegetation land use using high resolution satellite imagery and geospatial techniques
    • Panda SS, Hoogenboom G, Paz J (2009) Distinguishing blueberry bushes from mixed vegetation land use using high resolution satellite imagery and geospatial techniques. Comput Electron Agric 67:51–58
    • (2009) Comput Electron Agric , vol.67 , pp. 51-58
    • Panda, S.S.1    Hoogenboom, G.2    Paz, J.3
  • 63
    • 85019677815 scopus 로고    scopus 로고
    • A textural approach for land cover classification of remotely sensed image
    • Jenicka S, Suruliandi A (2014) A textural approach for land cover classification of remotely sensed image. CSIT 2(1):1–9
    • (2014) CSIT , vol.2 , Issue.1 , pp. 1-9
    • Jenicka, S.1    Suruliandi, A.2
  • 64
    • 78649797191 scopus 로고    scopus 로고
    • A variable precision rough set approach to the remote sensing land use/cover classification
    • Pan X, Zhang S, Zhang H, Na X, Li X (2010) A variable precision rough set approach to the remote sensing land use/cover classification. Comput Geosci 36:1466–1473
    • (2010) Comput Geosci , vol.36 , pp. 1466-1473
    • Pan, X.1    Zhang, S.2    Zhang, H.3    Na, X.4    Li, X.5
  • 65
    • 84857916067 scopus 로고    scopus 로고
    • Support vector machines and object-based classification for obtaining land-use/cover cartography from hyperion hyperspectral imagery
    • Petropoulos GP, Kalaitzidis C, Vadrevu KP (2012) Support vector machines and object-based classification for obtaining land-use/cover cartography from hyperion hyperspectral imagery. Comput Geosci 41:99–107
    • (2012) Comput Geosci , vol.41 , pp. 99-107
    • Petropoulos, G.P.1    Kalaitzidis, C.2    Vadrevu, K.P.3
  • 66
    • 85061752050 scopus 로고    scopus 로고
    • A novel graph based fuzzy clustering technique for unsupervised classification of remote sensing images
    • Banerjee B, Krishna Mohan B (2014) A novel graph based fuzzy clustering technique for unsupervised classification of remote sensing images. ISPRS Ann Photogr Remote Sens Spat Inf Sci 2(8):165–170
    • (2014) ISPRS Ann Photogr Remote Sens Spat Inf Sci , vol.2 , Issue.8 , pp. 165-170
    • Banerjee, B.1    Krishna Mohan, B.2
  • 67
    • 84981281320 scopus 로고    scopus 로고
    • Comparison of different algorithms for land use mapping in dry climate using satellite images: a case study of the Central regions of Iran
    • Yousefi S, Mirzaee S, Tazehc M, Pourghasemi H, Karimi H (2015) Comparison of different algorithms for land use mapping in dry climate using satellite images: a case study of the Central regions of Iran. Desert 20(1):1–10
    • (2015) Desert , vol.20 , Issue.1 , pp. 1-10
    • Yousefi, S.1    Mirzaee, S.2    Tazehc, M.3    Pourghasemi, H.4    Karimi, H.5
  • 68
    • 84910053472 scopus 로고    scopus 로고
    • A new self-training based unsupervised satellite image classification technique using cluster ensemble strategy
    • Banerjee B, Bovolo F, Bhattacharya A, Bruzzone L, Chaudhuri S, Krishna Mohan B (2015) A new self-training based unsupervised satellite image classification technique using cluster ensemble strategy. IEEE Remote Sens Lett 12(4):741–745
    • (2015) IEEE Remote Sens Lett , vol.12 , Issue.4 , pp. 741-745
    • Banerjee, B.1    Bovolo, F.2    Bhattacharya, A.3    Bruzzone, L.4    Chaudhuri, S.5    Krishna Mohan, B.6
  • 69
    • 84980000082 scopus 로고    scopus 로고
    • High-resolution image classification integrating spectral-spatial-location cues by conditional random fields
    • Zhao J, Zhong Y, Shu H, Zhang L (2016) High-resolution image classification integrating spectral-spatial-location cues by conditional random fields. IEEE Trans Image Process 25(9):4033–4045
    • (2016) IEEE Trans Image Process , vol.25 , Issue.9 , pp. 4033-4045
    • Zhao, J.1    Zhong, Y.2    Shu, H.3    Zhang, L.4
  • 70
    • 84959422095 scopus 로고    scopus 로고
    • Class-level joint sparse representation for multi feature-based hyperspectral image classification
    • Zhang E, Jiao L, Zhang X, Liu H, Wang S (2016) Class-level joint sparse representation for multi feature-based hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 9(9):4160–4177
    • (2016) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.9 , Issue.9 , pp. 4160-4177
    • Zhang, E.1    Jiao, L.2    Zhang, X.3    Liu, H.4    Wang, S.5
  • 71
    • 84964454354 scopus 로고    scopus 로고
    • Wavelet-domain multi view active learning for spatial–spectral hyperspectral image classification
    • Zhou X, Prasad S, Crawford MM (2016) Wavelet-domain multi view active learning for spatial–spectral hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 9(9):4047–4059
