메뉴 건너뛰기




Volumn 267, Issue , 2017, Pages 664-681

A review of clustering techniques and developments

Author keywords

Clustering; Data mining; Pattern recognition; Similarity measures; Unsupervised learning

Indexed keywords

CHARACTER RECOGNITION; DATA MINING; EDUCATION; IMAGE SEGMENTATION; UNSUPERVISED LEARNING;

EID: 85021901708     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2017.06.053     Document Type: Article
Times cited : (949)

References (199)
  • 1
    • 0003922190 scopus 로고    scopus 로고
    • Pattern Classification
    • Wiley Publications
    • Duda, R.O., Hart, P.E., Stork, D.G., Pattern Classification. 2001, Wiley Publications.
    • (2001)
    • Duda, R.O.1    Hart, P.E.2    Stork, D.G.3
  • 2
    • 84902369146 scopus 로고    scopus 로고
    • Cross-validation based weights and structure determination of Chebyshev-polynomial neural networks for pattern classification
    • Zhang, Y., Yin, Y., Guo, D., Yu, X., Xiao, L., Cross-validation based weights and structure determination of Chebyshev-polynomial neural networks for pattern classification. Pattern Recognit. 47:10 (2014), 3414–3428.
    • (2014) Pattern Recognit. , vol.47 , Issue.10 , pp. 3414-3428
    • Zhang, Y.1    Yin, Y.2    Guo, D.3    Yu, X.4    Xiao, L.5
  • 3
    • 0007834494 scopus 로고    scopus 로고
    • Pattern classification by linear goal programming and its extensions
    • Nakayama, H., Kagaku, N., Pattern classification by linear goal programming and its extensions. J. Global Optim. 12:2 (1998), 111–126.
    • (1998) J. Global Optim. , vol.12 , Issue.2 , pp. 111-126
    • Nakayama, H.1    Kagaku, N.2
  • 4
    • 85027215400 scopus 로고    scopus 로고
    • Pattern Recognition and Machine Learning, Springer, Berlin. ISBN 978-0-387-31073-2.
    • C.M. Bishop, Pattern Recognition and Machine Learning, Springer, Berlin. ISBN 978-0-387-31073-2.
    • Bishop, C.M.1
  • 6
    • 83655192093 scopus 로고    scopus 로고
    • Data-core-based fuzzy min–max neural network for pattern classification
    • Zhang, H., Liu, J., Ma, D., Wang, Z., Data-core-based fuzzy min–max neural network for pattern classification. IEEE Trans. Neural Netw. 22:12 (2011), 2339–2352.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.12 , pp. 2339-2352
    • Zhang, H.1    Liu, J.2    Ma, D.3    Wang, Z.4
  • 7
    • 0036556003 scopus 로고    scopus 로고
    • Constructing and training feed-forward neural net- works for pattern classification
    • Jiang, X., Wah, A.H.K.S., Constructing and training feed-forward neural net- works for pattern classification. Pattern Recognit. 36:4 (2003), 853–867.
    • (2003) Pattern Recognit. , vol.36 , Issue.4 , pp. 853-867
    • Jiang, X.1    Wah, A.H.K.S.2
  • 8
    • 33749240206 scopus 로고    scopus 로고
    • Multi-class pattern classification using neural networks
    • Ou, G., Murphey, Y.L., Multi-class pattern classification using neural networks. Pattern Recognit. 40:1 (2007), 4–18.
    • (2007) Pattern Recognit. , vol.40 , Issue.1 , pp. 4-18
    • Ou, G.1    Murphey, Y.L.2
  • 9
    • 0029341018 scopus 로고
    • A detailed comparison of back propagation neural network and maximum-likelihood classifiers for urban land use classification
    • Paola, J.D., Schowengerdt, R.A., A detailed comparison of back propagation neural network and maximum-likelihood classifiers for urban land use classification. IEEE Trans. Geosci. Remote Sens. 33:4 (1995), 981–996.
    • (1995) IEEE Trans. Geosci. Remote Sens. , vol.33 , Issue.4 , pp. 981-996
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 10
    • 0003444646 scopus 로고
    • Parallel Distributed Processing
    • MIT Press Cambridge
    • Rumelhart, D.E., McClelland, J.L., Parallel Distributed Processing. 1986, MIT Press, Cambridge.
    • (1986)
    • Rumelhart, D.E.1    McClelland, J.L.2
  • 11
    • 0033101401 scopus 로고    scopus 로고
    • Verification of the nonparametric characteristics of back-propagation neural networks for image classification
    • Zhou, W., Verification of the nonparametric characteristics of back-propagation neural networks for image classification. IEEE Trans. Geosci. Remote Sens. 37:2 (1999), 771–779.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.2 , pp. 771-779
    • Zhou, W.1
  • 13
    • 35648997478 scopus 로고    scopus 로고
    • Supervised fuzzy-logic classification of hydrometeors using C-band weather radars
    • Marzano, F.S., Scaranari, D., Vulpiani, G., Supervised fuzzy-logic classification of hydrometeors using C-band weather radars. IEEE Trans. Geosci. Remote Sens. 45:11 (2007), 3784–3799.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.11 , pp. 3784-3799
    • Marzano, F.S.1    Scaranari, D.2    Vulpiani, G.3
  • 14
    • 84887799080 scopus 로고    scopus 로고
    • Particle swarm optimization for feature selection in classification: a multi-objective approach
    • B. Xue, M. Zhang, Browne, W.N., Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE Trans. Cybern. 43:6 (2013), 1656–1671.
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.6 , pp. 1656-1671
    • B. Xue1    M. Zhang2    Browne, W.N.3
  • 17
    • 0003397496 scopus 로고
    • Rough Sets in Theoretical Aspects of Reasoning about Data
    • Kluwer Netherlands
    • Pawlak, Z., Rough Sets in Theoretical Aspects of Reasoning about Data. 1991, Kluwer, Netherlands.
    • (1991)
    • Pawlak, Z.1
  • 18
    • 84872321804 scopus 로고    scopus 로고
    • Rough-set-based feature selection and classification for power quality sensing device employing correlation techniques
    • Dalai, S., Chatterjee, B., Dey, D., Chakravorti, S., Bhattacharya, K., Rough-set-based feature selection and classification for power quality sensing device employing correlation techniques. IEEE Sens. J. 13:2 (2013), 563–573.
    • (2013) IEEE Sens. J. , vol.13 , Issue.2 , pp. 563-573
    • Dalai, S.1    Chatterjee, B.2    Dey, D.3    Chakravorti, S.4    Bhattacharya, K.5
  • 19
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J.R., Induction of decision trees. Mach. Learn. 1:1 (1986), 81–106.
