메뉴 건너뛰기




Volumn 54, Issue 6, 2017, Pages 918-938

Assessing the suitability of data from Sentinel-1A and 2A for crop classification

Author keywords

agricultural fields; classification; Hokkaido; machine learning; Sentinel 1A; Sentinel 2A

Indexed keywords

ALGORITHM; BAYESIAN ANALYSIS; CROP YIELD; DATA ACQUISITION; IMAGE CLASSIFICATION; MACHINE LEARNING; OPTIMIZATION; SATELLITE DATA; SENTINEL;

EID: 85022216039     PISSN: 15481603     EISSN: None     Source Type: Journal    
DOI: 10.1080/15481603.2017.1351149     Document Type: Article
Times cited : (135)

References (65)
  • 1
    • 84961218418 scopus 로고    scopus 로고
    • Comprehensive Study of the Biophysical Parameters of Agricultural Crops Based on Assessing Landsat 8 OLI and Landsat 7 ETM+ Vegetation Indices
    • Ahmadian, N., S., Ghasemi, J.-P., Wigneron, and R., Zolitz. 2016. “Comprehensive Study of the Biophysical Parameters of Agricultural Crops Based on Assessing Landsat 8 OLI and Landsat 7 ETM+ Vegetation Indices.” Giscience & Remote Sensing 53: 337–359. doi:10.1080/15481603.2016.1155789.
    • (2016) Giscience & Remote Sensing , vol.53 , pp. 337-359
    • Ahmadian, N.1    Ghasemi, S.2    Wigneron, J.-P.3    Zolitz, R.4
  • 2
    • 0000874557 scopus 로고
    • Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning
    • Aizerman, M., E., Braverman, and L., Rozonoer. 1964. “Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning.” Automation and Remote Control 25: 821–837.
    • (1964) Automation and Remote Control , vol.25 , pp. 821-837
    • Aizerman, M.1    Braverman, E.2    Rozonoer, L.3
  • 3
    • 84986904940 scopus 로고    scopus 로고
    • Assessing In-Season Crop Classification Performance Using Satellite Data: A Test Case in Northern Italy
    • Azar, R., P., Villa, D., Stroppiana, A., Crema, M., Boschetti, and P. A., Brivio. 2016. “Assessing In-Season Crop Classification Performance Using Satellite Data: A Test Case in Northern Italy.” European Journal of Remote Sensing 49: 361–380. doi:10.5721/EuJRS20164920.
    • (2016) European Journal of Remote Sensing , vol.49 , pp. 361-380
    • Azar, R.1    Villa, P.2    Stroppiana, D.3    Crema, A.4    Boschetti, M.5    Brivio, P.A.6
  • 4
    • 84868536352 scopus 로고    scopus 로고
    • Does Spatial Resolution Matter? A Multi-Scale Comparison of Object-Based and Pixel-Based Methods for Detecting Change Associated with Gas Well Drilling Operations
    • Baker, B. A., T. A., Warner, J. F., Conley, and B. E., Mcneil. 2013. “Does Spatial Resolution Matter? A Multi-Scale Comparison of Object-Based and Pixel-Based Methods for Detecting Change Associated with Gas Well Drilling Operations.” International Journal of Remote Sensing 34: 1633–1651. doi:10.1080/01431161.2012.724540.
    • (2013) International Journal of Remote Sensing , vol.34 , pp. 1633-1651
    • Baker, B.A.1    Warner, T.A.2    Conley, J.F.3    Mcneil, B.E.4
  • 6
    • 84964330838 scopus 로고    scopus 로고
    • A Random Forest Guided Tour
    • Biau, G., and E., Scornet. 2016. “A Random Forest Guided Tour.” Test 25: 197–227. doi:10.1007/s11749-016-0481-7.
    • (2016) Test , vol.25 , pp. 197-227
    • Biau, G.1    Scornet, E.2
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L., 2001. “Random Forests.” Machine Learning 45: 5–32. doi:10.1023/A:1010933404324.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 8
    • 57049119072 scopus 로고    scopus 로고
    • Estimating Per-Pixel Thematic Uncertainty in Remote Sensing Classifications
    • Brown, K. M., G. M., Foody, and P. M., Atkinson. 2009. “Estimating Per-Pixel Thematic Uncertainty in Remote Sensing Classifications.” International Journal of Remote Sensing 30: 209–229. doi:10.1080/01431160802290568.