    • (2016) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.9 , Issue.9 , pp. 4047-4059
    • Zhou, X.1    Prasad, S.2    Crawford, M.M.3
  • 72
    • 84973573012 scopus 로고    scopus 로고
    • Bilayer elastic net regression model for supervised spectral-spatial hyperspectral image classification
    • Soomro BN, Xiao L, Huang L, Soomro SH, Molaei M (2016) Bilayer elastic net regression model for supervised spectral-spatial hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 9(9):4102–4116
    • (2016) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.9 , Issue.9 , pp. 4102-4116
    • Soomro, B.N.1    Xiao, L.2    Huang, L.3    Soomro, S.H.4    Molaei, M.5
  • 73
    • 84988643339 scopus 로고    scopus 로고
    • Mixture-based super pixel segmentation and classification of SAR images
    • Arisoy S, Kayabol K (2016) Mixture-based super pixel segmentation and classification of SAR images. IEEE Remote Sens Lett 13(11):1721–1726
    • (2016) IEEE Remote Sens Lett , vol.13 , Issue.11 , pp. 1721-1726
    • Arisoy, S.1    Kayabol, K.2
  • 74
  • 75
    • 84992313462 scopus 로고    scopus 로고
    • Hyperspectral image classification via kernel basic thresholding classifier
    • Toksoz MA, Ulusoy I (2016) Hyperspectral image classification via kernel basic thresholding classifier. IEEE Trans Geosci Remote Sens. doi:10.1109/TGRS.2016.2613931
    • (2016) IEEE Trans Geosci Remote Sens
    • Toksoz, M.A.1    Ulusoy, I.2
  • 76
    • 84995532079 scopus 로고    scopus 로고
    • Deep learning with attribute profiles for hyperspectral image classification
    • Aptoula E, Ozdemir MC, Yanikoglu B (2016) Deep learning with attribute profiles for hyperspectral image classification. IEEE Remote Sens Lett. doi:10.1109/LGRS.2016.2619354
    • (2016) IEEE Remote Sens Lett
    • Aptoula, E.1    Ozdemir, M.C.2    Yanikoglu, B.3
  • 77
    • 84995529466 scopus 로고    scopus 로고
    • Hyperspectral image classification using deep pixel, -pair features
    • Wei Li, Guodong Wu, Zhang F, Du Q (2016) Hyperspectral image classification using deep pixel, -pair features. IEEE Trans Geosci Remote Sens. doi:10.1109/TGRS.2016.2616355
    • (2016) IEEE Trans Geosci Remote Sens
    • Wei, L.1    Guodong, W.2    Zhang, F.3    Du, Q.4
  • 79
    • 17244366734 scopus 로고    scopus 로고
    • Granular neural networks for land use classification
    • Vasilakos A, Stathakis D (2005) Granular neural networks for land use classification. Soft Comput 9:332–340
    • (2005) Soft Comput , vol.9 , pp. 332-340
    • Vasilakos, A.1    Stathakis, D.2
  • 80
    • 81155132222 scopus 로고    scopus 로고
    • A multistage genetic fuzzy classifier for land cover classification from satellite imagery
    • Stavrakoudis DG, Theocharis JB, Zalidis GC (2011) A multistage genetic fuzzy classifier for land cover classification from satellite imagery. Soft Comput 15:2355–2374
    • (2011) Soft Comput , vol.15 , pp. 2355-2374
    • Stavrakoudis, D.G.1    Theocharis, J.B.2    Zalidis, G.C.3
  • 81
    • 84929683396 scopus 로고    scopus 로고
    • Multi-objective semi-supervised clustering for automatic pixel classification from remote sensing imagery
    • Alok AK, Saha S, Ekbal A (2015) Multi-objective semi-supervised clustering for automatic pixel classification from remote sensing imagery. SoftComputing. doi:10.1007/s00500-015-1701-x
    • (2015) SoftComputing
    • Alok, A.K.1    Saha, S.2    Ekbal, A.3
  • 83
    • 78649429706 scopus 로고    scopus 로고
    • Analysis and evaluation of classifiers using multi-temporal images in land use and land cover mapping
    • ACM-W, Coimbatore
    • Srimani PK, Prasad N (2010) Analysis and evaluation of classifiers using multi-temporal images in land use and land cover mapping. In: 2010 A2CWiC, September 16-17, India. ACM-W, Coimbatore, ISBN: 978-1-4503-0194-7
    • (2010) 2010 A2CWiC, September 16-17, India
    • Srimani, P.K.1    Prasad, N.2
  • 85
    • 77952381076 scopus 로고    scopus 로고
    • Automatic object extraction using object based image classification technique from high resolution remotely sensed images
    • ACM, Mumbai
    • Rizvi IA, Mohan BK, Bhatia PR (2010) Automatic object extraction using object based image classification technique from high resolution remotely sensed images. In: 2010 ICWET’10, Mumbai, Maharashtra, India. ACM, Mumbai. ISBN: 978-1-60558-812-4, pp. 623–628
    • (2010) 2010 ICWET’10, Mumbai, Maharashtra, India , pp. 623-628
    • Rizvi, I.A.1    Mohan, B.K.2    Bhatia, P.R.3
  • 86
    • 79955106421 scopus 로고    scopus 로고
