-
1
-
-
0000574755
-
Artificial photosynthesis: solar splitting of water to hydrogen and oxygen
-
Bard, A., Fox, M.A.: Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995). doi:10.1021/ar00051a007 DOI: 10.1021/ar00051a007
-
(1995)
Acc. Chem. Res.
, vol.28
, pp. 141
-
-
Bard, A.1
Fox, M.A.2
-
2
-
-
0032540476
-
Monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting
-
Khaselev, O., Turner, J.A.: Monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science. 280, 425–427 (1998). doi:10.1126/science.280.5362.425 DOI: 10.1126/science.280.5362.425
-
(1998)
Science
, vol.280
, pp. 425
-
-
Khaselev, O.1
Turner, J.A.2
-
3
-
-
0035891138
-
Photoelectrochemical cells
-
Grätzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001). doi:10.1038/35104607 DOI: 10.1038/35104607
-
(2001)
Nature
, vol.414
, pp. 338
-
-
Grätzel, M.1
-
4
-
-
78449289476
-
Solar water splitting cells
-
Walter, M.G., Warren, E., McKone, J., Boettcher, S., Mi, Q., Santori, E., Lewis, N.: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010). doi:10.1021/cr1002326 DOI: 10.1021/cr1002326
-
(2010)
Chem. Rev.
, vol.110
, pp. 6473
-
-
Walter, M.G.1
Warren, E.2
McKone, J.3
Boettcher, S.4
Mi, Q.5
Santori, E.6
Lewis, N.7
-
5
-
-
84861174023
-
The artificial leaf
-
Nocera, D.: The artificial leaf. Acc. Chem. Res. 45, 767–776 (2012). doi:10.1021/ar2003013
-
(2012)
Acc. Chem. Res.
-
-
Nocera, D.1
-
6
-
-
84901923735
-
Photochemical splitting of water for hydrogen production by photocatalysis
-
Ismail, A.A., Bahnemann, D.W.: Photochemical splitting of water for hydrogen production by photocatalysis. Solar Energy Mater. Solar Cells. 128, 85–101 (2014). doi: 10.1016/j.solmat.2014.04.037
-
(2014)
Solar Energy Mater. Solar Cells.
, vol.128
, pp. 85-101
-
-
Ismail, A.A.1
Bahnemann, D.W.2
-
7
-
-
84866866322
-
Toward visible light response: overall water splitting using heterogeneous photocatalysts
-
Takanabe, K., Domen, K.: Toward visible light response: overall water splitting using heterogeneous photocatalysts. Green 1, 313–322 (2011). doi:10.1515/GREEN.2011.030 DOI: 10.1515/GREEN.2011.030
-
(2011)
Green
, vol.1
, pp. 313-322
-
-
Takanabe, K.1
Domen, K.2
-
8
-
-
84866879681
-
Preparation of inorganic photocatalytic materials for overall water splitting
-
Takanabe, K., Domen, K.: Preparation of inorganic photocatalytic materials for overall water splitting. Chemcatchem. 4, 1485–1497 (2012). doi:10.1002/cctc.201200324 DOI: 10.1002/cctc.201200324
-
(2012)
Chemcatchem.
, vol.4
, pp. 1485
-
-
Takanabe, K.1
Domen, K.2
-
9
-
-
35348875044
-
Electrochemical photolysis of water at a semiconductor electrode
-
Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). doi:10.1038/238037a0 DOI: 10.1038/238037a0
-
(1972)
Nature
, vol.238
, pp. 37-38
-
-
Fujishima, A.1
Honda, K.2
-
11
-
-
84865956357
-
3 photoanodes for solar water splitting
-
3 photoanodes for solar water splitting. PNAS 109, 5640 (2012). doi:10.1073/pnas.1118326109 DOI: 10.1073/pnas.1118326109
-
(2012)
PNAS
, vol.109
, pp. 5640
-
-
Barroso, M.1
Mesa, C.A.2
Pendlebury, S.R.3
CowanAJ, H.T.4
Sivula, K.5
Grätzel, M.6
Klug, D.R.7
Durrant, J.R.8
-
12
-
-
84881162564
-
Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode
-
Abdi, F.F., Han, L., Smets, A., Zeman, M., Dam, B., van de Krol, R.: Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013). doi:10.1038/ncomms3195 DOI: 10.1038/ncomms3195
-
(2013)
Nat. Commun.