    • (1986) Mach. Learn. , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 20
    • 84888373332 scopus 로고    scopus 로고
    • Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks
    • Farida, D.M., Zhang, L., Rahman, C.M., Hossain, M.A., Strachan, R., Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks. Expert Syst. Appl. 41:2 (2014), 1937–1946.
    • (2014) Expert Syst. Appl. , vol.41 , Issue.2 , pp. 1937-1946
    • Farida, D.M.1    Zhang, L.2    Rahman, C.M.3    Hossain, M.A.4    Strachan, R.5
  • 21
    • 84990941766 scopus 로고    scopus 로고
    • Data Mining: Concepts and Techniques
    • Morgan Kaufmann Publishers
    • Han, J., Kamber, M., Pei, J., Data Mining: Concepts and Techniques. 2011, Morgan Kaufmann Publishers.
    • (2011)
    • Han, J.1    Kamber, M.2    Pei, J.3
  • 23
    • 84255215765 scopus 로고    scopus 로고
    • Evolutionary methods for unsupervised feature selection using Sammon's stress function
    • Saxena, A., Pal, N.R., Vora, M., Evolutionary methods for unsupervised feature selection using Sammon's stress function. Fuzzy Inf. Eng. 2:3 (2010), 229–247.
    • (2010) Fuzzy Inf. Eng. , vol.2 , Issue.3 , pp. 229-247
    • Saxena, A.1    Pal, N.R.2    Vora, M.3
  • 24
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond k-means
    • Jain, A.K., Data clustering: 50 years beyond k-means. Pattern Recognit. Lett. 31:8 (2010), 651–666.
    • (2010) Pattern Recognit. Lett. , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.K.1
  • 25
    • 85027214526 scopus 로고    scopus 로고
    • Merriam-Webster Online Dictionary
    • Merriam-Webster Online Dictionary, 2008.
    • (2008)
  • 27
    • 0003862207 scopus 로고    scopus 로고
    • How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis
    • Department of Statistics University of Washington Technical Report No. 329
    • Fraley, C., Raftery, A.E., How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis., 1998, Department of Statistics University of Washington Technical Report No. 329.
    • (1998)
    • Fraley, C.1    Raftery, A.E.2
  • 29
    • 0004069901 scopus 로고
    • Numerical Taxonomy
    • W.H. Freeman Co San Francisco, CA
    • Sneath, P., Sokal, R., Numerical Taxonomy. 1973, W.H. Freeman Co, San Francisco, CA.
    • (1973)
    • Sneath, P.1    Sokal, R.2
  • 30
    • 84947386456 scopus 로고
    • Step-wise clustering procedures
    • King, B., Step-wise clustering procedures. J. Am. Stat. Assoc. 69:317 (1967), 86–101.
    • (1967) J. Am. Stat. Assoc. , vol.69 , Issue.317 , pp. 86-101
    • King, B.1
  • 31
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Ward, J.H., Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58:301 (1963), 236–244.
    • (1963) J. Am. Stat. Assoc. , vol.58 , Issue.301 , pp. 236-244
    • Ward, J.H.1
  • 32
    • 0020848951 scopus 로고
    • A survey of recent advances in hierarchical clustering algorithms which use cluster centers
    • Murtagh, F., A survey of recent advances in hierarchical clustering algorithms which use cluster centers. Comput. J. 26:4 (1984), 354–359.
    • (1984) Comput. J. , vol.26 , Issue.4 , pp. 354-359
    • Murtagh, F.1
  • 34
    • 34547703792 scopus 로고    scopus 로고
    • Data Clustering Techniques
    • University of Toronto
    • Periklis, A., Data Clustering Techniques. 2002, University of Toronto.
    • (2002)
    • Periklis, A.1
  • 35
    • 0002299635 scopus 로고    scopus 로고
    • CURE: An Efficient Clustering Algorithm For Large Databases
    • ACM
    • Guha, S., Rastogi, R., Kyuseok, S., CURE: An Efficient Clustering Algorithm For Large Databases. 1998, ACM.
    • (1998)
    • Guha, S.1    Rastogi, R.2    Kyuseok, S.3
  • 36
    • 4544264104 scopus 로고    scopus 로고
    • Chameleon: a hierarchical clustering algorithm using dynamic modeling
    • George, K., Han, E.H., Kumar, V., Chameleon: a hierarchical clustering algorithm using dynamic modeling. IEEE Comput. 32:8 (1999), 68–75.
    • (1999) IEEE Comput. , vol.32 , Issue.8 , pp. 68-75
    • George, K.1    Han, E.H.2    Kumar, V.3
  • 37
    • 84994206830 scopus 로고    scopus 로고
    • Clustering, academic press library in signal processing
    • Lam, D., Wunsch, D.C., Clustering, academic press library in signal processing. Signal Process. Theory Mach. Learn. 1 (2014), 1115–1149.
    • (2014) Signal Process. Theory Mach. Learn. , vol.1 , pp. 1115-1149
    • Lam, D.1    Wunsch, D.C.2
  • 39
    • 0003959189 scopus 로고
    • Vector Quantization and Signal Compression
    • Kluwer Academic Publishers
    • Gersho, A., Gray, R., Vector Quantization and Signal Compression. 1992, Kluwer Academic Publishers.
    • (1992)
    • Gersho, A.1    Gray, R.2
  • 40
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
    • Dunn, J.C., A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3:3 (1973), 32–57.
    • (1973) J. Cybern. , vol.3 , Issue.3 , pp. 32-57
    • Dunn, J.C.1
  • 41
    • 0004008854 scopus 로고
    • Pattern Recognition with Fuzzy Objective Function Algorithms
    • Plenum Press New York
    • Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms. 1981, Plenum Press, New York.
    • (1981)
    • Bezdek, J.C.1
  • 44
    • 0034298140 scopus 로고    scopus 로고
    • Generalized fuzzy c-means clustering strategies using Lp norm distances
    • Hathaway, R., Bezdek, J., Hu, Y., Generalized fuzzy c-means clustering strategies using Lp norm distances. IEEE Trans. Fuzzy Syst. 8:5 (2000), 576–582.
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , Issue.5 , pp. 576-582
    • Hathaway, R.1    Bezdek, J.2    Hu, Y.3
  • 45
    • 0027595430 scopus 로고
    • A possibilistic approach to clustering
    • Krishnapuram, R., Keller, J., A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1:2 (1993), 98–110.
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , Issue.2 , pp. 98-110
    • Krishnapuram, R.1    Keller, J.2
  • 46
    • 0014976008 scopus 로고
    • Graph-theoretical methods for detecting and describing gestalt clusters
    • Zahn, C.T., Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. C-20:1 (1971), 68–86.
