-
1
-
-
84961218418
-
Comprehensive Study of the Biophysical Parameters of Agricultural Crops Based on Assessing Landsat 8 OLI and Landsat 7 ETM+ Vegetation Indices
-
Ahmadian, N., S., Ghasemi, J.-P., Wigneron, and R., Zolitz. 2016. “Comprehensive Study of the Biophysical Parameters of Agricultural Crops Based on Assessing Landsat 8 OLI and Landsat 7 ETM+ Vegetation Indices.” Giscience & Remote Sensing 53: 337–359. doi:10.1080/15481603.2016.1155789.
-
(2016)
Giscience & Remote Sensing
, vol.53
, pp. 337-359
-
-
Ahmadian, N.1
Ghasemi, S.2
Wigneron, J.-P.3
Zolitz, R.4
-
2
-
-
0000874557
-
Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning
-
Aizerman, M., E., Braverman, and L., Rozonoer. 1964. “Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning.” Automation and Remote Control 25: 821–837.
-
(1964)
Automation and Remote Control
, vol.25
, pp. 821-837
-
-
Aizerman, M.1
Braverman, E.2
Rozonoer, L.3
-
3
-
-
84986904940
-
Assessing In-Season Crop Classification Performance Using Satellite Data: A Test Case in Northern Italy
-
Azar, R., P., Villa, D., Stroppiana, A., Crema, M., Boschetti, and P. A., Brivio. 2016. “Assessing In-Season Crop Classification Performance Using Satellite Data: A Test Case in Northern Italy.” European Journal of Remote Sensing 49: 361–380. doi:10.5721/EuJRS20164920.
-
(2016)
European Journal of Remote Sensing
, vol.49
, pp. 361-380
-
-
Azar, R.1
Villa, P.2
Stroppiana, D.3
Crema, A.4
Boschetti, M.5
Brivio, P.A.6
-
4
-
-
84868536352
-
Does Spatial Resolution Matter? A Multi-Scale Comparison of Object-Based and Pixel-Based Methods for Detecting Change Associated with Gas Well Drilling Operations
-
Baker, B. A., T. A., Warner, J. F., Conley, and B. E., Mcneil. 2013. “Does Spatial Resolution Matter? A Multi-Scale Comparison of Object-Based and Pixel-Based Methods for Detecting Change Associated with Gas Well Drilling Operations.” International Journal of Remote Sensing 34: 1633–1651. doi:10.1080/01431161.2012.724540.
-
(2013)
International Journal of Remote Sensing
, vol.34
, pp. 1633-1651
-
-
Baker, B.A.1
Warner, T.A.2
Conley, J.F.3
Mcneil, B.E.4
-
6
-
-
84964330838
-
A Random Forest Guided Tour
-
Biau, G., and E., Scornet. 2016. “A Random Forest Guided Tour.” Test 25: 197–227. doi:10.1007/s11749-016-0481-7.
-
(2016)
Test
, vol.25
, pp. 197-227
-
-
Biau, G.1
Scornet, E.2
-
7
-
-
0035478854
-
Random Forests
-
Breiman, L., 2001. “Random Forests.” Machine Learning 45: 5–32. doi:10.1023/A:1010933404324.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
8
-
-
57049119072
-
Estimating Per-Pixel Thematic Uncertainty in Remote Sensing Classifications
-
Brown, K. M., G. M., Foody, and P. M., Atkinson. 2009. “Estimating Per-Pixel Thematic Uncertainty in Remote Sensing Classifications.” International Journal of Remote Sensing 30: 209–229. doi:10.1080/01431160802290568.
-
(2009)
International Journal of Remote Sensing
, vol.30
, pp. 209-229
-
-
Brown, K.M.1
Foody, G.M.2
Atkinson, P.M.3
-
9
-
-
27144489164
-
A Tutorial on Support Vector Machines for Pattern Recognition
-
Burges, C. J. C., 1998. “A Tutorial on Support Vector Machines for Pattern Recognition.” Data Mining and Knowledge Discovery 2: 121–167. doi:10.1023/A:1009715923555.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
10
-
-
85019349705
-
Detection of Urban Damage Using Remote Sensing and Machine Learning Algorithms: Revisiting the 2010 Haiti Earthquake
-
Cooner, A. J., Y., Shao, and J. B., Campbell. 2016. “Detection of Urban Damage Using Remote Sensing and Machine Learning Algorithms: Revisiting the 2010 Haiti Earthquake.” Remote Sensing 8: 17. doi:10.3390/rs8100868.