    • (2009) International Journal of Remote Sensing , vol.30 , pp. 209-229
    • Brown, K.M.1    Foody, G.M.2    Atkinson, P.M.3
  • 9
    • 27144489164 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Machines for Pattern Recognition
    • Burges, C. J. C., 1998. “A Tutorial on Support Vector Machines for Pattern Recognition.” Data Mining and Knowledge Discovery 2: 121–167. doi:10.1023/A:1009715923555.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 10
    • 85019349705 scopus 로고    scopus 로고
    • Detection of Urban Damage Using Remote Sensing and Machine Learning Algorithms: Revisiting the 2010 Haiti Earthquake
    • Cooner, A. J., Y., Shao, and J. B., Campbell. 2016. “Detection of Urban Damage Using Remote Sensing and Machine Learning Algorithms: Revisiting the 2010 Haiti Earthquake.” Remote Sensing 8: 17. doi:10.3390/rs8100868.
    • (2016) Remote Sensing , vol.8 , pp. 17
    • Cooner, A.J.1    Shao, Y.2    Campbell, J.B.3
  • 11
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • Cortes, C., and V., Vapnik. 1995. “Support-Vector Networks.” Machine Learning 20: 273–297. doi:10.1007/BF00994018.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 84871386793 scopus 로고    scopus 로고
    • Using Sensitivity Analysis and Visualization Techniques to Open Black Box Data Mining Models
    • Cortez, P., and M. J., Embrechts. 2013. “Using Sensitivity Analysis and Visualization Techniques to Open Black Box Data Mining Models.” Information Sciences 225: 1–17. doi:10.1016/j.ins.2012.10.039.
    • (2013) Information Sciences , vol.225 , pp. 1-17
    • Cortez, P.1    Embrechts, M.J.2
  • 13
    • 1942499424 scopus 로고    scopus 로고
    • Use of SAR Satellites for Mapping Zonation of Vegetation Communities in the Amazon Floodplain
    • Costa, M. P. F., 2004. “Use of SAR Satellites for Mapping Zonation of Vegetation Communities in the Amazon Floodplain.” International Journal of Remote Sensing 25: 1817–1835. doi:10.1080/0143116031000116985.
    • (2004) International Journal of Remote Sensing , vol.25 , pp. 1817-1835
    • Costa, M.P.F.1
  • 16
    • 34548360492 scopus 로고    scopus 로고
    • Using In-Situ Measurements to Evaluate the New RapidEye (TM) Satellite Series for Prediction of Wheat Nitrogen Status
    • Eitel, J. U. H., D. S., Long, P. E., Gessler, and A. M. S., Smith. 2007. “Using In-Situ Measurements to Evaluate the New RapidEye (TM) Satellite Series for Prediction of Wheat Nitrogen Status.” International Journal of Remote Sensing 28: 4183–4190. doi:10.1080/01431160701422213.
    • (2007) International Journal of Remote Sensing , vol.28 , pp. 4183-4190
    • Eitel, J.U.H.1    Long, D.S.2    Gessler, P.E.3    Smith, A.M.S.4
  • 17
    • 84973928852 scopus 로고    scopus 로고
    • Estimation of Leaf Area Index and Crop Height of Sunflowers Using Multi-Temporal Optical and SAR Satellite Data
    • Fieuzal, R., and F., Baup. 2016. “Estimation of Leaf Area Index and Crop Height of Sunflowers Using Multi-Temporal Optical and SAR Satellite Data.” International Journal of Remote Sensing 37: 2780–2809.
    • (2016) International Journal of Remote Sensing , vol.37 , pp. 2780-2809
    • Fieuzal, R.1    Baup, F.2
  • 19
    • 3042654673 scopus 로고    scopus 로고
    • A Relative Evaluation of Multiclass Image Classification by Support Vector Machines
    • Foody, G., and A., Mathur. 2004. “A Relative Evaluation of Multiclass Image Classification by Support Vector Machines.” IEEE Transactions on Geoscience and Remote Sensing 42: 1335–1343. doi:10.1109/TGRS.2004.827257.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , pp. 1335-1343
    • Foody, G.1    Mathur, A.2
  • 20
    • 0034548685 scopus 로고    scopus 로고
    • Mapping Land Cover from Remotely Sensed Data with a Softened Feedforward Neural Network Classification
    • Foody, G. M., 2000. “Mapping Land Cover from Remotely Sensed Data with a Softened Feedforward Neural Network Classification.” Journal of Intelligent & Robotic Systems 29: 433–449. doi:10.1023/A:1008112125526.