    • (1971) IEEE Trans. Comput. , vol.C-20 , Issue.1 , pp. 68-86
    • Zahn, C.T.1
  • 47
    • 0019999522 scopus 로고
    • Graph-theoretical clustering based on limited neighborhood sets
    • Urquhart, R., Graph-theoretical clustering based on limited neighborhood sets. Pattern Recognit. 15:3 (1982), 173–187.
    • (1982) Pattern Recognit. , vol.15 , Issue.3 , pp. 173-187
    • Urquhart, R.1
  • 48
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • Fisher, D.H., Knowledge acquisition via incremental conceptual clustering. Mach. Learn. 2 (1987), 139–172.
    • (1987) Mach. Learn. , vol.2 , pp. 139-172
    • Fisher, D.H.1
  • 49
    • 0003413187 scopus 로고    scopus 로고
    • Neural Networks: A Comprehensive Foundation
    • second ed. Prentice Hall
    • Haykin, S., Neural Networks: A Comprehensive Foundation. second ed., 1999, Prentice Hall.
    • (1999)
    • Haykin, S.1
  • 50
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • Xu, R., Wunsch, D., Survey of clustering algorithms. IEEE Trans. Neural Netw. 16:3 (2005), 645–678.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch, D.2
  • 51
    • 78650121315 scopus 로고    scopus 로고
    • Clustering algorithms in biomedical research: a review
    • Xu., R., Wunsch, D.C., Clustering algorithms in biomedical research: a review. IEEE Rev. Biomed. Eng. 3 (2010), 120–154.
    • (2010) IEEE Rev. Biomed. Eng. , vol.3 , pp. 120-154
    • Xu., R.1    Wunsch, D.C.2
  • 52
    • 84948109721 scopus 로고    scopus 로고
    • The EM Algorithm and Extensions
    • Wiley New York
    • McLachlan, G., Krishnan, T., The EM Algorithm and Extensions. 1997, Wiley, New York.
    • (1997)
    • McLachlan, G.1    Krishnan, T.2
  • 53
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering Biometrics
    • J.D. Banfield and A.E. Raftery, Model-based Gaussian and non-Gaussian clustering Biometrics, vol. 49, no. 3, pp. 803–821, 1993.
    • (1993) , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 55
    • 0002607026 scopus 로고    scopus 로고
    • Bayesian classification (AutoClass): theory and results
    • American Association for Artificial Intelligence Menlo Park CA, USA
    • Cheeseman, P., Stutz, J., Bayesian classification (AutoClass): theory and results. Advances in Knowledge Discovery and Data Mining, 1996, American Association for Artificial Intelligence Menlo Park, CA, USA, 153–180.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 153-180
    • Cheeseman, P.1    Stutz, J.2
  • 58
    • 0034133653 scopus 로고    scopus 로고
    • WaveCluster: a wavelet-based clustering approach for spatial data in very large databases
    • Sheikholeslami, G., Chatterjee, S., Zhang, A., WaveCluster: a wavelet-based clustering approach for spatial data in very large databases. Int. J. Very Large Data Bases 8:3–4 (2000), 289–304.
    • (2000) Int. J. Very Large Data Bases , vol.8 , Issue.3-4 , pp. 289-304
    • Sheikholeslami, G.1    Chatterjee, S.2    Zhang, A.3
  • 60
    • 84893405732 scopus 로고    scopus 로고
    • Data clustering: a review
    • Jain, A.K., Flynn, M., Data clustering: a review. ACM Comput. Surv. 31:3 (1999), 264–323.
    • (1999) ACM Comput. Surv. , vol.31 , Issue.3 , pp. 264-323
    • Jain, A.K.1    Flynn, M.2
  • 61
    • 0003524416 scopus 로고
    • Numerical Optimization of Computer Models
    • John Wiley New York
    • Schwefel, H.P., Numerical Optimization of Computer Models. 1981, John Wiley, New York.
    • (1981)
    • Schwefel, H.P.1
  • 62
    • 0003806013 scopus 로고
    • Artificial Intelligence Through Simulated Evolution
    • John Wiley New York
    • Fogel, L.J., Owens, A.J., Walsh, MJ, Artificial Intelligence Through Simulated Evolution. 1965, John Wiley, New York.
    • (1965)
    • Fogel, L.J.1    Owens, A.J.2    Walsh, M.J.3
  • 63
    • 0003463297 scopus 로고
    • Adaption in Natural and Artificial Systems
    • University of Michigan Press
    • Holland, J.H., Adaption in Natural and Artificial Systems. 1975, University of Michigan Press.
    • (1975)
    • Holland, J.H.1
  • 64
    • 0003722376 scopus 로고
    • Genetic Algorithms in Search Optimization and Machine Learning
    • Addison–Wesley Reading
    • Goldberg, D., Genetic Algorithms in Search Optimization and Machine Learning. 1989, Addison–Wesley, Reading.
    • (1989)
    • Goldberg, D.1
  • 67
    • 1842611240 scopus 로고    scopus 로고
    • Ant Colony Optimization
    • MIT Press
    • Dorigoand, M., Stützle, T., Ant Colony Optimization. 2004, MIT Press.
    • (2004)
    • Dorigoand, M.1    Stützle, T.2
  • 68
    • 0022865373 scopus 로고
    • Future paths for integer programming and links to artificial intelligence
    • Glover, F., Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 5:5 (1986), 533–549.
    • (1986) Comput. Oper. Res. , vol.5 , Issue.5 , pp. 533-549
    • Glover, F.1
  • 69
    • 0029478402 scopus 로고
    • A tabu search approach to clustering problem
    • Al. Sultan, K.S., A tabu search approach to clustering problem. Pattern Recognit. 28:9 (1995), 1443–1451.
    • (1995) Pattern Recognit. , vol.28 , Issue.9 , pp. 1443-1451
    • Al. Sultan, K.S.1
  • 70
    • 0036885192 scopus 로고    scopus 로고
    • Collaborative fuzzy clustering
    • Pedrycz, W., Collaborative fuzzy clustering. Pattern Recognit. Lett. 23:14 (2002), 1675–1686.
    • (2002) Pattern Recognit. Lett. , vol.23 , Issue.14 , pp. 1675-1686
    • Pedrycz, W.1
  • 72
    • 46849094944 scopus 로고    scopus 로고
    • Collaborative clustering with the use of fuzzy c-means and its quantification
    • Pedrycz, W., Rai, P., Collaborative clustering with the use of fuzzy c-means and its quantification. Fuzzy Sets Syst. 159:18 (2008), 2399–2427.
    • (2008) Fuzzy Sets Syst. , vol.159 , Issue.18 , pp. 2399-2427
    • Pedrycz, W.1    Rai, P.2
  • 73
    • 84889391419 scopus 로고    scopus 로고
    • Knowledge Based Clustering: From Data to Information Granules
    • Wiley Publications
    • Pedrycz, W., Knowledge Based Clustering: From Data to Information Granules. 2005, Wiley Publications.
