메뉴 건너뛰기




Volumn 12, Issue 3, 2017, Pages 546-552

Use of causal diagrams to inform the design and interpretation of observational studies: An example from the study of heart and renal protection (SHARP)

Author keywords

Bias (Epidemiology); Causal diagrams; Chronic; Epidemiology and outcomes; Kidney; Kidney Failure; Motivation; Observational studies; Renal Insufficiency; Selection Bias; Smoking

Indexed keywords

AGE; ALCOHOL CONSUMPTION; ARTICLE; BLOOD PRESSURE; BODY MASS; DISEASE COURSE; EDUCATIONAL STATUS; END STAGE RENAL DISEASE; ETHNICITY; GENDER; HEART PROTECTION; HUMAN; HYPOTHESIS; INTERPRETATION BIAS; MICROALBUMINURIA; OBSERVATIONAL STUDY; RENAL PROTECTION; SELECTION BIAS; SMOKING; STATISTICAL MODEL; CHRONIC KIDNEY FAILURE; EPIDEMIOLOGY; METHODOLOGY; STATISTICAL ANALYSIS; STATISTICAL BIAS; STATISTICS AND NUMERICAL DATA;

EID: 85021751807     PISSN: 15559041     EISSN: 1555905X     Source Type: Journal    
DOI: 10.2215/CJN.02430316     Document Type: Article
Times cited : (41)