, vol.4
, pp. 2195
-
-
Abdi, F.F.1
Han, L.2
Smets, A.3
Zeman, M.4
Dam, B.5
van de Krol, R.6
-
13
-
-
84896735953
-
4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting
-
4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990 (2014). doi:10.1126/science.1246913 DOI: 10.1126/science.1246913
-
(2014)
Science
, vol.343
, pp. 990
-
-
Kim, T.W.1
Choi, K.-S.2
-
14
-
-
84862252621
-
3 photoanode and a methane sulfonic acid electrolyte
-
3 photoanode and a methane sulfonic acid electrolyte. Nanoscale 4, 1553 (2012). doi:10.1039/c2nr11573e DOI: 10.1039/c2nr11573e
-
(2012)
Nanoscale
, vol.4
, pp. 1553
-
-
Solarska, R.1
Jurczakowski, R.2
Augustynski, J.3
-
15
-
-
79952121973
-
3 photoanode
-
3 photoanode. Chem. Mater. 23, 1105–1112 (2011). doi:10.1021/cm1019469 DOI: 10.1021/cm1019469
-
(2011)
Chem. Mater.
, vol.23
, pp. 1105-1112
-
-
Seabold, J.A.1
Choi, K.S.2
-
16
-
-
84860336470
-
Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation
-
Higashi, M., Domen, K., Abe, R.: Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. J. Am. Chem. Soc. 13, 46968 (2012). doi:10.1021/ja302059g
-
(2012)
J. Am. Chem. Soc.
, vol.13
, pp. 46968
-
-
Higashi, M.1
Domen, K.2
Abe, R.3
-
17
-
-
84882259144
-
-
Kubota, J., Domen, K.: Photocatalytic water splitting using oxynitride and nitride semiconductor powders for production of solar hydrogen. Electrochem. Soc. Interface Summer, 22(2), 57–62 (2013). doi: 10.1149/2.F07132if DOI: 10.1149/2.F07132if
-
-
-
-
18
-
-
34250779498
-
New non-oxide photocatalysts designed for overall water splitting under visible light
-
Maeda, K., Domen, K.: New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 111, 7851–7861 (2007). doi:10.1021/jp070911w DOI: 10.1021/jp070911w
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 7851-7861
-
-
Maeda, K.1
Domen, K.2
-
19
-
-
0037468479
-
5 by UPS and electrochemical methods
-
5 by UPS and electrochemical methods. J. Phys. Chem. B 107, 1798–1803 (2003). doi:10.1021/jp027593f DOI: 10.1021/jp027593f
-
(2003)
J. Phys. Chem. B
, vol.107
, pp. 1798-1803
-
-
Chun, W.J.1
Ishikawa, A.2
Fujisawa, H.3
Takata, T.4
Kondo, J.N.5
Hara, M.6
Kawai, M.7
Matsumoto, Y.8
Domen, K.9
-
20
-
-
84872015504
-
5 nanorod arrays for solar-driven photoelectrochemical water splitting
-
5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv. Mater. 25, 125–131 (2013). doi:10.1002/adma.201202582 DOI: 10.1002/adma.201202582
-
(2013)
Adv. Mater.
, vol.25
, pp. 125-131
-
-
Li, Y.1
Takata, T.2
Cha, D.3
Takanabe, K.4
Minegishi, T.5
Kubota, J.6
Domen, K.7
-
21
-
-
84885155807
-
Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency
-
Li, Y., Zhang, L., Torres-Pardo, A., Gonzalez-Calbet, J.M., Ma, Y., Oleynikov, P., Terasaki, O., Asahina, S., Shima, M., Cha, D., Zhao, L., Takanabe, K., Kubota, J., Domen, K.: Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat. Commun. (2013). doi:10.1038/ncomms3566
-
(2013)
Nat. Commun.
-
-
Li, Y.1
Zhang, L.2
Torres-Pardo, A.3
Gonzalez-Calbet, J.M.4
Ma, Y.5
Oleynikov, P.6
Terasaki, O.7
Asahina, S.8
Shima, M.9
Cha, D.10
Zhao, L.11
Takanabe, K.12
Kubota, J.13
Domen, K.14
-
22
-
-
84905594860
-
Controllable fabrication and photoelectrochemical property of multilayer tantalum nitride hollow sphere-nanofilms
-
Gao, R., Hu, L., Chen, M., Wu, L.: Controllable fabrication and photoelectrochemical property of multilayer tantalum nitride hollow sphere-nanofilms. Small 10, 3038–3044 (2014). doi:10.1002/smll.201303873 DOI: 10.1002/smll.201303873
-
(2014)
Small
, vol.10
, pp. 3038-3044
-
-
Gao, R.1
Hu, L.2
Chen, M.3
Wu, L.4
-
23
-
-
84903793615
-
Tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting
-
Liu, G., Shi, J., Zhang, F., Chen, Z., Han, J., Ding, C., Chen, S., Wang, Z., Han, H., Li, C.A.: Tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting. Angew. Chem. Int. Ed. 53, 7295 (2014). doi:10.1002/anie.201404697 DOI: 10.1002/anie.201404697
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 7295
-
-
Liu, G.1
Shi, J.2
Zhang, F.3
Chen, Z.4
Han, J.5
Ding, C.6
Chen, S.7
Wang, Z.8
Han, H.9
Li, C.A.10
-
24
-
-
84863141089
-
Tantalum cobalt nitride photocatalysts for water oxidation under visible light
-
Cong, Y., Park, H.S., Dang, H.X., Fan, F.-R.F., Bard, A.J., Mullins, C.B.: Tantalum cobalt nitride photocatalysts for water oxidation under visible light. Chem. Mater. 24, 579–586 (2012). doi:10.1021/cm203269n DOI: 10.1021/cm203269n
-
(2012)
Chem. Mater.