    • (2005)
    • Pedrycz, W.1
  • 75
    • 72749127084 scopus 로고    scopus 로고
    • Overlapping community detection in complex networks, in: Proceedings of the Eleventh Annual Conference on Genetic and Evolutionary Computation
    • Pizzuti, C., Overlapping community detection in complex networks, in: Proceedings of the Eleventh Annual Conference on Genetic and Evolutionary Computation. 2009, 859–866.
    • (2009) , pp. 859-866
    • Pizzuti, C.1
  • 77
    • 77955518815 scopus 로고    scopus 로고
    • Link communities reveal multi-scale complexity in networks
    • Ahn, Y.Y., Bagrow, J.P., Lehmann, S., Link communities reveal multi-scale complexity in networks. Nature 466 (2010), 761–764.
    • (2010) Nature , vol.466 , pp. 761-764
    • Ahn, Y.Y.1    Bagrow, J.P.2    Lehmann, S.3
  • 78
    • 73049108426 scopus 로고    scopus 로고
    • Collaborative clustering with back ground knowledge
    • Forestier, G, Gancarski, P, Wemmert, C, Collaborative clustering with back ground knowledge. Data Knowl. Eng. 69:2 (2010), 211–228.
    • (2010) Data Knowl. Eng. , vol.69 , Issue.2 , pp. 211-228
    • Forestier, G.1    Gancarski, P.2    Wemmert, C.3
  • 79
    • 33947227459 scopus 로고    scopus 로고
    • An evolutionary approach to multiobjective clustering
    • Handl, J., Knowles, J., An evolutionary approach to multiobjective clustering. IEEE Trans. Evolut. Comput. 11:1 (2007), 56–76.
    • (2007) IEEE Trans. Evolut. Comput. , vol.11 , Issue.1 , pp. 56-76
    • Handl, J.1    Knowles, J.2
  • 80
    • 33745727034 scopus 로고    scopus 로고
    • Multiobjective optimization using genetic algorithms: a tutorial
    • Konak, A., Coit, D., Smith, A., Multiobjective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91:9 (2006), 992–1007.
    • (2006) Reliab. Eng. Syst. Saf. , vol.91 , Issue.9 , pp. 992-1007
    • Konak, A.1    Coit, D.2    Smith, A.3
  • 83
    • 0004162649 scopus 로고    scopus 로고
    • Computer Vision: A Modern Approach
    • Prentice Hall
    • Forsyth, D., Ponce, J., Computer Vision: A Modern Approach. 2002, Prentice Hall.
    • (2002)
    • Forsyth, D.1    Ponce, J.2
  • 84
    • 2042437650 scopus 로고    scopus 로고
    • Initial sequencing and analysis of the human genome
    • Consortium, I.H.G.S., Initial sequencing and analysis of the human genome. Nature 409 (2001), 860–921.
    • (2001) Nature , vol.409 , pp. 860-921
    • Consortium, I.H.G.S.1
  • 87
    • 18544364696 scopus 로고
    • Clustering Algorithms, Information Retrieval: Data Structures and Algorithms
    • Prentice Hall Englewood Cliffs
    • Rasmussen, E., Clustering Algorithms, Information Retrieval: Data Structures and Algorithms. 1992, Prentice Hall, Englewood Cliffs, 419–442.
    • (1992) , pp. 419-442
    • Rasmussen, E.1
  • 88
    • 85027213966 scopus 로고
    • LC Classification Outline
    • Library of Congress Washington, D.C.
    • McKiernan, G., LC Classification Outline. 1990, Library of Congress, Washington, D.C.
    • (1990)
    • McKiernan, G.1
  • 89
    • 0030270301 scopus 로고    scopus 로고
    • Searching for the mother lode: tales of the first data miners
    • Hedberg, S.R., Searching for the mother lode: tales of the first data miners. IEEE Expert Intell. Syst. Appl. 11:5 (1996), 4–7.
    • (1996) IEEE Expert Intell. Syst. Appl. , vol.11 , Issue.5 , pp. 4-7
    • Hedberg, S.R.1
  • 90
    • 84947906774 scopus 로고    scopus 로고
    • Communications of the ACM
    • Data Mining Association for Computing Machinery
    • Cohen, J., Communications of the ACM. 1996, Data Mining Association for Computing Machinery.
    • (1996)
    • Cohen, J.1
  • 91
    • 77954138930 scopus 로고    scopus 로고
    • Dimensionality reduction with unsupervised feature selection and applying non-Euclidean norms for classification accuracy
    • Saxena, A., Wang, J., Dimensionality reduction with unsupervised feature selection and applying non-Euclidean norms for classification accuracy. Int. J. Data Wareh. Min. 6:2 (2010), 22–40.
    • (2010) Int. J. Data Wareh. Min. , vol.6 , Issue.2 , pp. 22-40
    • Saxena, A.1    Wang, J.2
  • 92
    • 0030571816 scopus 로고    scopus 로고
    • Computational experience on four algorithms for the hard clustering problem
    • Sultan, K.S.Al., Khan, M.M., Computational experience on four algorithms for the hard clustering problem. Pattern Recognit. Lett. 17:3 (1996), 295–308.
    • (1996) Pattern Recognit. Lett. , vol.17 , Issue.3 , pp. 295-308
    • Sultan, K.S.A.1    Khan, M.M.2
  • 93
    • 0020783239 scopus 로고
    • Automated construction of classifications: conceptual clustering versus numerical taxonomy
    • Michalski, R., Stepp, R.E., Diday, E., Automated construction of classifications: conceptual clustering versus numerical taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 5:4 (1983), 396–409.
    • (1983) IEEE Trans. Pattern Anal. Mach. Intell. , vol.5 , Issue.4 , pp. 396-409
    • Michalski, R.1    Stepp, R.E.2    Diday, E.3
  • 94
    • 0035895505 scopus 로고    scopus 로고
    • The sequence of the human genome
    • Venter, J.C., The sequence of the human genome. Science 291 (2001), 1304–1351.
    • (2001) Science , vol.291 , pp. 1304-1351
    • Venter, J.C.1
  • 95
    • 24144502661 scopus 로고
    • Reconstructive memory: a computer model
    • Kolodner, J.L., Reconstructive memory: a computer model. Cogn. Sci. 7:4 (1983), 281–328.
    • (1983) Cogn. Sci. , vol.7 , Issue.4 , pp. 281-328
    • Kolodner, J.L.1
  • 97
    • 0035249751 scopus 로고    scopus 로고
    • Generality-based conceptual clustering with probabilistic concepts
    • Talavera, L., Bejar, J., Generality-based conceptual clustering with probabilistic concepts. IEEE Trans. Pattern Anal. Mach. Intell. 23:2 (2001), 196–206.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.2 , pp. 196-206
    • Talavera, L.1    Bejar, J.2
  • 101
    • 0141767425 scopus 로고    scopus 로고
    • Graph-based hierarchical conceptual clustering
    • Jonyer, I., Cook, D., Holder, L., Graph-based hierarchical conceptual clustering. J. Mach. Learn. Res. 2 (2001), 19–43.