    • (2000) Journal of Intelligent & Robotic Systems , vol.29 , pp. 433-449
    • Foody, G.M.1
  • 21
    • 84943374021 scopus 로고    scopus 로고
    • Mapping Land Cover and Land Use from Object-Based Classification: An Example from a Complex Agricultural Landscape
    • Goodin, D. G., K. L., Anibas, and M., Bezymennyi. 2015. “Mapping Land Cover and Land Use from Object-Based Classification: An Example from a Complex Agricultural Landscape.” International Journal of Remote Sensing 36: 4702–4723. doi:10.1080/01431161.2015.1088674.
    • (2015) International Journal of Remote Sensing , vol.36 , pp. 4702-4723
    • Goodin, D.G.1    Anibas, K.L.2    Bezymennyi, M.3
  • 23
    • 84978829543 scopus 로고    scopus 로고
    • Time Series Analysis of Co-Polarization Phase Difference (PPD) for Winter Field Crops Using Polarimetric C-Band SAR Data
    • Haldar, D., P., Rana, M., Yadav, R. S., Hooda, and M., Chakraborty. 2016. “Time Series Analysis of Co-Polarization Phase Difference (PPD) for Winter Field Crops Using Polarimetric C-Band SAR Data.” International Journal of Remote Sensing 37: 3753–3770. doi:10.1080/01431161.2016.1204024.
    • (2016) International Journal of Remote Sensing , vol.37 , pp. 3753-3770
    • Haldar, D.1    Rana, P.2    Yadav, M.3    Hooda, R.S.4    Chakraborty, M.5
  • 24
    • 84879520844 scopus 로고    scopus 로고
    • Contemporary and Historical Classification of Crop Types in Arizona
    • Hartfield, K., S., Marsh, C., Kirk, and Y., Carrière. 2013. “Contemporary and Historical Classification of Crop Types in Arizona.” International Journal of Remote Sensing 34: 6024–6036. doi:10.1080/01431161.2013.793861.
    • (2013) International Journal of Remote Sensing , vol.34 , pp. 6024-6036
    • Hartfield, K.1    Marsh, S.2    Kirk, C.3    Carrière, Y.4
  • 26
    • 85014052346 scopus 로고    scopus 로고
    • Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series
    • Heine, I., T., Jagdhuber, and S., Itzerott. 2016. “Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series.” Remote Sensing 8: 552. doi:10.3390/rs8070552.
    • (2016) Remote Sensing , vol.8
    • Heine, I.1    Jagdhuber, T.2    Itzerott, S.3
  • 27
    • 10944272650 scopus 로고    scopus 로고
    • Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks
    • In, Bandera, Texas,. Piscataway, NJ: IEEE Computational Intelligence Society
    • Huang, G. B., Q.-Y., Zhu, and C.-K., Siew. 2006. “Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks.” In International Joint Conference on Neural Networks (IJCNN2004), Bandera, Texas, 985–990. Piscataway, NJ: IEEE Computational Intelligence Society.
    • (2006) International Joint Conference on Neural Networks (IJCNN2004) , pp. 985-990
    • Huang, G.B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 29
    • 85014298878 scopus 로고    scopus 로고
    • Application of Polarization Signature to Land Cover Scattering Mechanism Analysis and Classification Using Multi-Temporal C-Band Polarimetric RADARSAT-2 Imagery
    • Huang, X., J., Wang, J., Shang, C., Liao, and J., Liu. 2017. “Application of Polarization Signature to Land Cover Scattering Mechanism Analysis and Classification Using Multi-Temporal C-Band Polarimetric RADARSAT-2 Imagery.” Remote Sensing of Environment 193: 11–28. doi:10.1016/j.rse.2017.02.014.