, vol.24
, pp. 579-586
-
-
Cong, Y.1
Park, H.S.2
Dang, H.X.3
Fan, F.-R.F.4
Bard, A.J.5
Mullins, C.B.6
-
25
-
-
84855454904
-
Nano-photocatalytic materials: possibilities and challenges
-
Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., Ye, J.: Nano-photocatalytic materials: possibilities and challenges. J. Adv. Mater. 24, 229–251 (2012). doi:10.1002/adma.201102752 DOI: 10.1002/adma.201102752
-
(2012)
J. Adv. Mater.
, vol.24
, pp. 229-251
-
-
Tong, H.1
Ouyang, S.2
Bi, Y.3
Umezawa, N.4
Oshikiri, M.5
Ye, J.6
-
26
-
-
84944727439
-
Solar water splitting using semiconductor photocatalyst powders
-
(In press
-
Takanabe, K.: Solar water splitting using semiconductor photocatalyst powders. Top Curr. Chem. (2015). doi:10.1007/128_2015_646. (In press)
-
(2015)
Top Curr. Chem.
-
-
Takanabe, K.1
-
27
-
-
77956838396
-
Photocatalytic water splitting: recent progress and future challenges
-
Maeda, K., Domen, K.: Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661 (2010). doi:10.1021/jz1007966 DOI: 10.1021/jz1007966
-
(2010)
J. Phys. Chem. Lett.
, vol.1
, pp. 2655-2661
-
-
Maeda, K.1
Domen, K.2
-
28
-
-
57649159482
-
Heterogeneous photocatalyst materials for water splitting
-
Kudo, A., Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009). doi:10.1039/B800489G DOI: 10.1039/B800489G
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 253-278
-
-
Kudo, A.1
Miseki, Y.2
-
29
-
-
79954600047
-
Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation
-
Abe, R.: Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J. Photochem. Photobiol. C 11, 179–209 (2010). doi:10.1016/j.jphotochemrev.2011.02.003 DOI: 10.1016/j.jphotochemrev.2011.02.003
-
(2010)
J. Photochem. Photobiol. C
, vol.11
, pp. 179-209
-
-
Abe, R.1
-
30
-
-
39149102842
-
Inorganic materials as catalysts for photochemical splitting of water
-
Osterloh, F.E.: Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20, 35 (2008). doi:10.1021/cm7024203 DOI: 10.1021/cm7024203
-
(2008)
Chem. Mater.
, vol.20
, pp. 35
-
-
Osterloh, F.E.1
-
31
-
-
84874461329
-
Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting
-
Osterloh, F.E.: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013). doi:10.1039/c2cs35266d DOI: 10.1039/C2CS35266D
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 2294-2320
-
-
Osterloh, F.E.1
-
32
-
-
33845377614
-
Photoassisted hydrogen production using visible light and coprecipitated ZnS·CdS without a noble metal
-
Kakuta, N., Park, K.H., Finlayson, M.F., Ueno, A., Bard, A.J., Campion, A., Fox, M.A., Webber, S.E., White, J.M.: Photoassisted hydrogen production using visible light and coprecipitated ZnS·CdS without a noble metal. J. Phys. Chem. 89, 732–734 (1985). doi:10.1016/j.solmat.2014.04.037 DOI: 10.1016/j.solmat.2014.04.037
-
(1985)
J. Phys. Chem.
, vol.89
, pp. 732-734
-
-
Kakuta, N.1
Park, K.H.2
Finlayson, M.F.3
Ueno, A.4
Bard, A.J.5
Campion, A.6
Fox, M.A.7
Webber, S.E.8
White, J.M.9
-
33
-
-
0000531274
-
Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide
-
Reber, J.F., Rusek, M.: Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide. J. Phys. Chem. 90, 824 (1985). doi: 10.1021/j100251a002
-
(1985)
J. Phys. Chem.
, vol.90
, pp. 824
-
-
Reber, J.F.1
Rusek, M.2
-
34
-
-
33748448448
-
xS photocatalyst for hydrogen production by water splitting
-
xS photocatalyst for hydrogen production by water splitting. Int. J. Hydrog. Energy 31, 2018 (2006). doi:10.1016/j.ijhydene.2006.02.003 DOI: 10.1016/j.ijhydene.2006.02.003
-
(2006)
Int. J. Hydrog. Energy
, vol.31
, pp. 2018
-
-
Xing, C.1
Zhang, V.2
Yan, W.3
Guo, L.4
-
35
-
-
39149118910
-
Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light
-
Bao, N., Shen, L., Takata, T., Domen, K.: Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem. Mater. 20, 110 (2008). doi:10.1021/cm7029344 DOI: 10.1021/cm7029344
-
(2008)
Chem. Mater.