    • Application of fractal parameters for unsupervised classification of SAR images: a simulation based study
    • ACM, Allahabad
    • Pant T, Singh D, Srivastava T (2010) Application of fractal parameters for unsupervised classification of SAR images: a simulation based study. In: 2010 IITM’10, December 28-30, 2010, Allahabad, UP, India. ACM, Allahabad, pp. 45–50. ISBN: 978-1-4503-0408-5
    • (2010) 2010 IITM’10, December 28-30, 2010, Allahabad, UP, India , pp. 45-50
    • Pant, T.1    Singh, D.2    Srivastava, T.3
  • 87
    • 84979469488 scopus 로고    scopus 로고
    • A novel approach for multispectral satellite image classification based on the bat algorithm
    • Senthilnath J, Kulkarni S, Benediktsson JA, Yang XS (2016) A novel approach for multispectral satellite image classification based on the bat algorithm. IEEE Geosci Remote Sens Lett 13(4):599–603
    • (2016) IEEE Geosci Remote Sens Lett , vol.13 , Issue.4 , pp. 599-603
    • Senthilnath, J.1    Kulkarni, S.2    Benediktsson, J.A.3    Yang, X.S.4
  • 88
    • 78651111108 scopus 로고    scopus 로고
    • Satellite image classification using sparse codes of multiple features
    • IEEE, New Jersey
    • Sheng G, Yang W, Chen L, Sun H (2010) Satellite image classification using sparse codes of multiple features. In: 2010 ICSP2010 Proceedings. IEEE, New Jersey, pp. 592–595
    • (2010) In: 2010 ICSP2010 Proceedings , pp. 592-595
    • Sheng, G.1    Yang, W.2    Chen, L.3    Sun, H.4
  • 89
    • 77958061819 scopus 로고    scopus 로고
    • The study of high resolution satellite image classification based on support vector machine
    • IEEE, New Jersey
    • Hwang JT, Chiang HC (2010) The study of high resolution satellite image classification based on support vector machine. In: 2010 18th international conference on geoinformatics. IEEE, New Jersey
    • (2010) 2010 18th international conference on geoinformatics
    • Hwang, J.T.1    Chiang, H.C.2
  • 91
    • 55849091779 scopus 로고    scopus 로고
    • Using the maximum mutual information criterion to textural feature selection for satellite image classification
    • IEEE, New Jersey
    • Kerroume MA, Hammouche A, Aboutajdinee D, Bellaachia A (2008) Using the maximum mutual information criterion to textural feature selection for satellite image classification. In: 2008 IEEE symposium on computers and communications. IEEE, New Jersey, pp. 1005–1009
    • (2008) 2008 IEEE symposium on computers and communications , pp. 1005-1009
    • Kerroume, M.A.1    Hammouche, A.2    Aboutajdinee, D.3    Bellaachia, A.4
  • 92
    • 79959547598 scopus 로고    scopus 로고
    • Classification of satellite images by means of fuzzy rules generated by a genetic algorithm
    • Gordo O, Martínez E, Gonzalo C, Arquero A (2011) Classification of satellite images by means of fuzzy rules generated by a genetic algorithm. IEEE Latin Am Trans 9(1):9–14
    • (2011) IEEE Latin Am Trans , vol.9 , Issue.1 , pp. 9-14
    • Gordo, O.1    Martínez, E.2    Gonzalo, C.3    Arquero, A.4
  • 94
    • 84996720354 scopus 로고    scopus 로고
    • A novel multiple unsupervised algorithm for land use/land cover classification
    • Vignesh T, Thyagharajan KK, Murugan D, Sakthivel M, Pushparaj S (2016) A novel multiple unsupervised algorithm for land use/land cover classification. Indian J Sci Technol 9(42):1–12. doi:10.17485/ijst/2016/v9i42/99682
    • (2016) Indian J Sci Technol , vol.9 , Issue.42 , pp. 1-12
    • Vignesh, T.1    Thyagharajan, K.K.2    Murugan, D.3    Sakthivel, M.4    Pushparaj, S.5
  • 96
    • 84864767147 scopus 로고    scopus 로고
    • A novel approach for measuring hyperspectral similarity
    • Galal A, Hassan H, Imam IF (2012) A novel approach for measuring hyperspectral similarity. Appl Soft Comput 12:3115–3123
    • (2012) Appl Soft Comput , vol.12 , pp. 3115-3123
    • Galal, A.1    Hassan, H.2    Imam, I.F.3
  • 97
    • 84969835149 scopus 로고    scopus 로고
    • Towards feature points based image matching between satellite imagery and aerial photographs of agriculture land
    • Saleem S, Bais A, Sablatnig R (2016) Towards feature points based image matching between satellite imagery and aerial photographs of agriculture land. Comput Electron Agric 126:12–20
    • (2016) Comput Electron Agric , vol.126 , pp. 12-20
    • Saleem, S.1    Bais, A.2    Sablatnig, R.3
  • 98
    • 2242426277 scopus 로고    scopus 로고
    • Crop identification using harmonic analysis of time-series AVHRR NDVI data
    • Jakubauskas ME, Legates DR, Kastens JH (2002) Crop identification using harmonic analysis of time-series AVHRR NDVI data. Comput Electron Agric 37:127–139