    • (2017) Remote Sensing of Environment , vol.193 , pp. 11-28
    • Huang, X.1    Wang, J.2    Shang, J.3    Liao, C.4    Liu, J.5
  • 30
    • 84983738569 scopus 로고    scopus 로고
    • Best Accuracy Land Use/Land Cover (LULC) Classification to Derive Crop Types Using Multitemporal, Multisensor, and Multi-Polarization SAR Satellite Images
    • Hutt, C., W., Koppe, Y. X., Miao, and G., Bareth. 2016. “Best Accuracy Land Use/Land Cover (LULC) Classification to Derive Crop Types Using Multitemporal, Multisensor, and Multi-Polarization SAR Satellite Images.” Remote Sensing 8: 684. doi:10.3390/rs8080684.
    • (2016) Remote Sensing , vol.8
    • Hutt, C.1    Koppe, W.2    Miao, Y.X.3    Bareth, G.4
  • 31
    • 84962488348 scopus 로고    scopus 로고
    • First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe
    • Immitzer, M., F., Vuolo, and C., Atzberger. 2016. “First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe.” Remote Sensing 8: 27. doi:10.3390/rs8030166.
    • (2016) Remote Sensing , vol.8 , pp. 27
    • Immitzer, M.1    Vuolo, F.2    Atzberger, C.3
  • 32
    • 84971492749 scopus 로고    scopus 로고
    • Improved Early Crop Type Identification by Joint Use of High Temporal Resolution SAR and Optical Image Time Series
    • Inglada, J., A., Vincent, M., Arias, and C., Marais-Sicre. 2016. “Improved Early Crop Type Identification by Joint Use of High Temporal Resolution SAR and Optical Image Time Series.” Remote Sensing 8: 362. doi:10.3390/rs8050362.
    • (2016) Remote Sensing , vol.8
    • Inglada, J.1    Vincent, A.2    Arias, M.3    Marais-Sicre, C.4
  • 33
    • 41949115461 scopus 로고    scopus 로고
    • Random Survival Forests for R
    • Ishwaran, H., and U. B., Kogalur. 2007. “Random Survival Forests for R.” R News 7: 25–31.
    • (2007) R News , vol.7 , pp. 25-31
    • Ishwaran, H.1    Kogalur, U.B.2
  • 35
    • 0034187691 scopus 로고    scopus 로고
    • Data Strip Mining for the Virtual Design of Pharmaceuticals with Neural Networks
    • Kewley, R. H., M. J., Embrechts, and C., Breneman. 2000. “Data Strip Mining for the Virtual Design of Pharmaceuticals with Neural Networks.” IEEE Transactions on Neural Networks 11: 668–679. doi:10.1109/72.846738.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 668-679
    • Kewley, R.H.1    Embrechts, M.J.2    Breneman, C.3
  • 36
    • 84924725668 scopus 로고    scopus 로고
    • Sensitivity of Vegetation Indices to Spatial Degradation of RapidEye Imagery for Paddy Rice Detection: A Case Study of South Korea
    • Kim, H.-O., and J.-M., Yeom. 2015. “Sensitivity of Vegetation Indices to Spatial Degradation of RapidEye Imagery for Paddy Rice Detection: A Case Study of South Korea.” GIScience & Remote Sensing 52: 1–17. doi:10.1080/15481603.2014.1001666.
    • (2015) GIScience & Remote Sensing , vol.52 , pp. 1-17
    • Kim, H.-O.1    Yeom, J.-M.2
  • 37
    • 84971667970 scopus 로고    scopus 로고
    • On the Added Value of Quad-Pol Data in a Multi-Temporal Crop Classification Framework Based on RADARSAT-2 Imagery
    • Larranaga, A., and J., Alvarez-Mozos. 2016. “On the Added Value of Quad-Pol Data in a Multi-Temporal Crop Classification Framework Based on RADARSAT-2 Imagery.” Remote Sensing 8: 19. doi:10.3390/rs8040335.
    • (2016) Remote Sensing , vol.8 , pp. 19
    • Larranaga, A.1    Alvarez-Mozos, J.2
  • 38
    • 84930630277 scopus 로고    scopus 로고
    • Deep Learning
    • Lecun, Y., Y., Bengio, and G., Hinton. 2015. “Deep Learning.” Nature 521: 436–444. doi:10.1038/nature14539.