, vol.20
, pp. 110
-
-
Bao, N.1
Shen, L.2
Takata, T.3
Domen, K.4
-
36
-
-
0001071096
-
Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder
-
Matsumura, M., Saho, Y., Tsubomura, H.: Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. J. Phys. Chem. 87(20), 3807–3808 (1983). doi:10.1021/j100243a005 DOI: 10.1021/j100243a005
-
(1983)
J. Phys. Chem.
, vol.87
, Issue.20
, pp. 3807-3808
-
-
Matsumura, M.1
Saho, Y.2
Tsubomura, H.3
-
38
-
-
0000675677
-
Visible-light-induced oxygen generation from aqueous dispersions of tungsten(VI) oxide
-
Erbs, W., Desilvestro, J., Borgarello, E., Gratzel, M.: Visible-light-induced oxygen generation from aqueous dispersions of tungsten(VI) oxide. J. Phys. Chem. 88, 4001–4006 (1984). doi:10.1021/j150662a028 DOI: 10.1021/j150662a028
-
(1984)
J. Phys. Chem.
, vol.88
, pp. 4001-4006
-
-
Erbs, W.1
Desilvestro, J.2
Borgarello, E.3
Gratzel, M.4
-
41
-
-
84949115026
-
5 photoanode for water oxidation
-
5 photoanode for water oxidation. Phys. Chem. Chem. Phys. 17, 2670–2677 (2015). doi:10.1039/c4cp05616g DOI: 10.1039/C4CP05616G
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 2670-2677
-
-
Ziani, A.1
Nurlaela, E.2
Dhawale, D.S.3
Silva, D.A.4
Alarousu, E.5
Mohammed, O.F.6
Takanabe, K.7
-
43
-
-
84906679885
-
5 particles
-
5 particles. Chem. Mater. 26, 4812–4825 (2014). doi:10.1021/cm502015q DOI: 10.1021/cm502015q
-
(2014)
Chem. Mater.
, vol.26
, pp. 4812-4825
-
-
Nurlaela, E.1
Ould-Chikh, S.2
Harb, M.3
del Gobbo, S.4
Aouine, M.5
Puzenat, E.6
Sautet, P.7
Domen, K.8
Basset, J.-M.9
Takanabe, K.10
-
44
-
-
84949117391
-
Tuning the properties of visible-light-responsive tantalum (oxy)nitride photocatalysts by non-stoichiometric compositions: a first-principle viewpoint
-
Harb, M., Sautet, P., Nurlaela, E., Raybaud, P., Cavallo, L., Domen, K., Basset, J.-M., Takanabe, K.: Tuning the properties of visible-light-responsive tantalum (oxy)nitride photocatalysts by non-stoichiometric compositions: a first-principle viewpoint. Phys. Chem. Chem. Phy. 16, 20548–20560 (2014). doi:10.1039/c4cp03594a DOI: 10.1039/C4CP03594A
-
(2014)
Phys. Chem. Chem. Phy.
, vol.16
, pp. 20548-20560
-
-
Harb, M.1
Sautet, P.2
Nurlaela, E.3
Raybaud, P.4
Cavallo, L.5
Domen, K.6
Basset, J.-M.7
Takanabe, K.8
-
45
-
-
77952476871
-
Highly active tantalum(V) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible lght irradiation
-
Yuliati, L., Yang, J.H., Wang, X., Maeda, K., Takata, T., Antonietti, M., Domen, K.: Highly active tantalum(V) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible lght irradiation. J. Mater. Chem. 20, 4295–4298 (2010). doi:10.1039/C0JM00341G DOI: 10.1039/c0jm00341g
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 4295-4298
-
-
Yuliati, L.1
Yang, J.H.2
Wang, X.3
Maeda, K.4
Takata, T.5
Antonietti, M.6
Domen, K.7
-
50
-
-
84885460196
-
5 photoanode with a high solar photocurrent for water splitting upon facile removal of the surface layer
-
5 photoanode with a high solar photocurrent for water splitting upon facile removal of the surface layer. Angew. Chem. Int. Ed. 52, 11016–11020 (2013). doi:10.1002/anie.201305350 DOI: 10.1002/anie.201305350
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, pp. 11016-11020
-
-
Li, M.1
Luo, W.2
Cao, D.3
Zhao, X.4
Li, Z.5
Yu, T.6
Zou, Z.7
-
51
-
-
0000678038
-
Anion ordering in TaON: a powder neutron-diffraction investigation
-
Armytage, D., Fender, B.E.F.: Anion ordering in TaON: a powder neutron-diffraction investigation. Acta Cryst. Sect. B 30(3), 809–812 (1974). doi:10.1107/S0567740874003761 DOI: 10.1107/S0567740874003761
-
(1974)
Acta Cryst. Sect. B
, vol.30
, Issue.3
, pp. 809-812
-
-
Armytage, D.1
Fender, B.E.F.2
-
52
-
-
84922763933
-
5 photoanodes evolution of structural, optical, and photoelectrochemical properties
-
5 photoanodes evolution of structural, optical, and photoelectrochemical properties. Chem. Mater. 27, 708–715 (2015). doi:10.1021/cm503215p DOI: 10.1021/cm503215p
-
(2015)
Chem. Mater.