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 19-43
    • Jonyer, I.1    Cook, D.2    Holder, L.3
  • 102
    • 0000166613 scopus 로고
    • Experiments with incremental concept formation: UNIMEM
    • Lebowitz, M., Experiments with incremental concept formation: UNIMEM. Mach. Learn. 2:2 (1987), 103–138.
    • (1987) Mach. Learn. , vol.2 , Issue.2 , pp. 103-138
    • Lebowitz, M.1
  • 103
    • 0000783818 scopus 로고
    • Conceptual clustering, categorization and polymorphy
    • Hanson, S., Bauer, M., Conceptual clustering, categorization and polymorphy. Mach. Learn. J. 3:4 (1989), 343–372.
    • (1989) Mach. Learn. J. , vol.3 , Issue.4 , pp. 343-372
    • Hanson, S.1    Bauer, M.2
  • 104
    • 0345404396 scopus 로고    scopus 로고
    • The self-organizing map
    • Pages
    • Kohonen, T., The self-organizing map. Neurocomputing 21:1–3 (1998), 1–6 Pages.
    • (1998) Neurocomputing , vol.21 , Issue.1-3 , pp. 1-6
    • Kohonen, T.1
  • 105
    • 0034187784 scopus 로고    scopus 로고
    • Clustering of the self-organizing map
    • Vesanto, J., Alhoniemi, E., Clustering of the self-organizing map. IEEE Trans. Neural Netw. 11:3 (2000), 586–600.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.3 , pp. 586-600
    • Vesanto, J.1    Alhoniemi, E.2
  • 108
    • 5544238247 scopus 로고    scopus 로고
    • Clustering procedures
    • SAS Institute Inc., Cary NC, USA
    • Fortier, J.J., Solomon, H., Clustering procedures. The Multivariate Analysis, 1996, SAS Institute Inc., Cary, NC, USA, 493–506.
    • (1996) The Multivariate Analysis , pp. 493-506
    • Fortier, J.J.1    Solomon, H.2
  • 110
    • 0004000536 scopus 로고
    • Essai sur l'Application de l'Analyse `a la Probabilite´ des Decisions Rendues a la Pluralite´ des Voix
    • L'Imprimerie Royale Paris
    • Condorcet, M.J.A.N., Essai sur l'Application de l'Analyse `a la Probabilite´ des Decisions Rendues a la Pluralite´ des Voix. 1785, L'Imprimerie Royale, Paris.
    • (1785)
    • Condorcet, M.J.A.N.1
  • 111
    • 0003879889 scopus 로고
    • Optimisation En Analyse Ordinale Des Donnees
    • Masson Paris
    • Marcotorchino, J.F., Michaud, P., Optimisation En Analyse Ordinale Des Donnees. 1979, Masson, Paris.
    • (1979)
    • Marcotorchino, J.F.1    Michaud, P.2
  • 112
    • 0000353884 scopus 로고
    • Explaining basic categories: feature predictability and information
    • Corter, J.E., Gluck, M.A., Explaining basic categories: feature predictability and information. Psychol. Bull. 111:2 (1992), 291–303.
    • (1992) Psychol. Bull. , vol.111 , Issue.2 , pp. 291-303
    • Corter, J.E.1    Gluck, M.A.2
  • 113
    • 84919917374 scopus 로고    scopus 로고
    • Clustering guidance and quality evaluation using relationship-based visualization
    • St. Louis Missouri, USA
    • Strehl, A., Ghosh, J., Clustering guidance and quality evaluation using relationship-based visualization. Intelligent Engineering Systems Through Artificial Neural Networks, 2000, St. Louis, Missouri, USA, 483–488.
    • (2000) Intelligent Engineering Systems Through Artificial Neural Networks , pp. 483-488
    • Strehl, A.1    Ghosh, J.2
  • 114
    • 0031255580 scopus 로고    scopus 로고
    • Selecting and interpreting measures of thematic classification accuracy
    • Stehman, S.V., Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 62:1 (1997), 77–89.
    • (1997) Remote Sens. Environ. , vol.62 , Issue.1 , pp. 77-89
    • Stehman, S.V.1
  • 115
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, W.M., Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66:336 (1971), 846–850.
    • (1971) J. Am. Stat. Assoc. , vol.66 , Issue.336 , pp. 846-850
    • Rand, W.M.1
  • 116
    • 0004217877 scopus 로고
    • Information Retrieval
    • Butterworths London
    • Rijsbergen, V., Information Retrieval. 1979, Butterworths, London.
    • (1979)
    • Rijsbergen, V.1
  • 117
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • Brendan, J.F., Dueck, D., Clustering by passing messages between data points. Science 315 (2007), 972–976.
    • (2007) Science , vol.315 , pp. 972-976
    • Brendan, J.F.1    Dueck, D.2
  • 118
    • 84945923591 scopus 로고
    • A method for comparing two hierarchical clusterings
    • 2010
    • Fowlkes, E.B., Mallows, C.L., A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78:383 (1983), 553–569 2010.
    • (1983) J. Am. Stat. Assoc. , vol.78 , Issue.383 , pp. 553-569
    • Fowlkes, E.B.1    Mallows, C.L.2
  • 119
    • 84885708772 scopus 로고    scopus 로고
    • Advanced Data Mining Techniques
    • first ed. Springer
    • Olson, D.L., Delen, D., Advanced Data Mining Techniques. first ed., 2008, Springer.
    • (2008)
    • Olson, D.L.1    Delen, D.2
  • 120
    • 84864758525 scopus 로고    scopus 로고
    • Evaluation: from precision, recall and F-factor to ROC, informedness, markedness &correlation
    • Powers, D.M.W., Evaluation: from precision, recall and F-factor to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2:1 (2007), 37–63.
    • (2007) J. Mach. Learn. Technol. , vol.2 , Issue.1 , pp. 37-63
    • Powers, D.M.W.1
  • 121
    • 0001368374 scopus 로고
    • Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines
    • Jaccard, P., Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines. Bull. Soc. Vaud. Sci. Nat. 37 (1901), 241–272.
    • (1901) Bull. Soc. Vaud. Sci. Nat. , vol.37 , pp. 241-272
    • Jaccard, P.1
  • 122
    • 84990941766 scopus 로고    scopus 로고
    • Data Mining: Concepts and Techniques
    • Morgan Kaufman San Francisco, USA
    • Han, J., Kamber, M., Pei, J., Data Mining: Concepts and Techniques. 2011, Morgan Kaufman, San Francisco, USA.