-
(2016)
Remote Sensing
, vol.8
, pp. 17
-
-
Cooner, A.J.1
Shao, Y.2
Campbell, J.B.3
-
11
-
-
34249753618
-
Support-Vector Networks
-
Cortes, C., and V., Vapnik. 1995. “Support-Vector Networks.” Machine Learning 20: 273–297. doi:10.1007/BF00994018.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
12
-
-
84871386793
-
Using Sensitivity Analysis and Visualization Techniques to Open Black Box Data Mining Models
-
Cortez, P., and M. J., Embrechts. 2013. “Using Sensitivity Analysis and Visualization Techniques to Open Black Box Data Mining Models.” Information Sciences 225: 1–17. doi:10.1016/j.ins.2012.10.039.
-
(2013)
Information Sciences
, vol.225
, pp. 1-17
-
-
Cortez, P.1
Embrechts, M.J.2
-
13
-
-
1942499424
-
Use of SAR Satellites for Mapping Zonation of Vegetation Communities in the Amazon Floodplain
-
Costa, M. P. F., 2004. “Use of SAR Satellites for Mapping Zonation of Vegetation Communities in the Amazon Floodplain.” International Journal of Remote Sensing 25: 1817–1835. doi:10.1080/0143116031000116985.
-
(2004)
International Journal of Remote Sensing
, vol.25
, pp. 1817-1835
-
-
Costa, M.P.F.1
-
14
-
-
84859427372
-
Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services
-
et al
-
Drusch, M., U., Del Bello, S., Carlier, O., Colin, V., Fernandez, F., Gascon, B., Hoersch, et al. 2012. “Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services.” Remote Sensing of Environment 120: 25–36. doi:10.1016/j.rse.2011.11.026.
-
(2012)
Remote Sensing of Environment
, vol.120
, pp. 25-36
-
-
Drusch, M.1
Del Bello, U.2
Carlier, S.3
Colin, O.4
Fernandez, V.5
Gascon, F.6
Hoersch, B.7
-
15
-
-
84962521620
-
Cloud Cover Assessment for Operational Crop Monitoring Systems in Tropical Areas
-
et al
-
Eberhardt, I. D. R., B., Schultz, R., Rizzi, I. D., Sanches, A. R., Formaggio, C., Atzberger, M. P., Mello, et al. 2016. “Cloud Cover Assessment for Operational Crop Monitoring Systems in Tropical Areas.” Remote Sensing 8: 14. doi:10.3390/rs8030219.
-
(2016)
Remote Sensing
, vol.8
, pp. 14
-
-
Eberhardt, I.D.R.1
Schultz, B.2
Rizzi, R.3
Sanches, I.D.4
Formaggio, A.R.5
Atzberger, C.6
Mello, M.P.7
-
16
-
-
34548360492
-
Using In-Situ Measurements to Evaluate the New RapidEye (TM) Satellite Series for Prediction of Wheat Nitrogen Status
-
Eitel, J. U. H., D. S., Long, P. E., Gessler, and A. M. S., Smith. 2007. “Using In-Situ Measurements to Evaluate the New RapidEye (TM) Satellite Series for Prediction of Wheat Nitrogen Status.” International Journal of Remote Sensing 28: 4183–4190. doi:10.1080/01431160701422213.
-
(2007)
International Journal of Remote Sensing
, vol.28
, pp. 4183-4190
-
-
Eitel, J.U.H.1
Long, D.S.2
Gessler, P.E.3
Smith, A.M.S.4
-
17
-
-
84973928852
-
Estimation of Leaf Area Index and Crop Height of Sunflowers Using Multi-Temporal Optical and SAR Satellite Data
-
Fieuzal, R., and F., Baup. 2016. “Estimation of Leaf Area Index and Crop Height of Sunflowers Using Multi-Temporal Optical and SAR Satellite Data.” International Journal of Remote Sensing 37: 2780–2809.