, vol.27
, pp. 708-715
-
-
Dabirian, A.1
van de Krol, R.2
-
53
-
-
0037080586
-
2 (110) as a function of oxygen pressure
-
2 (110) as a function of oxygen pressure. Phys. Rev. B 65, 035406 (2001). doi:10.1103/PhysRevB.65.035406 DOI: 10.1103/PhysRevB.65.035406
-
(2001)
Phys. Rev. B
, vol.65
, pp. 035406
-
-
Reuter, K.1
Scheffler, M.2
-
55
-
-
33748568493
-
5 produced by high temperature ammonolysis of tantalum oxide
-
5 produced by high temperature ammonolysis of tantalum oxide. J. Solid State Chem. 179, 3518–3524 (2006). doi:10.1016/j.jssc.2006.07.021 DOI: 10.1016/j.jssc.2006.07.021
-
(2006)
J. Solid State Chem.
, vol.179
, pp. 3518-3524
-
-
Henderson, S.J.1
Hector, A.L.2
-
56
-
-
11644280620
-
A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites
-
Brus, L.E.J.: A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 79, 5566–5571 (1983). doi:10.1063/1.445676 DOI: 10.1063/1.445676
-
(1983)
J. Chem. Phys.
, vol.79
, pp. 5566-5571
-
-
Brus, L.E.J.1
-
57
-
-
0000982509
-
Size quantization of the electron energy spectrum in a microscopic semiconductor crystal
-
Ekimov, A.I., Onushchenko, A.A.: Size quantization of the electron energy spectrum in a microscopic semiconductor crystal. JETP Lett. 40, 1136–1139 (1984)
-
(1984)
JETP Lett.
, vol.40
, pp. 1136-1139
-
-
Ekimov, A.I.1
Onushchenko, A.A.2
-
58
-
-
78751660184
-
Synthesis and characterization of semiconductor tantalum nitride nanoparticles
-
Ho, C.-H., Ke-B, Low, Klie, R.F., Maeda, K., Domen, K., Meyer, R.J., Snee, P.T.: Synthesis and characterization of semiconductor tantalum nitride nanoparticles. J. Phys. Chem. C 115, 647–652 (2011). doi:10.1021/jp110105u DOI: 10.1021/jp110105u
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 647-652
-
-
Ho, C.-H.1
Ke-B, L.2
Klie, R.F.3
Maeda, K.4
Domen, K.5
Meyer, R.J.6
Snee, P.T.7
-
62
-
-
78751648883
-
5 photoanodes for water splitting prepared by sputtering
-
5 photoanodes for water splitting prepared by sputtering. Thin Solid Films 519, 2087–2092 (2011). doi:10.1016/j.tsf.2010.10.055 DOI: 10.1016/j.tsf.2010.10.055
-
(2011)
Thin Solid Films
, vol.519
, pp. 2087-2092
-
-
Yokoyama, D.1
Hashiguchi, H.2
Maeda, K.3
Minegishi, T.4
Takata, T.5
Abe, R.6
Kubota, J.7
Domen, K.8
-
63
-
-
0000740024
-
5 at 16 K by time-of-flight neutron diffraction
-
5 at 16 K by time-of-flight neutron diffraction. Acta Cryst. C 47, 2291–2294 (1991) DOI: 10.1107/S0108270191005231
-
(1991)
Acta Cryst. C
, vol.47
, pp. 2291-2294
-
-
Brese, N.1
O’Keeffe, M.2
-
65
-
-
33144466298
-
-
Rev. B, Phys
-
Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J., Bechstedt, F.: Linear optical properties in the projector-augmented wave methodology. Rev. B, Phys (2006). doi:10.1103/PhysRevB.73.045112
-
(2006)
Linear optical properties in the projector-augmented wave methodology
-
-
Gajdoš, M.1
Hummer, K.2
Kresse, G.3
Furthmüller, J.4
Bechstedt, F.5
-
66
-
-
84897442837
-
Semiconductors used in photovoltaic and photocatalytic devices: assessing fundamental properties from DFT
-
Le Bahers, T., Rérat, M., Sautet, P.: Semiconductors used in photovoltaic and photocatalytic devices: assessing fundamental properties from DFT. J. Phys. Chem. C 118, 5997–6008 (2014) DOI: 10.1021/jp409724c
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 5997-6008
-
-
Le Bahers, T.1
Rérat, M.2
Sautet, P.3
-
70
-
-
84887587284
-
5 photocatalyst: A GGA + U calculation
-
5 photocatalyst: A GGA + U calculation. J. Catal. 309, 291–299 (2014). doi:10.1016/j.jcat.2013.10.014 DOI: 10.1016/j.jcat.2013.10.014
-
(2014)