    • (2011)
    • Han, J.1    Kamber, M.2    Pei, J.3
  • 123
    • 0022559425 scopus 로고
    • Optimization of control parameters for genetic algorithms
    • Grefenstette, J.J., Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern. 16:1 (1986), 122–128.
    • (1986) IEEE Trans. Syst. Man Cybern. , vol.16 , Issue.1 , pp. 122-128
    • Grefenstette, J.J.1
  • 125
    • 84926393499 scopus 로고    scopus 로고
    • Chapter 4.5. Combinatorial implications of max-flow min-cut theorem, Chapter 4.6. Linear programming interpretation of max-flow min-cut theorem
    • Dover
    • Eugene, L., Chapter 4.5. Combinatorial implications of max-flow min-cut theorem, Chapter 4.6. Linear programming interpretation of max-flow min-cut theorem. Combinatorial Optimization: Networks and Matroids, 2001, Dover, 117–120.
    • (2001) Combinatorial Optimization: Networks and Matroids , pp. 117-120
    • Eugene, L.1
  • 127
    • 0032434789 scopus 로고    scopus 로고
    • Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis
    • Fotheringham, A.S., Charlton, M.E., Brunsdon, C., Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environ. Plann. 30:11 (1998), 1905–1927.
    • (1998) Environ. Plann. , vol.30 , Issue.11 , pp. 1905-1927
    • Fotheringham, A.S.1    Charlton, M.E.2    Brunsdon, C.3
  • 128
    • 77954088141 scopus 로고    scopus 로고
    • Stochastic simulation of patterns using distance-based pattern modeling
    • Honarkhah, M., Caers, J., Stochastic simulation of patterns using distance-based pattern modeling. Math. Geosci. 42:5 (2010), 487–517.
    • (2010) Math. Geosci. , vol.42 , Issue.5 , pp. 487-517
    • Honarkhah, M.1    Caers, J.2
  • 129
    • 84860599900 scopus 로고    scopus 로고
    • Multiple-point geostatistical modeling based on the cross-correlation functions
    • Tahmasebi, P., Hezarkhani, A., Sahimi, M, Multiple-point geostatistical modeling based on the cross-correlation functions. Comput. Geosci. 16:3 (2012), 779–797.
    • (2012) Comput. Geosci. , vol.16 , Issue.3 , pp. 779-797
    • Tahmasebi, P.1    Hezarkhani, A.2    Sahimi, M.3
  • 132
    • 84896835469 scopus 로고    scopus 로고
    • epiC: an Extensible and Scalable System for Processing Big Data
    • Jiang, D., Chen, G., Ooi, B.C., Tan, K.L., W, S., epiC: an Extensible and Scalable System for Processing Big Data. 40th VLDB Conference, 2014, 541–552.
    • (2014) 40th VLDB Conference , pp. 541-552
    • Jiang, D.1    Chen, G.2    Ooi, B.C.3    Tan, K.L.4    W, S.5
  • 133
    • 0010486274 scopus 로고    scopus 로고
    • A Fast Clustering Algorithm to Cluster very Large Categorical Data Sets in Data Mining
    • Data Mining and Knowledge Discovery DMKD
    • Huang, Z., A Fast Clustering Algorithm to Cluster very Large Categorical Data Sets in Data Mining. 1997, Data Mining and Knowledge Discovery DMKD.
    • (1997)
    • Huang, Z.1
  • 135
    • 0003577150 scopus 로고    scopus 로고
    • Data Mining Techniques For Marketing, Sales and Customer Support
    • John Wiley &Sons, Inc, USA
    • Berry, M.J.A., Linoff, G., Data Mining Techniques For Marketing, Sales and Customer Support. 1996 John Wiley & Sons, Inc USA.
    • (1996)
    • Berry, M.J.A.1    Linoff, G.2
  • 136
    • 12444323444 scopus 로고    scopus 로고
    • The effectiveness of demographics and psychographic variables for explaining brand and product category use
    • Fennell, G., Allenby, G.M., Yang, S., Edwards, Y., The effectiveness of demographics and psychographic variables for explaining brand and product category use. Quant. Market. Econ. 1:2 (2003), 223–224.
    • (2003) Quant. Market. Econ. , vol.1 , Issue.2 , pp. 223-224
    • Fennell, G.1    Allenby, G.M.2    Yang, S.3    Edwards, Y.4
  • 137
    • 34547319706 scopus 로고    scopus 로고
    • The effect of sample size on the extended self-organizing map network: a market segmentation application
    • Kiang, M.Y., Fisher, D.M., Hu, M.Y., The effect of sample size on the extended self-organizing map network: a market segmentation application. Comput. Stat. Data Anal. 51:12 (2007), 5940–5948.
    • (2007) Comput. Stat. Data Anal. , vol.51 , Issue.12 , pp. 5940-5948
    • Kiang, M.Y.1    Fisher, D.M.2    Hu, M.Y.3
  • 138
    • 27944452898 scopus 로고    scopus 로고
    • Using cluster analysis for market segmentation–typical misconceptions, established methodological weaknesses and some recommendations for improvement
    • Dolnicar, S., Using cluster analysis for market segmentation–typical misconceptions, established methodological weaknesses and some recommendations for improvement. J. Market. Res. 11:2 (2003), 5–12.
    • (2003) J. Market. Res. , vol.11 , Issue.2 , pp. 5-12
    • Dolnicar, S.1
  • 140
    • 0003516147 scopus 로고    scopus 로고
    • Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids
    • Cambridge University Press Cambridge
    • Durbin, R.M., Eddy, S.R., Krogh, A., Mitchison, G., Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. 1998, Cambridge University Press, Cambridge.
    • (1998)
    • Durbin, R.M.1    Eddy, S.R.2    Krogh, A.3    Mitchison, G.4
  • 141
    • 85133825310 scopus 로고    scopus 로고
    • Prisoners of abstraction? The theory and measure of genetic variation, and the very concept of “Race”
    • Kaplan, J.M., Winther, R.G., Prisoners of abstraction? The theory and measure of genetic variation, and the very concept of “Race”. Biol. Theory 7 (2012), 401–412.
    • (2012) Biol. Theory , vol.7 , pp. 401-412
    • Kaplan, J.M.1    Winther, R.G.2
  • 143
    • 85027216356 scopus 로고    scopus 로고
    • Yippy growing by leaps, bounds, The News-Press. 23 May 2010, Retrieved 24 May
    • Yippy growing by leaps, bounds, The News-Press. 23 May 2010, Retrieved 24 May 2010.