    • (2015) Nature , vol.521 , pp. 436-444
    • Lecun, Y.1    Bengio, Y.2    Hinton, G.3
  • 39
    • 0345040873 scopus 로고    scopus 로고
    • Classification and Regression by Random Forest
    • Liaw, A., and M., Wiener. 2002. “Classification and Regression by Random Forest.” R News 2: 18–22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 40
    • 0000596361 scopus 로고
    • Note on the Sampling Error of the Difference between Correlated Proportions or Percentages
    • Mcnemar, Q., 1947. “Note on the Sampling Error of the Difference between Correlated Proportions or Percentages.” Psychometrika 12: 153–157. doi:10.1007/BF02295996.
    • (1947) Psychometrika , vol.12 , pp. 153-157
    • Mcnemar, Q.1
  • 42
    • 77949388276 scopus 로고    scopus 로고
    • The Behaviour of Random Forest Permutation-Based Variable Importance Measures under Predictor Correlation
    • Nicodemus, K. K., J. D., Malley, C., Strobl, and A., Ziegler. 2010. “The Behaviour of Random Forest Permutation-Based Variable Importance Measures under Predictor Correlation.” Bmc Bioinformatics 11: 110. doi:10.1186/1471-2105-11-110.
    • (2010) Bmc Bioinformatics , vol.11
    • Nicodemus, K.K.1    Malley, J.D.2    Strobl, C.3    Ziegler, A.4
  • 43
    • 84942551816 scopus 로고    scopus 로고
    • Modeling Temporal Growth Profile of Vegetation Index from Indian Geostationary Satellite for Assessing In-Season Progress of Crop Area
    • Nigam, R., S. S., Vyas, B. K., Bhattacharya, M. P., Oza, S. S., Srivastava, N., Bhagia, D., Dhar, and K. R., Manjunath. 2015. “Modeling Temporal Growth Profile of Vegetation Index from Indian Geostationary Satellite for Assessing In-Season Progress of Crop Area.” Giscience & Remote Sensing 52: 723–745. doi:10.1080/15481603.2015.1073036.
    • (2015) Giscience & Remote Sensing , vol.52 , pp. 723-745
    • Nigam, R.1    Vyas, S.S.2    Bhattacharya, B.K.3    Oza, M.P.4    Srivastava, S.S.5    Bhagia, N.6    Dhar, D.7    Manjunath, K.R.8
  • 44
    • 84998673750 scopus 로고    scopus 로고
    • Performance Evaluation of Object Based Greenhouse Detection from Sentinel-2 MSI and Landsat 8 OLI Data: A Case Study from Almería (Spain)
    • Novelli, A., M. A., Aguilar, A., Nemmaoui, F. J., Aguilar, and E., Tarantino. 2016. “Performance Evaluation of Object Based Greenhouse Detection from Sentinel-2 MSI and Landsat 8 OLI Data: A Case Study from Almería (Spain).” International Journal of Applied Earth Observation and Geoinformation 52: 403–411. doi:10.1016/j.jag.2016.07.011.
    • (2016) International Journal of Applied Earth Observation and Geoinformation , vol.52 , pp. 403-411
    • Novelli, A.1    Aguilar, M.A.2    Nemmaoui, A.3    Aguilar, F.J.4    Tarantino, E.5
  • 45
    • 84930016645 scopus 로고    scopus 로고
    • Mapping of Agricultural Crops from Single High-Resolution Multispectral Images-Data-Driven Smoothing vs. Parcel-Based Smoothing
    • Ozdarici-Ok, A., A. O., Ok, and K., Schindler. 2015. “Mapping of Agricultural Crops from Single High-Resolution Multispectral Images-Data-Driven Smoothing vs. Parcel-Based Smoothing.” Remote Sensing 7: 5611–5638. doi:10.3390/rs70505611.
    • (2015) Remote Sensing , vol.7 , pp. 5611-5638
    • Ozdarici-Ok, A.1    Ok, A.O.2    Schindler, K.3
  • 46
    • 13344278660 scopus 로고    scopus 로고
    • Random Forest Classifier for Remote Sensing Classification
    • Pal, M., 2005. “Random Forest Classifier for Remote Sensing Classification.” International Journal of Remote Sensing 26: 217–222. doi:10.1080/01431160412331269698.