    • (2002) Comput Electron Agric , vol.37 , pp. 127-139
    • Jakubauskas, M.E.1    Legates, D.R.2    Kastens, J.H.3
  • 99
    • 84964886867 scopus 로고    scopus 로고
    • Automated cropping intensity extraction from isolines of wavelet spectra
    • Qiu B, Wang Z, Tang Z, Chen C, Fan Z, Li W (2016) Automated cropping intensity extraction from isolines of wavelet spectra. Comput Electron Agric 125:1–11
    • (2016) Comput Electron Agric , vol.125 , pp. 1-11
    • Qiu, B.1    Wang, Z.2    Tang, Z.3    Chen, C.4    Fan, Z.5    Li, W.6
  • 100
    • 84959139728 scopus 로고    scopus 로고
    • Spectral–spatial classification of hyperspectral image based on deep auto-encoder
    • Ma X, Geng J, Wang H (2016) Spectral–spatial classification of hyperspectral image based on deep auto-encoder. IEEE J Sel Top Appl Earth Obs Remote Sens 9(9):4073–4085
    • (2016) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.9 , Issue.9 , pp. 4073-4085
    • Ma, X.1    Geng, J.2    Wang, H.3
  • 101
    • 84979763411 scopus 로고    scopus 로고
    • Spatial–spectral hyperspectral image classification using random multiscale representation
    • Liu J, Wu Z, Li J, Xiao L, Plaza A (2016) Spatial–spectral hyperspectral image classification using random multiscale representation. IEEE J Sel Top Appl Earth Obs Remote Sens 9(9):4129–4140
    • (2016) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.9 , Issue.9 , pp. 4129-4140
    • Liu, J.1    Wu, Z.2    Li, J.3    Xiao, L.4    Plaza, A.5
  • 102
    • 84983086503 scopus 로고    scopus 로고
    • Spectral–spatial feature learning using cluster-based group sparse coding for hyperspectral image classification
    • Zhang X, Song Q, Gao Z, Zheng Y, Weng P, Jiao LC (2016) Spectral–spatial feature learning using cluster-based group sparse coding for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 9(9):4142–4159
    • (2016) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.9 , Issue.9 , pp. 4142-4159
    • Zhang, X.1    Song, Q.2    Gao, Z.3    Zheng, Y.4    Weng, P.5    Jiao, L.C.6
  • 103
    • 84930800655 scopus 로고    scopus 로고
    • An efficient radial basis function neural network for hyperspectral remote sensing image classification
    • Li J, Du Q, Li Y (2015) An efficient radial basis function neural network for hyperspectral remote sensing image classification. Soft Comput. doi:10.1007/s00500-015-1739-9
    • (2015) Soft Comput
    • Li, J.1    Du, Q.2    Li, Y.3
  • 104
    • 84922797695 scopus 로고    scopus 로고
    • Approach of texture signature determination—application to forest cover classification of high resolution satellite image
    • IEEE, New Jersey
    • Zaaboub W, Dhiaf ZB (2014) Approach of texture signature determination—application to forest cover classification of high resolution satellite image. In: 2014 International conference of soft computing and pattern recognition. IEEE, New Jersey, pp. 325–330
    • (2014) 2014 International conference of soft computing and pattern recognition , pp. 325-330
    • Zaaboub, W.1    Dhiaf, Z.B.2
  • 105
    • 57349178491 scopus 로고    scopus 로고
    • Quantifying sub-pixel signature of paddy rice field using an artificial neural network
    • Karkee M, Steward BL, Tang L, Ziz SA (2009) Quantifying sub-pixel signature of paddy rice field using an artificial neural network. Comput Electron Agric 6(50):65–76
    • (2009) Comput Electron Agric , vol.6 , Issue.50 , pp. 65-76
    • Karkee, M.1    Steward, B.L.2    Tang, L.3    Ziz, S.A.4
  • 108
    • 84920108345 scopus 로고    scopus 로고
    • Sensitivity analysis for l-band polarimetric descriptors and fusion for urban land cover change detection
    • Mishra B, Susaki J (2014) Sensitivity analysis for l-band polarimetric descriptors and fusion for urban land cover change detection. IEEE J Sel Top Appl Earth Obs Remote Sens 7(10): pp. 4231–4242
    • (2014) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.7 , Issue.10 , pp. 4231-4242
    • Mishra, B.1    Susaki, J.2
  • 109
    • 85027947718 scopus 로고    scopus 로고
    • Land cover change detection at subpixel resolution with a hopfield neural network
    • Wang Q, Shi W, Atkinson PM, Li Z (2015) Land cover change detection at subpixel resolution with a hopfield neural network. IEEE J Sel Top Appl Earth Obs Remote Sens 8(3):1339–1352
    • (2015) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.8 , Issue.3 , pp. 1339-1352
    • Wang, Q.1    Shi, W.2    Atkinson, P.M.3    Li, Z.4
  • 110
    • 84920950290 scopus 로고    scopus 로고
    • SAR image change detection based on hybrid conditional random field