    • (2010)
  • 145
    • 3042775829 scopus 로고    scopus 로고
    • Organizing the knowledge used in software maintenance
    • Dias, M.G.B., Anquetil, N., Oliveira, K.M.D., Organizing the knowledge used in software maintenance. J. Univ. Comput. Sci. 9:7 (2003), 641–658.
    • (2003) J. Univ. Comput. Sci. , vol.9 , Issue.7 , pp. 641-658
    • Dias, M.G.B.1    Anquetil, N.2    Oliveira, K.M.D.3
  • 147
    • 85027215858 scopus 로고    scopus 로고
    • 2013.
    • www.educationaldatamining.org, 2013.
  • 148
    • 84884445817 scopus 로고    scopus 로고
    • Data mining for education
    • third ed. Elsevier Oxford, UK
    • Baker, R., Data mining for education. third ed. International Encyclopedia of Education, 7, 2010, Elsevier, Oxford, UK, 112–118.
    • (2010) International Encyclopedia of Education , vol.7 , pp. 112-118
    • Baker, R.1
  • 152
    • 34548080780 scopus 로고    scopus 로고
    • An Introduction to Information Retrieval
    • Cambridge University Press
    • Manning, C.D., Raghavan, P., Schütze, H., An Introduction to Information Retrieval. 2009, Cambridge University Press.
    • (2009)
    • Manning, C.D.1    Raghavan, P.2    Schütze, H.3
  • 153
    • 84860436906 scopus 로고    scopus 로고
    • Clustering with multi-viewpoint-based similarity measure
    • Nguyen, D.T., Chen, L., Chan, C.K., Clustering with multi-viewpoint-based similarity measure. IEEE Trans. Knowl. Data Eng. 24:6 (2012), 988–1001.
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.6 , pp. 988-1001
    • Nguyen, D.T.1    Chen, L.2    Chan, C.K.3
  • 155
    • 0000629279 scopus 로고
    • Mathematical contributions to the theory of evolution, III, regression, heredity, and panmixia
    • Pearson, K., Mathematical contributions to the theory of evolution, III, regression, heredity, and panmixia. Philos. Trans. R. Soc. Lond. Ser. A 187 (1896), 253–318.
    • (1896) Philos. Trans. R. Soc. Lond. Ser. A , vol.187 , pp. 253-318
    • Pearson, K.1
  • 156
    • 0002969802 scopus 로고
    • A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons
    • Sørensen, T., A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. K. Dan. Vidensk. Selsk. 5:4 (1948), 1–34.
    • (1948) K. Dan. Vidensk. Selsk. , vol.5 , Issue.4 , pp. 1-34
    • Sørensen, T.1
  • 157
    • 0000250265 scopus 로고
    • Measures of the amount of ecologic association between species
    • Dice, L.R., Measures of the amount of ecologic association between species. Ecology 26:3 (1945), 297–302.
    • (1945) Ecology , vol.26 , Issue.3 , pp. 297-302
    • Dice, L.R.1
  • 158
    • 0003410290 scopus 로고
    • Time Series Analysis
    • Princeton University Press
    • Hamilton, J.D., Time Series Analysis. 1994, Princeton University Press.
    • (1994)
    • Hamilton, J.D.1
  • 159
    • 85100687359 scopus 로고    scopus 로고
    • Analysis of Financial Time Series
    • John Wiley &SONS
    • Tsay, R.S., Analysis of Financial Time Series. 2005 John Wiley & SONS.
    • (2005)
    • Tsay, R.S.1
  • 160
    • 77954138930 scopus 로고    scopus 로고
    • Dimensionality reduction with unsupervised feature selection and applying non-Euclidean norms for classification accuracy
    • Saxena, A., Wang, J., Dimensionality reduction with unsupervised feature selection and applying non-Euclidean norms for classification accuracy. Int. J. Data Warehous. Min. 6:2 (2010), 22–40.
    • (2010) Int. J. Data Warehous. Min. , vol.6 , Issue.2 , pp. 22-40
    • Saxena, A.1    Wang, J.2
  • 164
    • 85027215457 scopus 로고    scopus 로고
    • Fuzzy Based Scalable Clustering Algorithms for Handling Big Data Using Apache Spark
    • Bharill, N., Tiwari, A., Malviya, A., Fuzzy Based Scalable Clustering Algorithms for Handling Big Data Using Apache Spark. IEEE Trans. Big Data 2:4 (2016), 339–352.
    • (2016) IEEE Trans. Big Data , vol.2 , Issue.4 , pp. 339-352
    • Bharill, N.1    Tiwari, A.2    Malviya, A.3
  • 166
    • 84863610828 scopus 로고    scopus 로고
    • Big Data Analytics, TDWI best practices report, The Data Warehousing Institute (TDWI) Research
    • Russom, P., Big Data Analytics, TDWI best practices report, The Data Warehousing Institute (TDWI) Research., 2011.
    • (2011)
    • Russom, P.1
  • 168
    • 84900644792 scopus 로고    scopus 로고
    • Mining big data: current status and forecast to the future
    • Fan, W., Albert, B., Mining big data: current status and forecast to the future. ACM SIGKDD Explor. Newsl. 14:2 (2013), 1–5.
    • (2013) ACM SIGKDD Explor. Newsl. , vol.14 , Issue.2 , pp. 1-5
    • Fan, W.1    Albert, B.2
  • 170
    • 73649114265 scopus 로고    scopus 로고
    • MapReduce: a flexible data processing tool
    • Jeffrey, D., Ghemawat, S., MapReduce: a flexible data processing tool. Commun. ACM 53:1 (2010), 72–77.
    • (2010) Commun. ACM , vol.53 , Issue.1 , pp. 72-77
    • Jeffrey, D.1    Ghemawat, S.2
  • 171
    • 73649114265 scopus 로고    scopus 로고
    • Map Reduce: a flexible data processing tool
    • Dean, J., Ghemawat, S., Map Reduce: a flexible data processing tool. Communications of the ACM 53:1 (2010), 72–77.
    • (2010) Communications of the ACM , vol.53 , Issue.1 , pp. 72-77
    • Dean, J.1    Ghemawat, S.2
  • 172
    • 0001626339 scopus 로고
    • A classification EM algorithm for clustering and two stochastic versions
    • Celeux, G., Govaert, G., A classification EM algorithm for clustering and two stochastic versions. Comput. Stat. Data Anal. 14:3 (1992), 315–332.
    • (1992) Comput. Stat. Data Anal. , vol.14 , Issue.3 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 173
    • 0003430544 scopus 로고
    • Finding Groups in Data: An Introduction to Cluster Analysis
    • Wiley
    • Kaufman, L., Rousseeuw, P., Finding Groups in Data: An Introduction to Cluster Analysis. 1990, Wiley.