-
(2016)
International Journal of Remote Sensing
, vol.37
, pp. 2780-2809
-
-
Fieuzal, R.1
Baup, F.2
-
19
-
-
3042654673
-
A Relative Evaluation of Multiclass Image Classification by Support Vector Machines
-
Foody, G., and A., Mathur. 2004. “A Relative Evaluation of Multiclass Image Classification by Support Vector Machines.” IEEE Transactions on Geoscience and Remote Sensing 42: 1335–1343. doi:10.1109/TGRS.2004.827257.
-
(2004)
IEEE Transactions on Geoscience and Remote Sensing
, vol.42
, pp. 1335-1343
-
-
Foody, G.1
Mathur, A.2
-
20
-
-
0034548685
-
Mapping Land Cover from Remotely Sensed Data with a Softened Feedforward Neural Network Classification
-
Foody, G. M., 2000. “Mapping Land Cover from Remotely Sensed Data with a Softened Feedforward Neural Network Classification.” Journal of Intelligent & Robotic Systems 29: 433–449. doi:10.1023/A:1008112125526.
-
(2000)
Journal of Intelligent & Robotic Systems
, vol.29
, pp. 433-449
-
-
Foody, G.M.1
-
21
-
-
84943374021
-
Mapping Land Cover and Land Use from Object-Based Classification: An Example from a Complex Agricultural Landscape
-
Goodin, D. G., K. L., Anibas, and M., Bezymennyi. 2015. “Mapping Land Cover and Land Use from Object-Based Classification: An Example from a Complex Agricultural Landscape.” International Journal of Remote Sensing 36: 4702–4723. doi:10.1080/01431161.2015.1088674.
-
(2015)
International Journal of Remote Sensing
, vol.36
, pp. 4702-4723
-
-
Goodin, D.G.1
Anibas, K.L.2
Bezymennyi, M.3
-
22
-
-
84961666218
-
Analysis on the Effectiveness of Multi-Temporal COSMO-SkyMed (R) Images for Crop Classification
-
Guarini, R., L., Bruzzone, M., Santoni, and L., Dini. 2015. “Analysis on the Effectiveness of Multi-Temporal COSMO-SkyMed (R) Images for Crop Classification.” In Conference on Image and Signal Processing for Remote Sensing XXI, Toulouse, France, edited by L. Bruzzone, Vol. 9643: 964310–964311.
-
(2015)
Conference on Image and Signal Processing for Remote Sensing XXI, Toulouse, France, edited by L. Bruzzone, Vol. 9643: 964310–964311
-
-
Guarini, R.1
Bruzzone, L.2
Santoni, M.3
Dini, L.4
-
23
-
-
84978829543
-
Time Series Analysis of Co-Polarization Phase Difference (PPD) for Winter Field Crops Using Polarimetric C-Band SAR Data
-
Haldar, D., P., Rana, M., Yadav, R. S., Hooda, and M., Chakraborty. 2016. “Time Series Analysis of Co-Polarization Phase Difference (PPD) for Winter Field Crops Using Polarimetric C-Band SAR Data.” International Journal of Remote Sensing 37: 3753–3770. doi:10.1080/01431161.2016.1204024.
-
(2016)
International Journal of Remote Sensing
, vol.37
, pp. 3753-3770
-
-
Haldar, D.1
Rana, P.2
Yadav, M.3
Hooda, R.S.4
Chakraborty, M.5
-
24
-
-
84879520844
-
Contemporary and Historical Classification of Crop Types in Arizona
-
Hartfield, K., S., Marsh, C., Kirk, and Y., Carrière. 2013. “Contemporary and Historical Classification of Crop Types in Arizona.” International Journal of Remote Sensing 34: 6024–6036. doi:10.1080/01431161.2013.793861.
-
(2013)
International Journal of Remote Sensing
, vol.34
, pp. 6024-6036
-
-
Hartfield, K.1
Marsh, S.2
Kirk, C.3
Carrière, Y.4
-
25
-
-
0003684449
-
-
2nd, New York: Springer-Verlag, and, ed
-
Hastie, T., R., Tibshirani, and J., Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. New York: Springer-Verlag.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
26
-
-
85014052346
-
Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series
-
Heine, I., T., Jagdhuber, and S., Itzerott. 2016. “Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series.” Remote Sensing 8: 552. doi:10.3390/rs8070552.