    • Li H, Li M (2015) SAR image change detection based on hybrid conditional random field. IEEE Geosci Remote Sens Lett 12(4):910–914
    • (2015) IEEE Geosci Remote Sens Lett , vol.12 , Issue.4 , pp. 910-914
    • Li, H.1    Li, M.2
  • 111
    • 84947704768 scopus 로고    scopus 로고
    • Automatic fire detection based on soft computing techniques: review from 2000 to 2010
    • Mahdipour E, Dadkhah C (2014) Automatic fire detection based on soft computing techniques: review from 2000 to 2010. Artif Intell Rev 42:895–934
    • (2014) Artif Intell Rev , vol.42 , pp. 895-934
    • Mahdipour, E.1    Dadkhah, C.2
  • 113
    • 84859060840 scopus 로고    scopus 로고
    • Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering
    • Gong M, Zhou Z, Ma J (2012) Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans Image Process 21(4):2141–2151
    • (2012) IEEE Trans Image Process , vol.21 , Issue.4 , pp. 2141-2151
    • Gong, M.1    Zhou, Z.2    Ma, J.3
  • 115
    • 0034456189 scopus 로고    scopus 로고
    • Techniques and experience in mining remotely sensed satellite date
    • Hinke TH, Rushing J, Ranganath H, Graves SJ (2000) Techniques and experience in mining remotely sensed satellite date. Artif Intell Rev 14:503–531
    • (2000) Artif Intell Rev , vol.14 , pp. 503-531
    • Hinke, T.H.1    Rushing, J.2    Ranganath, H.3    Graves, S.J.4
  • 117
    • 85027945983 scopus 로고    scopus 로고
    • Unsupervised change detection in multitemporal SAR images over large urban areas
    • Hu H, Ban Y (2014) Unsupervised change detection in multitemporal SAR images over large urban areas. IEEE J Sel Top Appl Earth Obs Remote Sens 7(8):3248–3261
    • (2014) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.7 , Issue.8 , pp. 3248-3261
    • Hu, H.1    Ban, Y.2
  • 118
    • 33750600320 scopus 로고    scopus 로고
    • Markovian fusion approach to robust unsupervised change detection in remotely sensed imagery
    • Melgani F, Bazi Y (2006) Markovian fusion approach to robust unsupervised change detection in remotely sensed imagery. IEEE Geosci Remote Sens Lett 3(4):457–461
    • (2006) IEEE Geosci Remote Sens Lett , vol.3 , Issue.4 , pp. 457-461
    • Melgani, F.1    Bazi, Y.2
  • 119
    • 84861903592 scopus 로고    scopus 로고
    • Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images
    • Mishra NS, Ghosh S, Ghosh A (2012) Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images. Appl Soft Comput 12:2683–2692
    • (2012) Appl Soft Comput , vol.12 , pp. 2683-2692
    • Mishra, N.S.1    Ghosh, S.2    Ghosh, A.3
  • 120
    • 84870868428 scopus 로고    scopus 로고
    • Unsupervised change detection on SAR images using triplet Markov field model
    • Wang F, Wu Y, Zhang Q, Zhang P, Li M, Lu Y (2013) Unsupervised change detection on SAR images using triplet Markov field model. IEEE Geosci Remote Sens Lett 10(4):697–701
    • (2013) IEEE Geosci Remote Sens Lett , vol.10 , Issue.4 , pp. 697-701
    • Wang, F.1    Wu, Y.2    Zhang, Q.3    Zhang, P.4    Li, M.5    Lu, Y.6
  • 121
    • 84876726723 scopus 로고    scopus 로고
    • Change detection from remotely sensed images: from pixel-based to object-based approaches
    • Hussain M, Chen D, Cheng A, Wei H, Stanley D (2013) Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J Photogram Remote Sens 80:8091–8106
    • (2013) ISPRS J Photogram Remote Sens , vol.80 , pp. 8091-8106
    • Hussain, M.1    Chen, D.2    Cheng, A.3    Wei, H.4    Stanley, D.5
  • 122
    • 84943364390 scopus 로고    scopus 로고
    • Monitoring land use/cover change using remote sensing and GIS techniques: a case study of Hawalbagh block, district Almora, Uttarakhand, India
    • Rawat JS, Kumar M (2015) Monitoring land use/cover change using remote sensing and GIS techniques: a case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt J Remote Sens Space Sci 18:77–84
    • (2015) Egypt J Remote Sens Space Sci , vol.18 , pp. 77-84
    • Rawat, J.S.1    Kumar, M.2
  • 123
    • 84906782734 scopus 로고    scopus 로고
    • Hierarchical unsupervised change detection in multitemporal hyperspectral images
    • Liu S, Bruzzone L, Bovolo F, Du P (2015) Hierarchical unsupervised change detection in multitemporal hyperspectral images. IEEE Geosci Remote Sens Lett 53(1):244–260
    • (2015) IEEE Geosci Remote Sens Lett , vol.53 , Issue.1 , pp. 244-260
    • Liu, S.1    Bruzzone, L.2    Bovolo, F.3    Du, P.4
  • 124
    • 84923039912 scopus 로고    scopus 로고
    • Change detection in very high resolution multi sensor optical images. Proceedings of SPIE