    • (2005) International Journal of Remote Sensing , vol.26 , pp. 217-222
    • Pal, M.1
  • 47
    • 84880397408 scopus 로고    scopus 로고
    • Kernel-Based Extreme Learning Machine for Remote-Sensing Image Classification
    • Pal, M., A. E., Maxwell, and T. A., Warner. 2013. “Kernel-Based Extreme Learning Machine for Remote-Sensing Image Classification.” Remote Sensing Letters 4: 853–862. doi:10.1080/2150704X.2013.805279.
    • (2013) Remote Sensing Letters , vol.4 , pp. 853-862
    • Pal, M.1    Maxwell, A.E.2    Warner, T.A.3
  • 48
    • 79956324768 scopus 로고    scopus 로고
    • Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment
    • Pontius, R., and M., Millones. 2011. “Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment.” International Journal of Remote Sensing 32: 4407–4429. doi:10.1080/01431161.2011.552923.
    • (2011) International Journal of Remote Sensing , vol.32 , pp. 4407-4429
    • Pontius, R.1    Millones, M.2
  • 49
    • 84880406227 scopus 로고    scopus 로고
    • Balancing Misclassification Errors of Land Cover Classification Maps Using Support Vector Machines and Landsat Imagery in the Maipo River Basin (Central Chile, 1975–2010)
    • Puertas, O., A., Brenning, and F., Meza. 2013. “Balancing Misclassification Errors of Land Cover Classification Maps Using Support Vector Machines and Landsat Imagery in the Maipo River Basin (Central Chile, 1975–2010).” Remote Sensing of Environment 137: 112–123. doi:10.1016/j.rse.2013.06.003.
    • (2013) Remote Sensing of Environment , vol.137 , pp. 112-123
    • Puertas, O.1    Brenning, A.2    Meza, F.3
  • 50
    • 85031926514 scopus 로고    scopus 로고
    • Accessed, June, R: A Language and Environment for Statistical Computing,. Vienna: R Foundation for Statistical Computing., 2016
    • R Core Team. 2016. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Accessed 1 June 2016. http://www.R-project.org/.
    • (2016)
  • 52
    • 85020195682 scopus 로고    scopus 로고
    • Mapping of Urban Green Spaces Using Sentinel-2A Data: Methodical Aspect
    • Bulgarian Cartographic Association, and,.” In, edited by T. Bandrova and M. Konecny
    • Rosina, K., and M., Kopecka. 2016. “Mapping of Urban Green Spaces Using Sentinel-2A Data: Methodical Aspect.” In 6th International Conference on Cartography and GIS, Albena, Bulgaria, edited by T. Bandrova and M. Konecny, 562–568. Bulgarian Cartographic Association.
    • (2016) 6th International Conference on Cartography and GIS, Albena, Bulgaria , pp. 562-568
    • Rosina, K.1    Kopecka, M.2
  • 54
    • 84979544405 scopus 로고    scopus 로고
    • Comparison between Spectral, Spatial and Polarimetric Classification of Urban and Periurban Landcover Using Temporal Sentinel–1 Images
    • Roychowdhury, K., 2016. “Comparison between Spectral, Spatial and Polarimetric Classification of Urban and Periurban Landcover Using Temporal Sentinel–1 Images.” Xxiii ISPRS Congress, Commission Vii 41: 789–796.
    • (2016) ISPRS Congress, Commission Vii , vol.41 , pp. 789-796
    • Roychowdhury, K.1
  • 55
    • 79955807862 scopus 로고    scopus 로고
    • Integrating Remote Sensing and GIS for Prediction of Rice Protein Contents
    • Ryu, C., M., Suguri, M., Iida, M., Umeda, and C., Lee. 2011. “Integrating Remote Sensing and GIS for Prediction of Rice Protein Contents.” Precision Agriculture 12: 378–394. doi:10.1007/s11119-010-9179-0.
    • (2011) Precision Agriculture , vol.12 , pp. 378-394
    • Ryu, C.1    Suguri, M.2    Iida, M.3    Umeda, M.4    Lee, C.5
  • 56
    • 84877677403 scopus 로고    scopus 로고
    • Classification of California Agriculture Using Quad Polarization Radar Data and Landsat Thematic Mapper Data
    • Sheoran, A., and B., Haack. 2013. “Classification of California Agriculture Using Quad Polarization Radar Data and Landsat Thematic Mapper Data.” Giscience & Remote Sensing 50: 50–63.