-
(2016)
Remote Sensing
, vol.8
-
-
Heine, I.1
Jagdhuber, T.2
Itzerott, S.3
-
27
-
-
10944272650
-
Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks
-
In, Bandera, Texas,. Piscataway, NJ: IEEE Computational Intelligence Society
-
Huang, G. B., Q.-Y., Zhu, and C.-K., Siew. 2006. “Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks.” In International Joint Conference on Neural Networks (IJCNN2004), Bandera, Texas, 985–990. Piscataway, NJ: IEEE Computational Intelligence Society.
-
(2006)
International Joint Conference on Neural Networks (IJCNN2004)
, pp. 985-990
-
-
Huang, G.B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
28
-
-
84859007933
-
Extreme Learning Machine for Regression and Multiclass Classification
-
Huang, G.-B., H. M., Zhou, X. J., Ding, and R., Zhang. 2012. “Extreme Learning Machine for Regression and Multiclass Classification.” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42: 513–529. doi:10.1109/TSMCB.2011.2168604.
-
(2012)
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
, vol.42
, pp. 513-529
-
-
Huang, G.-B.1
Zhou, H.M.2
Ding, X.J.3
Zhang, R.4
-
29
-
-
85014298878
-
Application of Polarization Signature to Land Cover Scattering Mechanism Analysis and Classification Using Multi-Temporal C-Band Polarimetric RADARSAT-2 Imagery
-
Huang, X., J., Wang, J., Shang, C., Liao, and J., Liu. 2017. “Application of Polarization Signature to Land Cover Scattering Mechanism Analysis and Classification Using Multi-Temporal C-Band Polarimetric RADARSAT-2 Imagery.” Remote Sensing of Environment 193: 11–28. doi:10.1016/j.rse.2017.02.014.
-
(2017)
Remote Sensing of Environment
, vol.193
, pp. 11-28
-
-
Huang, X.1
Wang, J.2
Shang, J.3
Liao, C.4
Liu, J.5
-
30
-
-
84983738569
-
Best Accuracy Land Use/Land Cover (LULC) Classification to Derive Crop Types Using Multitemporal, Multisensor, and Multi-Polarization SAR Satellite Images
-
Hutt, C., W., Koppe, Y. X., Miao, and G., Bareth. 2016. “Best Accuracy Land Use/Land Cover (LULC) Classification to Derive Crop Types Using Multitemporal, Multisensor, and Multi-Polarization SAR Satellite Images.” Remote Sensing 8: 684. doi:10.3390/rs8080684.
-
(2016)
Remote Sensing
, vol.8
-
-
Hutt, C.1
Koppe, W.2
Miao, Y.X.3
Bareth, G.4
-
31
-
-
84962488348
-
First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe
-
Immitzer, M., F., Vuolo, and C., Atzberger. 2016. “First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe.” Remote Sensing 8: 27. doi:10.3390/rs8030166.
-
(2016)
Remote Sensing
, vol.8
, pp. 27
-
-
Immitzer, M.1
Vuolo, F.2
Atzberger, C.3
-
32
-
-
84971492749
-
Improved Early Crop Type Identification by Joint Use of High Temporal Resolution SAR and Optical Image Time Series
-
Inglada, J., A., Vincent, M., Arias, and C., Marais-Sicre. 2016. “Improved Early Crop Type Identification by Joint Use of High Temporal Resolution SAR and Optical Image Time Series.” Remote Sensing 8: 362. doi:10.3390/rs8050362.
-
(2016)
Remote Sensing
, vol.8
-
-
Inglada, J.1
Vincent, A.2
Arias, M.3
Marais-Sicre, C.4
-
33
-
-
41949115461
-
Random Survival Forests for R
-
Ishwaran, H., and U. B., Kogalur. 2007. “Random Survival Forests for R.” R News 7: 25–31.
-
(2007)
R News
, vol.7
, pp. 25-31
-
-
Ishwaran, H.1
Kogalur, U.B.2
-
34
-
-
57449111248
-
Random Survival Forests
-
Ishwaran, H., U. B., Kogalur, E. H., Blackstone, and M. S., Lauer. 2008. “Random Survival Forests.” The Annals of Applied Statistics 2: 841–860. doi:10.1214/08-AOAS169.