    • Correa YTS, Bovolo F, Bruzzone L (2014) Change detection in very high resolution multi sensor optical images. Proceedings of SPIE. Int Soc Opt Eng. doi:10.1117/12.2068171
    • (2014) Int Soc Opt Eng
    • Correa, Y.T.S.1    Bovolo, F.2    Bruzzone, L.3
  • 125
    • 85062740917 scopus 로고    scopus 로고
    • An unsupervised change detection method for satellite images using PCA and SOM neural network
    • Singh KK, Khandelwal P, Mehrotra A (2013) An unsupervised change detection method for satellite images using PCA and SOM neural network. Book-adv Energy Aware Comput Commun Sys. https://www.researchgate.net/publication/260225689
    • (2013) Book-Adv Energy Aware Comput Commun Sys
    • Singh, K.K.1    Khandelwal, P.2    Mehrotra, A.3
  • 126
    • 84907486524 scopus 로고    scopus 로고
    • Change detection based on pulse-coupled neural networks and the nmi feature for high spatial resolution remote sensing imagery
    • Zhong Y, Liu W, Zhao J, Zhang L (2015) Change detection based on pulse-coupled neural networks and the nmi feature for high spatial resolution remote sensing imagery. IEEE Geosci Remote Sens Lett 12(3):537–541
    • (2015) IEEE Geosci Remote Sens Lett , vol.12 , Issue.3 , pp. 537-541
    • Zhong, Y.1    Liu, W.2    Zhao, J.3    Zhang, L.4
  • 127
    • 84947866446 scopus 로고    scopus 로고
    • Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan
    • Butt A, Shabbir R, Ahmad SS, Aziz N (2015) Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. Egypt J Remote Sens Space Sci 18:251–259
    • (2015) Egypt J Remote Sens Space Sci , vol.18 , pp. 251-259
    • Butt, A.1    Shabbir, R.2    Ahmad, S.S.3    Aziz, N.4
  • 128
    • 84939159426 scopus 로고    scopus 로고
    • Study of land use/land cover dynamics through classification algorithms for Harangi catchment area, Karnataka State, India
    • Ganasria BP, Dwarakish GS (2015) Study of land use/land cover dynamics through classification algorithms for Harangi catchment area, Karnataka State, India. Aquat Proced 4:1413–1420
    • (2015) Aquat Proced , vol.4 , pp. 1413-1420
    • Ganasria, B.P.1    Dwarakish, G.S.2
  • 129
    • 84901833860 scopus 로고    scopus 로고
    • Land cover classification and forest change analysis, using satellite imagery—a case study in Dehdez area of Zagros mountain in Iran
    • Torahi AA, Rai SC (2011) Land cover classification and forest change analysis, using satellite imagery—a case study in Dehdez area of Zagros mountain in Iran. J Geogr Inf Sys 3:1–11
    • (2011) J Geogr Inf Sys , vol.3 , pp. 1-11
    • Torahi, A.A.1    Rai, S.C.2
  • 131
    • 70350347100 scopus 로고    scopus 로고
    • Unsupervised change detection in satellite images using principal component analysis and K-means clustering
    • Celik T (2009) Unsupervised change detection in satellite images using principal component analysis and K-means clustering. IEEE Geosci Remote Sens Lett 6(4):772–776
    • (2009) IEEE Geosci Remote Sens Lett , vol.6 , Issue.4 , pp. 772-776
    • Celik, T.1
  • 132
    • 85027958181 scopus 로고    scopus 로고
    • Unsupervised change detection in multitemporal multispectral satellite images using parallel particle swarm optimization
    • kusetogullari H, Yavariabdi A, Celik T (2015) Unsupervised change detection in multitemporal multispectral satellite images using parallel particle swarm optimization. IEEE J Sel Top Appl Earth Obs Remote Sens 8(5):2151–2164
    • (2015) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.8 , Issue.5 , pp. 2151-2164
    • kusetogullari, H.1    Yavariabdi, A.2    Celik, T.3
  • 133
    • 33847695328 scopus 로고    scopus 로고
    • A context-sensitive technique for unsupervised change detection based on Hopfield-type neural networks
    • Ghosh S, Bruzzone L, Patra S, Bovolo F, Ghosh A (2007) A context-sensitive technique for unsupervised change detection based on Hopfield-type neural networks. IEEE J Sel Top Appl Earth Obs Remote Sens 45(3):778–789
    • (2007) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.45 , Issue.3 , pp. 778-789
    • Ghosh, S.1    Bruzzone, L.2    Patra, S.3    Bovolo, F.4    GhoshA5
  • 134
    • 45849126857 scopus 로고    scopus 로고
    • A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure
    • Bovolo F, Bruzzone L, Marconcini M (2008) A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure. IEEE J Sel Top Appl Earth Obs Remote Sens 46(7):2070–2082
    • (2008) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.46 , Issue.7 , pp. 2070-2082
    • Bovolo, F.1    Bruzzone, L.2    Marconcini, M.3
  • 135
    • 0036543746 scopus 로고    scopus 로고
    • An adaptive semi parametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images