    • (1990)
    • Kaufman, L.1    Rousseeuw, P.2
  • 174
    • 0036709106 scopus 로고    scopus 로고
    • CLARANS: a method for clustering objects for spatial data mining
    • Ngand, R., Han, J., CLARANS: a method for clustering objects for spatial data mining. IEEE Trans. Knowl. Data Eng. 14:5 (2002), 1003–1016.
    • (2002) IEEE Trans. Knowl. Data Eng. , vol.14 , Issue.5 , pp. 1003-1016
    • Ngand, R.1    Han, J.2
  • 175
    • 84921984719 scopus 로고    scopus 로고
    • Clustering techniques: a brief survey of different clustering algorithms
    • Sisodia, D., Sisodia, S., Saxena, K., Clustering techniques: a brief survey of different clustering algorithms. Int. J. Latest Trends Eng. Technol. 1:3 (2012), 82–87.
    • (2012) Int. J. Latest Trends Eng. Technol. , vol.1 , Issue.3 , pp. 82-87
    • Sisodia, D.1    Sisodia, S.2    Saxena, K.3
  • 176
    • 70449713359 scopus 로고    scopus 로고
    • A graph-theoretical clustering method based on two rounds of minimum spanning trees
    • Zhong, C., Miao, D., Wang, R., A graph-theoretical clustering method based on two rounds of minimum spanning trees. Pattern Recognit. 43 (2010), 752–766.
    • (2010) Pattern Recognit. , vol.43 , pp. 752-766
    • Zhong, C.1    Miao, D.2    Wang, R.3
  • 178
    • 0035580899 scopus 로고    scopus 로고
    • Algorithms for graph partitioning on the planted partition model
    • Condon, A., Karp, R., Algorithms for graph partitioning on the planted partition model. Random Struct. Algorithms 18:2 (2001), 116–140.
    • (2001) Random Struct. Algorithms , vol.18 , Issue.2 , pp. 116-140
    • Condon, A.1    Karp, R.2
  • 179
    • 0015661138 scopus 로고
    • Lower bounds for the partitioning of graphs
    • Donath, W.E., Hoffman, A.J., Lower bounds for the partitioning of graphs. IBM J. Res. Dev. 17 (1973), 420–425.
    • (1973) IBM J. Res. Dev. , vol.17 , pp. 420-425
    • Donath, W.E.1    Hoffman, A.J.2
  • 181
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • Luxburg, U., A tutorial on spectral clustering. Stat. Comput. 17:4 (2007), 395–416.
    • (2007) Stat. Comput. , vol.17 , Issue.4 , pp. 395-416
    • Luxburg, U.1
  • 182
    • 80052860256 scopus 로고    scopus 로고
    • Spectral clustering and the high-dimensional stochastic block model
    • Rohe, K., Chatterjee, S., Yu, B., Spectral clustering and the high-dimensional stochastic block model. Ann. Stat. 39:4 (2011), 1878–1915.
    • (2011) Ann. Stat. , vol.39 , Issue.4 , pp. 1878-1915
    • Rohe, K.1    Chatterjee, S.2    Yu, B.3
  • 184
    • 80052767847 scopus 로고    scopus 로고
    • Scalable discovery of best clusters on large graphs
    • Macropol, K., Singh, A., Scalable discovery of best clusters on large graphs. Proceedings of the VLDB Endowment, 3, 2010, 693–702.
    • (2010) Proceedings of the VLDB Endowment , vol.3 , pp. 693-702
    • Macropol, K.1    Singh, A.2
  • 186
    • 0032131147 scopus 로고    scopus 로고
    • A fast and high quality multilevel scheme for partitioning irregular graphs
    • Karypis, G., Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20:1 (1998), 359–392.
    • (1998) SIAM J. Sci. Comput. , vol.20 , Issue.1 , pp. 359-392
    • Karypis, G.1    Kumar, V.2
  • 187
    • 0002806618 scopus 로고    scopus 로고
    • Multilevel k-way partitioning scheme for irregular graphs
    • Karypis, G., Kumar, V., Multilevel k-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput. 48 (1998), 96–129.
    • (1998) J. Parallel Distrib. Comput. , vol.48 , pp. 96-129
    • Karypis, G.1    Kumar, V.2
  • 191
    • 84894272609 scopus 로고    scopus 로고
    • Comparative analysis of k-means and fuzzy c-means algorithms
    • Ghosh, S., Dubey, S.K., Comparative analysis of k-means and fuzzy c-means algorithms. Int. J. Adv. Comput. Sci. Appl. 4:4 (2013), 35–39.
    • (2013) Int. J. Adv. Comput. Sci. Appl. , vol.4 , Issue.4 , pp. 35-39
    • Ghosh, S.1    Dubey, S.K.2
  • 193
    • 85027215478 scopus 로고    scopus 로고
    • Cluster analysis and related issue, R. Dubes Eds. Handbook of Pattern Recognition and Computer Vision, World Scientific, Singapore
    • C. Chen, L. Pau, and P. Wang, Cluster analysis and related issue, R. Dubes Eds. Handbook of Pattern Recognition and Computer Vision, World Scientific, Singapore, pp. 3–32.
    • Chen, C.1    Pau, L.2    Wang, P.3
  • 194
    • 0004161991 scopus 로고
    • Algorithms for Clustering Data
    • Prentice-Hall Englewood, Cliffs, NJ
    • Jain, A., Dubes, R., Algorithms for Clustering Data. 1988, Prentice-Hall, Englewood, Cliffs, NJ.
    • (1988)
    • Jain, A.1    Dubes, R.2
  • 195
    • 84884990195 scopus 로고    scopus 로고
    • A link clustering based overlapping community detection algorithm
    • Shi, C., Cai, Y., Fu, D., Dong, Y., Wu, B., A link clustering based overlapping community detection algorithm. Data Knowl. Eng. 87 (2013), 394–404.
    • (2013) Data Knowl. Eng. , vol.87 , pp. 394-404
    • Shi, C.1    Cai, Y.2    Fu, D.3    Dong, Y.4    Wu, B.5
  • 196
    • 20444504323 scopus 로고    scopus 로고
    • Uncovering the overlapping community structure of complex networks in nature and society
    • Palla, G., Derenyi, I., Farkas, I., Vicsek, T., Uncovering the overlapping community structure of complex networks in nature and society. Nature 435 (2005), 814–818.
    • (2005) Nature , vol.435 , pp. 814-818
    • Palla, G.1    Derenyi, I.2    Farkas, I.3    Vicsek, T.4
  • 199
    • 84991434108 scopus 로고    scopus 로고
    • A comprehensive survey of clustering algorithms
    • Xu, D., Tian, Y., A comprehensive survey of clustering algorithms. Ann. Data Sci 2 (2015), 165–193.
    • (2015) Ann. Data Sci , vol.2 , pp. 165-193
    • Xu, D.1    Tian, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.