-
(2008)
The Annals of Applied Statistics
, vol.2
, pp. 841-860
-
-
Ishwaran, H.1
Kogalur, U.B.2
Blackstone, E.H.3
Lauer, M.S.4
-
35
-
-
0034187691
-
Data Strip Mining for the Virtual Design of Pharmaceuticals with Neural Networks
-
Kewley, R. H., M. J., Embrechts, and C., Breneman. 2000. “Data Strip Mining for the Virtual Design of Pharmaceuticals with Neural Networks.” IEEE Transactions on Neural Networks 11: 668–679. doi:10.1109/72.846738.
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, pp. 668-679
-
-
Kewley, R.H.1
Embrechts, M.J.2
Breneman, C.3
-
36
-
-
84924725668
-
Sensitivity of Vegetation Indices to Spatial Degradation of RapidEye Imagery for Paddy Rice Detection: A Case Study of South Korea
-
Kim, H.-O., and J.-M., Yeom. 2015. “Sensitivity of Vegetation Indices to Spatial Degradation of RapidEye Imagery for Paddy Rice Detection: A Case Study of South Korea.” GIScience & Remote Sensing 52: 1–17. doi:10.1080/15481603.2014.1001666.
-
(2015)
GIScience & Remote Sensing
, vol.52
, pp. 1-17
-
-
Kim, H.-O.1
Yeom, J.-M.2
-
37
-
-
84971667970
-
On the Added Value of Quad-Pol Data in a Multi-Temporal Crop Classification Framework Based on RADARSAT-2 Imagery
-
Larranaga, A., and J., Alvarez-Mozos. 2016. “On the Added Value of Quad-Pol Data in a Multi-Temporal Crop Classification Framework Based on RADARSAT-2 Imagery.” Remote Sensing 8: 19. doi:10.3390/rs8040335.
-
(2016)
Remote Sensing
, vol.8
, pp. 19
-
-
Larranaga, A.1
Alvarez-Mozos, J.2
-
38
-
-
84930630277
-
Deep Learning
-
Lecun, Y., Y., Bengio, and G., Hinton. 2015. “Deep Learning.” Nature 521: 436–444. doi:10.1038/nature14539.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.3
-
39
-
-
0345040873
-
Classification and Regression by Random Forest
-
Liaw, A., and M., Wiener. 2002. “Classification and Regression by Random Forest.” R News 2: 18–22.
-
(2002)
R News
, vol.2
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
40
-
-
0000596361
-
Note on the Sampling Error of the Difference between Correlated Proportions or Percentages
-
Mcnemar, Q., 1947. “Note on the Sampling Error of the Difference between Correlated Proportions or Percentages.” Psychometrika 12: 153–157. doi:10.1007/BF02295996.
-
(1947)
Psychometrika
, vol.12
, pp. 153-157
-
-
Mcnemar, Q.1
-
42
-
-
77949388276
-
The Behaviour of Random Forest Permutation-Based Variable Importance Measures under Predictor Correlation
-
Nicodemus, K. K., J. D., Malley, C., Strobl, and A., Ziegler. 2010. “The Behaviour of Random Forest Permutation-Based Variable Importance Measures under Predictor Correlation.” Bmc Bioinformatics 11: 110. doi:10.1186/1471-2105-11-110.
-
(2010)
Bmc Bioinformatics
, vol.11
-
-
Nicodemus, K.K.1
Malley, J.D.2
Strobl, C.3
Ziegler, A.4
-
43
-
-
84942551816
-
Modeling Temporal Growth Profile of Vegetation Index from Indian Geostationary Satellite for Assessing In-Season Progress of Crop Area
-
Nigam, R., S. S., Vyas, B. K., Bhattacharya, M. P., Oza, S. S., Srivastava, N., Bhagia, D., Dhar, and K. R., Manjunath. 2015. “Modeling Temporal Growth Profile of Vegetation Index from Indian Geostationary Satellite for Assessing In-Season Progress of Crop Area.” Giscience & Remote Sensing 52: 723–745. doi:10.1080/15481603.2015.1073036.