    • Bruzzone L, Prieto DF (2002) An adaptive semi parametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images. IEEE Trans Image Process 11(4):452–466
    • (2002) IEEE Trans Image Process , vol.11 , Issue.4 , pp. 452-466
    • Bruzzone, L.1    Prieto, D.F.2
  • 136
    • 16444377217 scopus 로고    scopus 로고
    • An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images
    • Bazi Y, Bruzzone L, Melgani F (2005) An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE J Sel Top Appl Earth Obs Remote Sens 43(4):874–887
    • (2005) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.43 , Issue.4 , pp. 874-887
    • Bazi, Y.1    Bruzzone, L.2    Melgani, F.3
  • 137
    • 79959748493 scopus 로고    scopus 로고
    • Multiscale unsupervised change detection on optical images by Markov random fields and wavelets
    • Moser G, Angiati E, Serpico SB (2011) Multiscale unsupervised change detection on optical images by Markov random fields and wavelets. IEEE J Sel Top Appl Earth Obs Remote Sens 8(4):725–729
    • (2011) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.8 , Issue.4 , pp. 725-729
    • Moser, G.1    Angiati, E.2    Serpico, S.B.3
  • 138
    • 77952340300 scopus 로고    scopus 로고
    • Unsupervised change detection for satellite images using dual-tree complex wavelet transform
    • Celik T, Ma KK (2010) Unsupervised change detection for satellite images using dual-tree complex wavelet transform. IEEE J Sel Top Appl Earth Obs Remote Sens 48(3):1199–1210
    • (2010) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.48 , Issue.3 , pp. 1199-1210
    • Celik, T.1    Ma, K.K.2
  • 139
    • 77954758347 scopus 로고    scopus 로고
    • Unsupervised change detection in multispectral remotely sensed imagery with level set methods
    • Mehrotra A, Singh KK, Khandelwal P (2010) Unsupervised change detection in multispectral remotely sensed imagery with level set methods. IEEE J Sel Top Appl Earth Obs Remote Sens 48(8):3178–3187
    • (2010) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.48 , Issue.8 , pp. 3178-3187
    • Mehrotra, A.1    Singh, K.K.2    Khandelwal, P.3
  • 140
    • 84955091227 scopus 로고    scopus 로고
    • Change detection based on conditional random field with region connection constraints in high-resolution remote sensing images
    • Zhou L, Cao G, Li Y, Shang Y (2016) Change detection based on conditional random field with region connection constraints in high-resolution remote sensing images. IEEE J Sel Top Appl Earth Obs Remote Sens 9:3478–3488
    • (2016) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.9 , pp. 34783488
    • Zhou, L.1    Cao, G.2    Li, Y.3    Shang, Y.4
  • 141
    • 84947869494 scopus 로고    scopus 로고
    • Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering
    • Li HC, Celik T, Longbotham N, Emery WJ (2015) Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering. IEEE Geosci Remote Sens Lett 12(12):2458–2462
    • (2015) IEEE Geosci Remote Sens Lett , vol.12 , Issue.12 , pp. 2458-2462
    • Li, H.C.1    Celik, T.2    Longbotham, N.3    Emery, W.J.4
  • 142
    • 84977987391 scopus 로고    scopus 로고
    • Strategies combining spectral angle mapper and change vector analysis to unsupervised change detection in multispectral images
    • Zhuang H, Deng K, Fan H, Yu M (2016) Strategies combining spectral angle mapper and change vector analysis to unsupervised change detection in multispectral images. IEEE Geosci Remote Sens Lett 13(5):681–685
    • (2016) IEEE Geosci Remote Sens Lett , vol.13 , Issue.5 , pp. 681-685
    • Zhuang, H.1    Deng, K.2    Fan, H.3    Yu, M.4
  • 143
    • 84888308186 scopus 로고    scopus 로고
    • Unsupervised change detection with expectation-maximization-based level set
    • Hao M, Shi W, Zhang H, Li C (2014) Unsupervised change detection with expectation-maximization-based level set. IEEE Geosci Remote Sens Lett 11(1):210–214
    • (2014) IEEE Geosci Remote Sens Lett , vol.11 , Issue.1 , pp. 210-214
    • Hao, M.1    Shi, W.2    Zhang, H.3    Li, C.4
  • 144
    • 75449086679 scopus 로고    scopus 로고
    • Automatic change detection in very high resolution images with pulse-coupled neural networks
    • Pacifici F, Frate FD (2010) Automatic change detection in very high resolution images with pulse-coupled neural networks. IEEE Geosci Remote Sens Lett 7(1):58–62
    • (2010) IEEE Geosci Remote Sens Lett , vol.7 , Issue.1 , pp. 58-62
    • Pacifici, F.1    Frate, F.D.2
  • 145
    • 84863470145 scopus 로고    scopus 로고
    • Wavelet fusion on ratio images for change detection in SAR images