J. Catal.
, vol.309
, pp. 291-299
-
-
Wang, J.1
Fang, J.2
Zhang, L.3
Feng, Z.4
Zou, Z.5
-
71
-
-
77955210845
-
Experimental and theoretical investigation of the stability of the monoclinic BaWO4-II phase at high pressure and high temperature
-
Lacomba-Perales, R., Martinez-García, D., Errandonea, D., Le Godec, Y., Philippe, J., Le Marchand, G., Chervin, J.C., Polian, A., Múñoz, A., López-Solano,: Experimental and theoretical investigation of the stability of the monoclinic BaWO4-II phase at high pressure and high temperature. J. Phys. Rev. B 8, 144117 (2010) DOI: 10.1103/PhysRevB.81.144117
-
(2010)
J. Phys. Rev. B
, vol.8
, pp. 144117
-
-
Lacomba-Perales, R.1
Martinez-García, D.2
Errandonea, D.3
Le Godec, Y.4
Philippe, J.5
Le Marchand, G.6
Chervin, J.C.7
Polian, A.8
Múñoz, A.9
López-Solano10
-
72
-
-
84892775752
-
3 hybrid perovskite: interplay of theory and experiment
-
3 hybrid perovskite: interplay of theory and experiment. J. Phys. Chem. Lett. 5, 279–284 (2014) DOI: 10.1021/jz402589q
-
(2014)
J. Phys. Chem. Lett.
, vol.5
, pp. 279-284
-
-
Quarti, C.1
Grancini, G.2
Mosconi, E.3
Bruno, P.4
Ball, J.M.5
Lee, M.M.6
Snaith, H.J.7
Petrozza, A.M.8
Angelis, F.D.9
-
74
-
-
84949114834
-
5 materials a screened coulomb hybrid DFT investigation
-
5 materials a screened coulomb hybrid DFT investigation. J. Phys. Chem. C 118, 20784–20790 (2014). doi:10.1021/jp506066p DOI: 10.1021/jp506066p
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 20784-20790
-
-
Harb, M.1
Cavallo, L.2
Basset, J.-M.3
-
76
-
-
64549112181
-
10°-related electronic configurations
-
10°-related electronic configurations. Energy Environ. Sci. 2, 364 (2009). doi:10.1039/B816677N DOI: 10.1039/b816677n
-
(2009)
Energy Environ. Sci.
, vol.2
, pp. 364
-
-
Inoue, Y.1
-
77
-
-
84908450046
-
Electronic structure and dispersion of optical function of tantalum nitride as a visible light photo-catalyst
-
Reshak, A.H.: Electronic structure and dispersion of optical function of tantalum nitride as a visible light photo-catalyst. Comp. Mater. Sci. 89, 45 (2014). doi:10.1016/j.commatsci.2014.03.035 DOI: 10.1016/j.commatsci.2014.03.035
-
(2014)
Comp. Mater. Sci.
, vol.89
, pp. 45
-
-
Reshak, A.H.1
-
78
-
-
77955303455
-
Influence of X-ray irradiation on the optical properties of ruthenium(II)octa-(n-hexyl)-phthalocyanine thin film
-
El-Nahass, M.M., Youssef, T.E.: Influence of X-ray irradiation on the optical properties of ruthenium(II)octa-(n-hexyl)-phthalocyanine thin film. J. Alloys Compd 503, 86–91 (2010). doi:10.1016/j.jallcom.2010.04.029 DOI: 10.1016/j.jallcom.2010.04.029
-
(2010)
J. Alloys Compd
, vol.503
, pp. 86-91
-
-
El-Nahass, M.M.1
Youssef, T.E.2
-
79
-
-
0035356466
-
Band parameters for III–V compounds semiconductors and their alloys
-
Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V compounds semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001). doi:10.1063/1.1368156 DOI: 10.1063/1.1368156
-
(2001)