-
(2015)
Giscience & Remote Sensing
, vol.52
, pp. 723-745
-
-
Nigam, R.1
Vyas, S.S.2
Bhattacharya, B.K.3
Oza, M.P.4
Srivastava, S.S.5
Bhagia, N.6
Dhar, D.7
Manjunath, K.R.8
-
44
-
-
84998673750
-
Performance Evaluation of Object Based Greenhouse Detection from Sentinel-2 MSI and Landsat 8 OLI Data: A Case Study from Almería (Spain)
-
Novelli, A., M. A., Aguilar, A., Nemmaoui, F. J., Aguilar, and E., Tarantino. 2016. “Performance Evaluation of Object Based Greenhouse Detection from Sentinel-2 MSI and Landsat 8 OLI Data: A Case Study from Almería (Spain).” International Journal of Applied Earth Observation and Geoinformation 52: 403–411. doi:10.1016/j.jag.2016.07.011.
-
(2016)
International Journal of Applied Earth Observation and Geoinformation
, vol.52
, pp. 403-411
-
-
Novelli, A.1
Aguilar, M.A.2
Nemmaoui, A.3
Aguilar, F.J.4
Tarantino, E.5
-
45
-
-
84930016645
-
Mapping of Agricultural Crops from Single High-Resolution Multispectral Images-Data-Driven Smoothing vs. Parcel-Based Smoothing
-
Ozdarici-Ok, A., A. O., Ok, and K., Schindler. 2015. “Mapping of Agricultural Crops from Single High-Resolution Multispectral Images-Data-Driven Smoothing vs. Parcel-Based Smoothing.” Remote Sensing 7: 5611–5638. doi:10.3390/rs70505611.
-
(2015)
Remote Sensing
, vol.7
, pp. 5611-5638
-
-
Ozdarici-Ok, A.1
Ok, A.O.2
Schindler, K.3
-
46
-
-
13344278660
-
Random Forest Classifier for Remote Sensing Classification
-
Pal, M., 2005. “Random Forest Classifier for Remote Sensing Classification.” International Journal of Remote Sensing 26: 217–222. doi:10.1080/01431160412331269698.
-
(2005)
International Journal of Remote Sensing
, vol.26
, pp. 217-222
-
-
Pal, M.1
-
47
-
-
84880397408
-
Kernel-Based Extreme Learning Machine for Remote-Sensing Image Classification
-
Pal, M., A. E., Maxwell, and T. A., Warner. 2013. “Kernel-Based Extreme Learning Machine for Remote-Sensing Image Classification.” Remote Sensing Letters 4: 853–862. doi:10.1080/2150704X.2013.805279.
-
(2013)
Remote Sensing Letters
, vol.4
, pp. 853-862
-
-
Pal, M.1
Maxwell, A.E.2
Warner, T.A.3
-
48
-
-
79956324768
-
Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment
-
Pontius, R., and M., Millones. 2011. “Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment.” International Journal of Remote Sensing 32: 4407–4429. doi:10.1080/01431161.2011.552923.
-
(2011)
International Journal of Remote Sensing
, vol.32
, pp. 4407-4429
-
-
Pontius, R.1
Millones, M.2
-
49
-
-
84880406227
-
Balancing Misclassification Errors of Land Cover Classification Maps Using Support Vector Machines and Landsat Imagery in the Maipo River Basin (Central Chile, 1975–2010)
-
Puertas, O., A., Brenning, and F., Meza. 2013. “Balancing Misclassification Errors of Land Cover Classification Maps Using Support Vector Machines and Landsat Imagery in the Maipo River Basin (Central Chile, 1975–2010).” Remote Sensing of Environment 137: 112–123. doi:10.1016/j.rse.2013.06.003.
-
(2013)
Remote Sensing of Environment
, vol.137
, pp. 112-123
-
-
Puertas, O.1
Brenning, A.2
Meza, F.3
-
50
-
-
85031926514
-
-
Accessed, June, R: A Language and Environment for Statistical Computing,. Vienna: R Foundation for Statistical Computing., 2016
-
R Core Team. 2016. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Accessed 1 June 2016. http://www.R-project.org/.