    • Ma J, Gong M, Zhou Z (2012) Wavelet fusion on ratio images for change detection in SAR images. IEEE Geosci Remote Sens Lett 9(6):1122–1126
    • (2012) IEEE Geosci Remote Sens Lett , vol.9 , Issue.6 , pp. 1122-1126
    • Ma, J.1    Gong, M.2    Zhou, Z.3
  • 146
    • 84992305105 scopus 로고    scopus 로고
    • SAR image change detection based on multiple kernel K-means clustering with local-neighbourhood information
    • Jia L, Li M, Zhang P, Wu Y, Zhu H (2016) SAR image change detection based on multiple kernel K-means clustering with local-neighbourhood information. IEEE Geosci Remote Sens Lett 13(6):856–860
    • (2016) IEEE Geosci Remote Sens Lett , vol.13 , Issue.6 , pp. 856-860
    • Jia, L.1    Li, M.2    Zhang, P.3    Wu, Y.4    Zhu, H.5
  • 147
    • 84966659393 scopus 로고    scopus 로고
    • Unsupervised SAR image change detection based on SIFT keypoints and region information
    • Wang Y, Dai LDA (2016) Unsupervised SAR image change detection based on SIFT keypoints and region information. IEEE Geosci Remote Sens Lett 13(7):931–935
    • (2016) IEEE Geosci Remote Sens Lett , vol.13 , Issue.7 , pp. 931-935
    • Wang, Y.1    Dai, L.D.A.2
  • 148
    • 77951206556 scopus 로고    scopus 로고
    • Change detection in satellite images using a genetic algorithm approach
    • Turgaycelik (2010) Change detection in satellite images using a genetic algorithm approach. IEEE Geosci Remote Sens Lett 7(2):386–390
    • (2010) IEEE Geosci Remote Sens Lett , vol.7 , Issue.2 , pp. 386-390
    • Turgaycelik1
  • 149
    • 84860344287 scopus 로고    scopus 로고
    • Unsupervised change detection of satellite images using local gradual descent
    • Yetgin Z (2012) Unsupervised change detection of satellite images using local gradual descent. IEEE Geosci Remote Sens Lett 50(5):1919–1929
    • (2012) IEEE Geosci Remote Sens Lett , vol.50 , Issue.5 , pp. 1919-1929
    • Yetgin, Z.1
  • 150
    • 84908011389 scopus 로고    scopus 로고
    • Unsupervised change detection in sar image based on gauss-log ratio image fusion and compressed projection
    • Hou B, Wei Q, Zheng Y, Wang S (2014) Unsupervised change detection in sar image based on gauss-log ratio image fusion and compressed projection. IEEE J Sel Top Appl Earth Obs Remote Sens 7(8):3297–3317
    • (2014) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.7 , Issue.8 , pp. 3297-3317
    • Hou, B.1    Wei, Q.2    Zheng, Y.3    Wang, S.4
  • 151
    • 50149103039 scopus 로고    scopus 로고
    • Differential evolution as a viable tool for satellite image registration
    • De Falco I, Della Cioppa A, Maisto D, Tarantino E (2008) Differential evolution as a viable tool for satellite image registration. Appl Soft Comput 8:1453–1462
    • (2008) Appl Soft Comput , vol.8 , pp. 1453-1462
    • De Falco, I.1    Della Cioppa, A.2    Maisto, D.3    Tarantino, E.4
  • 152
    • 84949665544 scopus 로고    scopus 로고
    • A multiobjective fuzzy clustering method for change detection in SAR images
    • Li H, Gong M, Wang Q, Liu J, Su L (2015) A multiobjective fuzzy clustering method for change detection in SAR images. Appl Soft Comput 46(2016):767–777
    • (2015) Appl Soft Comput , vol.46 , Issue.2016 , pp. 767-777
    • Li, H.1    Gong, M.2    Wang, Q.3    Liu, J.4    Su, L.5
  • 154
    • 84893767160 scopus 로고    scopus 로고
    • Comparison of various models and optimum range of its parameters used in SVM classification of digital satellite image
    • IEEE, New Jersey
    • Dixit A, Agarwal MS (2013) Comparison of various models and optimum range of its parameters used in SVM classification of digital satellite image. In: 2013 IEEE second international conference on image information processing. IEEE, New Jersey, pp. 363–368
    • (2013) 2013 IEEE second international conference on image information processing , pp. 363-368
    • Dixit, A.1    Agarwal, M.S.2
  • 156
    • 70350448648 scopus 로고    scopus 로고
    • Implementation and Comparative Analysis of Rough Set, Artificial Neural Network (ANN) and Fuzzy Rough classifiers for Satellite Image Classification
    • IEEE, New Jersey
    • Juneja M, Walia E, Sandhu PS, Mohana R (2009) Implementation and Comparative Analysis of Rough Set, Artificial Neural Network (ANN) and Fuzzy Rough classifiers for Satellite Image Classification. In: 2009 International conference on intelligent agent & multi-agent systems, IAMA. IEEE, New Jersey
    • (2009) 2009 International conference on intelligent agent & multi-agent systems, IAMA
    • Juneja, M.1    Walia, E.2    Sandhu, P.S.3    Mohana, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.