J. Appl. Phys.
, vol.89
, pp. 5815-5875
-
-
Vurgaftman, I.1
Meyer, J.R.2
Ram-Mohan, L.R.3
-
80
-
-
0016497363
-
Excitonic emission in cadmium telluride
-
Taguchi, T., Shirafuji, J., Inuishi, Y.: Excitonic emission in cadmium telluride. Phys. Status Solidi B 68, 727–738 (1975). doi:10.1002/pssb.2220680234 DOI: 10.1002/pssb.2220680234
-
(1975)
Phys. Status Solidi B
, vol.68
, pp. 727-738
-
-
Taguchi, T.1
Shirafuji, J.2
Inuishi, Y.3
-
81
-
-
85103360855
-
Compilation of static dielectric constant of inorganics solids
-
Young, K.F., Frederikse, H.P.R.: Compilation of static dielectric constant of inorganics solids. J. Phys. Chem. Ref. Data 409, 2313 (1973)
-
(1973)
J. Phys. Chem. Ref. Data
, vol.409
, pp. 2313
-
-
Young, K.F.1
Frederikse, H.P.R.2
-
82
-
-
0004778816
-
Free-carrier and exciton recombination radiation in GaAs
-
Gilleo, M.A., Bailey, P.T., Hill, D.E.: Free-carrier and exciton recombination radiation in GaAs. Phys. Rev. 174, 898–905 (1968). doi:10.1103/PhysRev.174.898 DOI: 10.1103/PhysRev.174.898
-
(1968)
Phys. Rev.
, vol.174
, pp. 898-905
-
-
Gilleo, M.A.1
Bailey, P.T.2
Hill, D.E.3
-
84
-
-
0003942646
-
-
World Scientific Publishing Co. Pte. Ltd, Singapore
-
Adashi, S.: GaAs and related materials. World Scientific Publishing Co. Pte. Ltd, Singapore (1994) DOI: 10.1142/2508
-
(1994)
GaAs and related materials
-
-
Adashi, S.1
-
85
-
-
34548208856
-
Raman spectroscopy of ultranarrow CdS nanostructures
-
Zeiri, L., Patla, I., Acharya, S., Golan, Y., Efrima, S.: Raman spectroscopy of ultranarrow CdS nanostructures. J. Phys. Chem. C 111, 11843–11848 (2007). doi:10.1021/jp072015q DOI: 10.1021/jp072015q
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 11843-11848
-
-
Zeiri, L.1
Patla, I.2
Acharya, S.3
Golan, Y.4
Efrima, S.5
-
86
-
-
80053546343
-
Transient absorption study on photogenerated carrier dynamics invisible light responsive photocatalysts GaN:ZnO
-
Furube A, Maeda K, Domen K Transient absorption study on photogenerated carrier dynamics invisible light responsive photocatalysts GaN:ZnO. Proc of SPIE 2011 8109 810904
-
(2011)
Proc of SPIE
, vol.8109
-
-
Furube, A.1
Maeda, K.2
Domen, K.3
-
87
-
-
77955302288
-
Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols
-
Chen, Z., Jaramillo, T.F., Deutsch, T.G., Kleiman-Shwarsctein, A., Forman, A.J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E.W., Domen, K., Miller, E.L., Turner, J.A., Dinh, H.N.: Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010). doi:10.1557/JMR.2010.0020 DOI: 10.1557/JMR.2010.0020
-
(2010)
J. Mater. Res.
, vol.25
, pp. 3-16
-
-
Chen, Z.1
Jaramillo, T.F.2
Deutsch, T.G.3
Kleiman-Shwarsctein, A.4
Forman, A.J.5
Gaillard, N.6
Garland, R.7
Takanabe, K.8
Heske, C.9
Sunkara, M.10
McFarland, E.W.11
Domen, K.12
Miller, E.L.13
Turner, J.A.14
Dinh, H.N.15
-
89
-
-
84870938403
-
Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials
-
Gorlin, Y., Chung, C.-J., Nordlund, D., Clemens, B.M.: Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2, 1765–1772 (2012). doi:10.1021/cs3003098 DOI: 10.1021/cs3004352
-
(2012)
ACS Catal.
, vol.2
, pp. 1765-1772
-
-
Gorlin, Y.1
Chung, C.-J.2
Nordlund, D.3
Clemens, B.M.4
-
90
-
-
84907857931
-
Cobalt-oxide-based materials as water oxidation catalyst: recent progress and challenges
-
Deng, X., Tüysüz, H.: Cobalt-oxide-based materials as water oxidation catalyst: recent progress and challenges. ACS Catal. 4, 3701–3714 (2014). doi:10.1021/cs500713d DOI: 10.1021/cs500713d
-
(2014)
ACS Catal.
, vol.4
, pp. 3701-3714
-
-
Deng, X.1
Tüysüz, H.2
-
91
-
-
79953711739
-
Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen
-
Yeo, B.S., Bell, A.T.: Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 133, 5587–5593 (2011). doi:10.1021/ja200559j DOI: 10.1021/ja200559j
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 5587-5593
-
-
Yeo, B.S.1
Bell, A.T.2
-
92
-
-
84863943335
-
5 photoanode
-
5 photoanode. Adv. Funct. Mater. 22, 3066–3074 (2012). doi:10.1002/adfm.201102966 DOI: 10.1002/adfm.201102966
-
(2012)
Adv. Funct. Mater.