References (25)
  • 2
    • 0032924944 scopus 로고    scopus 로고
    • Causal diagrams for epidemiologic research
    • Greenland S, Pearl J, Robins JM: Causal diagrams for epidemiologic research. Epidemiology 10: 37–48, 1999
    • (1999) Epidemiology , vol.10 , pp. 37-48
    • Greenland, S.1    Pearl, J.2    Robins, J.M.3
  • 5
    • 33544469938 scopus 로고    scopus 로고
    • Controlling for time-dependent confounding using marginal structural models
    • Fewell Z, Hernán MA, Wolfe F, Tilling K, Choi H, Sterne JAC: Controlling for time-dependent confounding using marginal structural models. Stata J 4: 402–420, 2004
    • (2004) Stata J , vol.4 , pp. 402-420
    • Fewell, Z.1    Hernán, M.A.2    Wolfe, F.3    Tilling, K.4    Choi, H.5    Sterne, J.A.C.6
  • 6
    • 0037080447 scopus 로고    scopus 로고
    • Causal knowledge as a prerequisite for confounding evaluation: An application to birth defects epidemiology
    • Hernán MA, Hernández-Díaz S, Werler MM, Mitchell AA: Causal knowledge as a prerequisite for confounding evaluation: An application to birth defects epidemiology. Am J Epidemiol 155: 176–184, 2002
    • (2002) Am J Epidemiol , vol.155 , pp. 176-184
    • Hernán, M.A.1    Hernández-Díaz, S.2    Werler, M.M.3    Mitchell, A.A.4
  • 8
    • 57649138547 scopus 로고    scopus 로고
    • Reducing bias through directed acyclic graphs
    • Shrier I, Platt RW: Reducing bias through directed acyclic graphs. BMC Med Res Methodol 8: 70–84, 2008
    • (2008) BMC Med Res Methodol , vol.8 , pp. 70-84
    • Shrier, I.1    Platt, R.W.2
  • 9
    • 80051499209 scopus 로고    scopus 로고
    • DAGitty: A graphical tool for analyzing causal diagrams
    • Textor J, Hardt J, Knüppel S: DAGitty: A graphical tool for analyzing causal diagrams. Epidemiology 22: 745, 2011
    • (2011) Epidemiology , vol.22 , pp. 745
    • Textor, J.1    Hardt, J.2    Knüppel, S.3
  • 10
    • 77953935076 scopus 로고    scopus 로고
    • DagR: A suite of R functions for directed acyclic graphs
    • Breitling LP: dagR: A suite of R functions for directed acyclic graphs. Epidemiology 21: 586–587, 2010
    • (2010) Epidemiology , vol.21 , pp. 586-587
    • Breitling, L.P.1
  • 11
    • 65949124463 scopus 로고    scopus 로고
    • Methods of covariate selection: Directed acyclic graphs and the change-in-estimate procedure
    • Weng HY, Hsueh YH, Messam LLM, Hertz-Picciotto I: Methods of covariate selection: Directed acyclic graphs and the change-in-estimate procedure. Am J Epidemiol 169: 1182–1190, 2009
    • (2009) Am J Epidemiol , vol.169 , pp. 1182-1190
    • Weng, H.Y.1    Hsueh, Y.H.2    Messam, L.L.M.3    Hertz-Picciotto, I.4
  • 12
    • 84867236463 scopus 로고    scopus 로고
    • Combining directed acyclic graphs and the change-in-estimate procedure as a novel approach to adjustment-variable selection in epidemiology
    • Evans D, Chaix B, Lobbedez T, Verger C, Flahault A: Combining directed acyclic graphs and the change-in-estimate procedure as a novel approach to adjustment-variable selection in epidemiology. BMC Med Res Methodol 12: 156–170, 2012
    • (2012) BMC Med Res Methodol , vol.12 , pp. 156-170
    • Evans, D.1    Chaix, B.2    Lobbedez, T.3    Verger, C.4    Flahault, A.5
  • 14
    • 0033850137 scopus 로고    scopus 로고
    • Effects of current smoking and smoking discontinuation on renal function and proteinuria in the general population
    • Halimi JM, Giraudeau B, Vol S, Cacès E, Nivet H, Lebranchu Y, Tichet J: Effects of current smoking and smoking discontinuation on renal function and proteinuria in the general population. Kidney Int 58: 1285–1292, 2000
    • (2000) Kidney Int , vol.58 , pp. 1285-1292
    • Halimi, J.M.1    Giraudeau, B.2    Vol, S.3    Cacès, E.4    Nivet, H.5    Lebranchu, Y.6    Tichet, J.7
  • 15
    • 0033775197 scopus 로고    scopus 로고
    • JanssenWM, Hillege HL, de ZeeuwD, de Jong PE: Smoking is related to albuminuria and abnormal renal function in nondiabetic persons
    • Pinto-Sietsma SJ, Mulder J, JanssenWM, Hillege HL, de ZeeuwD, de Jong PE: Smoking is related to albuminuria and abnormal renal function in nondiabetic persons. Ann Intern Med 133: 585–591, 2000
    • (2000) Ann Intern Med , vol.133 , pp. 585-591
    • Pinto-Sietsma, S.J.1    Mulder, J.2
  • 19
    • 79951968740 scopus 로고    scopus 로고
    • Index event bias as an explanation for the paradoxes of recurrence risk research
    • Dahabreh IJ, Kent DM: Index event bias as an explanation for the paradoxes of recurrence risk research. JAMA 305: 822–823, 2011
    • (2011) JAMA , vol.305 , pp. 822-823
    • Dahabreh, I.J.1    Kent, D.M.2
  • 21
    • 0038334174 scopus 로고    scopus 로고
    • Quantifying biases in causal models: Classical confounding vs collider-stratification bias
    • Greenland S: Quantifying biases in causal models: Classical confounding vs collider-stratification bias. Epidemiology 14: 300–306, 2003
    • (2003) Epidemiology , vol.14 , pp. 300-306
    • Greenland, S.1
  • 22
    • 47349085647 scopus 로고    scopus 로고
    • Bias formulas for external adjustment and sensitivity analysis of unmeasured confounders
    • Arah OA, Chiba Y, Greenland S: Bias formulas for external adjustment and sensitivity analysis of unmeasured confounders. Ann Epidemiol 18: 637–646, 2008
    • (2008) Ann Epidemiol , vol.18 , pp. 637-646
    • Arah, O.A.1    Chiba, Y.2    Greenland, S.3
  • 23
    • 0033567222 scopus 로고    scopus 로고
    • Underestimation of risk associations due to regression dilution in long-term follow-up of prospective studies
    • Clarke R, Shipley M, Lewington S, Youngman L, Collins R, Marmot M, Peto R: Underestimation of risk associations due to regression dilution in long-term follow-up of prospective studies. Am J Epidemiol 150: 341–353, 1999
    • (1999) Am J Epidemiol , vol.150 , pp. 341-353
    • Clarke, R.1    Shipley, M.2    Lewington, S.3    Youngman, L.4    Collins, R.5    Marmot, M.6    Peto, R.7
  • 24
    • 0034361250 scopus 로고    scopus 로고
    • Correcting for regression dilution bias: Comparison of methods for a single predictor variable
    • Frost C, Thompson SG: Correcting for regression dilution bias: Comparison of methods for a single predictor variable. J R Stat Soc Ser A 163: 173–189, 2000
    • (2000) J R Stat Soc Ser A , vol.163 , pp. 173-189
    • Frost, C.1    Thompson, S.G.2
  • 25
    • 84881533119 scopus 로고    scopus 로고
    • Estimating causal effect with randomized controlled trial
    • Shrier I: Estimating causal effect with randomized controlled trial. Epidemiology 24: 779–781, 2013
    • (2013) Epidemiology , vol.24 , pp. 779-781
    • Shrier, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.