-
(2016)
-
-
-
52
-
-
85020195682
-
Mapping of Urban Green Spaces Using Sentinel-2A Data: Methodical Aspect
-
Bulgarian Cartographic Association, and,.” In, edited by T. Bandrova and M. Konecny
-
Rosina, K., and M., Kopecka. 2016. “Mapping of Urban Green Spaces Using Sentinel-2A Data: Methodical Aspect.” In 6th International Conference on Cartography and GIS, Albena, Bulgaria, edited by T. Bandrova and M. Konecny, 562–568. Bulgarian Cartographic Association.
-
(2016)
6th International Conference on Cartography and GIS, Albena, Bulgaria
, pp. 562-568
-
-
Rosina, K.1
Kopecka, M.2
-
53
-
-
84896818071
-
Landsat-8: Science and Product Vision for Terrestrial Global Change Research
-
et al
-
Roy, D. P., M. A., Wulder, T. R., Loveland, C. E., Woodcock, R. G., Allen, M. C., Anderson, D., Helder, et al. 2014. “Landsat-8: Science and Product Vision for Terrestrial Global Change Research.” Remote Sensing of Environment 145: 154–172. doi:10.1016/j.rse.2014.02.001.
-
(2014)
Remote Sensing of Environment
, vol.145
, pp. 154-172
-
-
Roy, D.P.1
Wulder, M.A.2
Loveland, T.R.3
Woodcock, C.E.4
Allen, R.G.5
Anderson, M.C.6
Helder, D.7
-
54
-
-
84979544405
-
Comparison between Spectral, Spatial and Polarimetric Classification of Urban and Periurban Landcover Using Temporal Sentinel–1 Images
-
Roychowdhury, K., 2016. “Comparison between Spectral, Spatial and Polarimetric Classification of Urban and Periurban Landcover Using Temporal Sentinel–1 Images.” Xxiii ISPRS Congress, Commission Vii 41: 789–796.
-
(2016)
ISPRS Congress, Commission Vii
, vol.41
, pp. 789-796
-
-
Roychowdhury, K.1
-
55
-
-
79955807862
-
Integrating Remote Sensing and GIS for Prediction of Rice Protein Contents
-
Ryu, C., M., Suguri, M., Iida, M., Umeda, and C., Lee. 2011. “Integrating Remote Sensing and GIS for Prediction of Rice Protein Contents.” Precision Agriculture 12: 378–394. doi:10.1007/s11119-010-9179-0.
-
(2011)
Precision Agriculture
, vol.12
, pp. 378-394
-
-
Ryu, C.1
Suguri, M.2
Iida, M.3
Umeda, M.4
Lee, C.5
-
56
-
-
84877677403
-
Classification of California Agriculture Using Quad Polarization Radar Data and Landsat Thematic Mapper Data
-
Sheoran, A., and B., Haack. 2013. “Classification of California Agriculture Using Quad Polarization Radar Data and Landsat Thematic Mapper Data.” Giscience & Remote Sensing 50: 50–63.
-
(2013)
Giscience & Remote Sensing
, vol.50
, pp. 50-63
-
-
Sheoran, A.1
Haack, B.2
-
57
-
-
84896372897
-
Random Forest Classification of Crop Type Using Multi-Temporal TerraSAR-X Dual-Polarimetric Data
-
Sonobe, R., H., Tani, X., Wang, N., Kobayashi, and H., Shimamura. 2014. “Random Forest Classification of Crop Type Using Multi-Temporal TerraSAR-X Dual-Polarimetric Data.” Remote Sensing Letters 5: 157–164. doi:10.1080/2150704X.2014.889863.
-
(2014)
Remote Sensing Letters
, vol.5
, pp. 157-164
-
-
Sonobe, R.1
Tani, H.2
Wang, X.3
Kobayashi, N.4
Shimamura, H.5
-
58
-
-
84954288480
-
An Experimental Comparison between KELM and CART for Crop Classification Using Landsat-8 OLI Data
-
Sonobe, R., H., Tani, and X. F., Wang. 2017. “An Experimental Comparison between KELM and CART for Crop Classification Using Landsat-8 OLI Data.” Geocarto International 32: 128–138.
-
(2017)
Geocarto International
, vol.32
, pp. 128-138
-
-
Sonobe, R.1
Tani, H.2
Wang, X.F.3
-
59
-
-
85031902897
-
Mapping Crop Cover Using Multi-Temporal Landsat 8 OLI Imagery
-
Sonobe, R., Y., Yamaya, H., Tani, X., Wang, N., Kobayashi, and K.-I., Mochizuki. 2017. “Mapping Crop Cover Using Multi-Temporal Landsat 8 OLI Imagery.” International Journal of Remote Sensing 38: 4348–4361. doi:10.1080/01431161.2017.1323286.