, vol.22
, pp. 3066-3074
-
-
Liao, M.1
Feng, J.2
Luo, W.3
Wang, Z.4
Zhang, J.5
Li, Z.6
Yu, T.7
Zou, Z.8
-
93
-
-
0037173838
-
2N under visible light irradiation
-
2N under visible light irradiation. J. Phys. Chem. A 106, 6750–6753 (2002). doi:10.1021/jp025961 DOI: 10.1021/jp025961+
-
(2002)
J. Phys. Chem. A
, vol.106
, pp. 6750-6753
-
-
Kasahara, A.1
Nukumizu, K.2
Hitoki, G.3
Takata, T.4
Kondo, J.N.5
Hara, M.6
Kobayashi, H.7
Domen, K.8
-
94
-
-
84880371109
-
2N photoanode harvesting a wide range of visible light for water splitting
-
2N photoanode harvesting a wide range of visible light for water splitting. J. Am. Chem. Soc. 135, 10238–10241 (2013). doi:10.1021/ja404030x DOI: 10.1021/ja404030x
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 10238-10241
-
-
Higashi, M.1
Domen, K.2
Abe, R.3
-
95
-
-
84896521395
-
Earth-abundant cocatalysts for semiconductor based photocatalytic water splitting
-
Ran, J., Zhang, J., Yu, J., Jaroniecc, M., Qiao, S.Z.: Earth-abundant cocatalysts for semiconductor based photocatalytic water splitting. Chem. Soc. Rev. 43, 7787–7812 (2014). doi:10.1039/c3cs60425j DOI: 10.1039/C3CS60425J
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 7787-7812
-
-
Ran, J.1
Zhang, J.2
Yu, J.3
Jaroniecc, M.4
Qiao, S.Z.5
-
100
-
-
84930655226
-
Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen
-
Shinagawa, T., Takanabe, K.: Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen. Phys. Chem. Chem. Phys. 17, 15111–15114 (2015). doi:10.1039/c5cp02330k DOI: 10.1039/C5CP02330K
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 15111-15114
-
-
Shinagawa, T.1
Takanabe, K.2
-
101
-
-
84940865555
-
Electrocatalytic hydrogen evolution under densely buffered neutral pH conditions
-
Shinagawa, T., Takanabe, K.: Electrocatalytic hydrogen evolution under densely buffered neutral pH conditions. J. Phys. Chem. C 119, 20453–20458 (2015). doi:10.1021/acs.jpcc.5b05295 DOI: 10.1021/acs.jpcc.5b05295
-
(2015)
J. Phys. Chem. C
, vol.119
, pp. 20453-20458
-
-
Shinagawa, T.1
Takanabe, K.2
-
102
-
-
84928399923
-
Impact of solute concentration on the electrocatalytic conversion of dissolved gases in buffered solutions
-
Shinagawa, T., Takanabe, K.: Impact of solute concentration on the electrocatalytic conversion of dissolved gases in buffered solutions. J. Power Sources 287, 465–471 (2015). doi:10.1016/j.jpowsour.2015.04.091 DOI: 10.1016/j.jpowsour.2015.04.091
-
(2015)
J. Power Sources
, vol.287
, pp. 465-471
-
-
Shinagawa, T.1
Takanabe, K.2
-
104
-
-
33645237291
-
Carrier dynamics in α-Fe2O3 (0001) thin films and single crystals probed by femtosecond transient absorption and reflectivity
-
Joly, A.G., Williams, J.R., Chambers, S.A., Xiong, G., Hess, W.P., Laman, D.M.: Carrier dynamics in α-Fe2O3 (0001) thin films and single crystals probed by femtosecond transient absorption and reflectivity. J. Appl. Phys. 99, 053521 (2006). doi:10.1063/1.2177426 DOI: 10.1063/1.2177426
-
(2006)
J. Appl. Phys.
, vol.99
, pp. 053521
-
-
Joly, A.G.1
Williams, J.R.2
Chambers, S.A.3
Xiong, G.4
Hess, W.P.5
Laman, D.M.6
-
105
-
-
79951641687
-
3 thin films: application to photoelectrochemical solar cells
-
3 thin films: application to photoelectrochemical solar cells. J. Semicond. 32, 013001 (2011). doi:10.1088/1674-4926/32/1/013001 DOI: 10.1088/1674-4926/32/1/013001
-
(2011)
J. Semicond.
, vol.32
, pp. 013001
-
-
Shinde, S.S.1
Bansode, R.A.2
Bhosale, C.H.3
Rajpure, K.Y.4
-
106
-
-
84960172157
-
Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide
-
Nurlaela, E., Shinagawa, T., Qureshi, M., Dhawale, D.S., Takanabe, K.: Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide. ACS Catal. 6, 1713 (2016). doi:10.1021/acscatal.5b02804 DOI: 10.1021/acscatal.5b02804
-
(2016)
ACS Catal.
, vol.6
, pp. 1713
-
-
Nurlaela, E.1
Shinagawa, T.2
Qureshi, M.3
Dhawale, D.S.4
Takanabe, K.5
|