    • (2013) Giscience & Remote Sensing , vol.50 , pp. 50-63
    • Sheoran, A.1    Haack, B.2
  • 57
    • 84896372897 scopus 로고    scopus 로고
    • Random Forest Classification of Crop Type Using Multi-Temporal TerraSAR-X Dual-Polarimetric Data
    • Sonobe, R., H., Tani, X., Wang, N., Kobayashi, and H., Shimamura. 2014. “Random Forest Classification of Crop Type Using Multi-Temporal TerraSAR-X Dual-Polarimetric Data.” Remote Sensing Letters 5: 157–164. doi:10.1080/2150704X.2014.889863.
    • (2014) Remote Sensing Letters , vol.5 , pp. 157-164
    • Sonobe, R.1    Tani, H.2    Wang, X.3    Kobayashi, N.4    Shimamura, H.5
  • 58
    • 84954288480 scopus 로고    scopus 로고
    • An Experimental Comparison between KELM and CART for Crop Classification Using Landsat-8 OLI Data
    • Sonobe, R., H., Tani, and X. F., Wang. 2017. “An Experimental Comparison between KELM and CART for Crop Classification Using Landsat-8 OLI Data.” Geocarto International 32: 128–138.
    • (2017) Geocarto International , vol.32 , pp. 128-138
    • Sonobe, R.1    Tani, H.2    Wang, X.F.3
  • 61
    • 85031919078 scopus 로고    scopus 로고
    • Accessed June1 2016
    • Tokachi Subprefecture. 2016. “Growing Condition of Crops in 2016.” Accessed June1 2016. http://www.tokachi.pref.hokkaido.lg.jp/ss/num/kairyou/sakkyou27.htm.
    • (2016) Growing Condition of Crops in 2016
  • 63
    • 84945902495 scopus 로고    scopus 로고
    • In-Season Mapping of Crop Type with Optical and X-Band SAR Data: A Classification Tree Approach Using Synoptic Seasonal Features
    • Villa, P., D., Stroppiana, G., Fontanelli, R., Azar, and P. A., Brivio. 2015. “In-Season Mapping of Crop Type with Optical and X-Band SAR Data: A Classification Tree Approach Using Synoptic Seasonal Features.” Remote Sensing 7: 12859–12886. doi:10.3390/rs71012859.
    • (2015) Remote Sensing , vol.7 , pp. 12859-12886
    • Villa, P.1    Stroppiana, D.2    Fontanelli, G.3    Azar, R.4    Brivio, P.A.5
  • 64
    • 85007233448 scopus 로고    scopus 로고
    • Sparse Graph Regularization for Robust Crop Mapping Using Hyperspectral Remotely Sensed Imagery with Very Few in Situ Data
    • Xue, Z. H., P. J., Du, J., Li, and H. J., Su. 2017. “Sparse Graph Regularization for Robust Crop Mapping Using Hyperspectral Remotely Sensed Imagery with Very Few in Situ Data.” ISPRS Journal of Photogrammetry and Remote Sensing 124: 1–15. doi:10.1016/j.isprsjprs.2016.12.003.
    • (2017) ISPRS Journal of Photogrammetry and Remote Sensing , vol.124 , pp. 1-15
    • Xue, Z.H.1    Du, P.J.2    Li, J.3    Su, H.J.4
  • 65
    • 85008144339 scopus 로고    scopus 로고
    • Crop Classification and Acreage Estimation in North Korea Using Phenology Features
    • Zhang, H., Q., Li, J., Liu, J., Shang, X., Du, L., Zhao, N., Wang, and T., Dong. 2017. “Crop Classification and Acreage Estimation in North Korea Using Phenology Features.” GIScience & Remote Sensing 54: 381–406. doi:10.1080/15481603.2016.1276255.
    • (2017) GIScience & Remote Sensing , vol.54 , pp. 381-406
    • Zhang, H.1    Li, Q.2    Liu, J.3    Shang, J.4    Du, X.5    Zhao, L.6    Wang, N.7    Dong, T.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.