-
(2017)
International Journal of Remote Sensing
, vol.38
, pp. 4348-4361
-
-
Sonobe, R.1
Yamaya, Y.2
Tani, H.3
Wang, X.4
Kobayashi, N.5
Mochizuki, K.-I.6
-
60
-
-
0342871690
-
Introduction to Multi-Layer Feed-Forward Neural Networks
-
Svozil, D., V., Kvasnicka, and J., Pospichal. 1997. “Introduction to Multi-Layer Feed-Forward Neural Networks.” Chemometrics and Intelligent Laboratory Systems 39: 43–62. doi:10.1016/S0169-7439(97)00061-0.
-
(1997)
Chemometrics and Intelligent Laboratory Systems
, vol.39
, pp. 43-62
-
-
Svozil, D.1
Kvasnicka, V.2
Pospichal, J.3
-
61
-
-
85031919078
-
-
Accessed June1 2016
-
Tokachi Subprefecture. 2016. “Growing Condition of Crops in 2016.” Accessed June1 2016. http://www.tokachi.pref.hokkaido.lg.jp/ss/num/kairyou/sakkyou27.htm.
-
(2016)
Growing Condition of Crops in 2016
-
-
-
62
-
-
84863393480
-
GMES Sentinel-1 Mission
-
et al
-
Torres, R., P., Snoeij, D., Geudtner, D., Bibby, M., Davidson, E., Attema, P., Potin, et al. 2012. “GMES Sentinel-1 Mission.” Remote Sensing of Environment 120: 9–24. doi:10.1016/j.rse.2011.05.028.
-
(2012)
Remote Sensing of Environment
, vol.120
, pp. 9-24
-
-
Torres, R.1
Snoeij, P.2
Geudtner, D.3
Bibby, D.4
Davidson, M.5
Attema, E.6
Potin, P.7
-
63
-
-
84945902495
-
In-Season Mapping of Crop Type with Optical and X-Band SAR Data: A Classification Tree Approach Using Synoptic Seasonal Features
-
Villa, P., D., Stroppiana, G., Fontanelli, R., Azar, and P. A., Brivio. 2015. “In-Season Mapping of Crop Type with Optical and X-Band SAR Data: A Classification Tree Approach Using Synoptic Seasonal Features.” Remote Sensing 7: 12859–12886. doi:10.3390/rs71012859.
-
(2015)
Remote Sensing
, vol.7
, pp. 12859-12886
-
-
Villa, P.1
Stroppiana, D.2
Fontanelli, G.3
Azar, R.4
Brivio, P.A.5
-
64
-
-
85007233448
-
Sparse Graph Regularization for Robust Crop Mapping Using Hyperspectral Remotely Sensed Imagery with Very Few in Situ Data
-
Xue, Z. H., P. J., Du, J., Li, and H. J., Su. 2017. “Sparse Graph Regularization for Robust Crop Mapping Using Hyperspectral Remotely Sensed Imagery with Very Few in Situ Data.” ISPRS Journal of Photogrammetry and Remote Sensing 124: 1–15. doi:10.1016/j.isprsjprs.2016.12.003.
-
(2017)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.124
, pp. 1-15
-
-
Xue, Z.H.1
Du, P.J.2
Li, J.3
Su, H.J.4
-
65
-
-
85008144339
-
Crop Classification and Acreage Estimation in North Korea Using Phenology Features
-
Zhang, H., Q., Li, J., Liu, J., Shang, X., Du, L., Zhao, N., Wang, and T., Dong. 2017. “Crop Classification and Acreage Estimation in North Korea Using Phenology Features.” GIScience & Remote Sensing 54: 381–406. doi:10.1080/15481603.2016.1276255.
-
(2017)
GIScience & Remote Sensing
, vol.54
, pp. 381-406
-
-
Zhang, H.1
Li, Q.2
Liu, J.3
Shang, J.4
Du, X.5
Zhao, L.6
Wang, N.7
Dong, T.8
|