메뉴 건너뛰기




Volumn 9, Issue 1, 2017, Pages 403-420

BayesBinMix: An R package for model based clustering of multivariate binary data

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85021434863     PISSN: None     EISSN: 20734859     Source Type: Journal    
DOI: 10.32614/rj-2017-022     Document Type: Article
Times cited : (10)

References (47)
  • 1
    • 0027427420 scopus 로고
    • An autologistic model for the genetic analysis of familial binary data
    • L. Abel, J.-L. Golmard, and A. Mallet. An autologistic model for the genetic analysis of familial binary data. American journal of human genetics, 53(4):894, 1993.
    • (1993) American journal of human genetics , vol.53 , Issue.4 , pp. 894
    • Abel, L.1    Golmard, J.-L.2    Mallet, A.3
  • 2
    • 0037209444 scopus 로고    scopus 로고
    • Databases for recognition of handwritten Arabic cheques
    • Y. Al-Ohali, M. Cheriet, and C. Suen. Databases for recognition of handwritten Arabic cheques. Pattern Recognition, 36(1):111-121, 2003. URL https://doi.org/10.1016/s0031-3203(02)00064-x.
    • (2003) Pattern Recognition , vol.36 , Issue.1 , pp. 111-121
    • Al-Ohali, Y.1    Cheriet, M.2    Suen, C.3
  • 3
    • 69949186291 scopus 로고    scopus 로고
    • Identifiability of parameters in latent structure models with many observed variables
    • E. S. Allman, C. Matias, and J. A. Rhodes. Identifiability of parameters in latent structure models with many observed variables. The Annals of Statistics, pages 3099-3132, 2009. URL https://doi.org/10.1214/09-aos689.
    • (2009) The Annals of Statistics , pp. 3099-3132
    • Allman, E.S.1    Matias, C.2    Rhodes, J.A.3
  • 4
    • 1342309210 scopus 로고    scopus 로고
    • Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference
    • G. Altekar, S. Dwarkadas, J. P. Huelsenbeck, and F. Ronquist. Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics, 20(3):407-415, 2004. URL https://doi.org/10.1093/bioinformatics/btg427.
    • (2004) Bioinformatics , vol.20 , Issue.3 , pp. 407-415
    • Altekar, G.1    Dwarkadas, S.2    Huelsenbeck, J.P.3    Ronquist, F.4
  • 7
    • 0003654146 scopus 로고    scopus 로고
    • Computer-Assisted Analysis of Mixtures and Applications: Meta-Analysis
    • CRC press
    • D. Böhning. Computer-Assisted Analysis of Mixtures and Applications: Meta-Analysis, Disease Mapping and Others, volume 81. CRC press, 2000.
    • (2000) Disease Mapping and Others , vol.81
    • Böhning, D.1
  • 8
    • 0033628578 scopus 로고    scopus 로고
    • Practical identifiability of finite mixtures of multivariate Bernoulli distributions
    • M. á. Carreira-Perpiñán and S. Renals. Practical identifiability of finite mixtures of multivariate Bernoulli distributions. Neural Computation, 12(1):141-152, 2000. URL https://doi.org/10.1162/089976600300015925.
    • (2000) Neural Computation , vol.12 , Issue.1 , pp. 141-152
    • Carreira-Perpiñán, M.Á.1    Renals, S.2
  • 9
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society B, 39:1-38, 1977. URL http://www.jstor.org/stable/2984875.
    • (1977) Journal of the Royal Statistical Society B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 11
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • A. E. Gelfand and A. F. M. Smith. Sampling-based approaches to calculating marginal densities. Journal of American Statistical Association, 85:398-409, 1990. URL https://doi.org/10.2307/2289776.
    • (1990) Journal of American Statistical Association , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 12
    • 0002795650 scopus 로고
    • Markov chain Monte Carlo maximum likelihood
    • Interface Foundation, Fairfax Station, Va
    • C. J. Geyer. Markov chain Monte Carlo maximum likelihood. In Proceedings of the 23rd Symposium on the Interface, pages 156-163. Interface Foundation, Fairfax Station, Va, 1991.
    • (1991) In Proceedings of the 23rd Symposium on the Interface , pp. 156-163
    • Geyer, C.J.1
  • 13
    • 84950437936 scopus 로고
    • Annealing Markov chain Monte Carlo with applications to ancestral inference
    • C. J. Geyer and E. A. Thompson. Annealing Markov chain Monte Carlo with applications to ancestral inference. Journal of the American Statistical Association, 90(431):909-920, 1995. URL https://doi.org/10.1080/01621459.1995.10476590.
    • (1995) Journal of the American Statistical Association , vol.90 , Issue.431 , pp. 909-920
    • Geyer, C.J.1    Thompson, E.A.2
  • 15
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4):711-732, 1995.
    • (1995) Biometrika , vol.82 , Issue.4 , pp. 711-732
    • Green, P.J.1
  • 16
    • 34247868033 scopus 로고    scopus 로고
    • Fitting finite mixtures of generalized linear regressions in R
    • B. Grün and F. Leisch. Fitting finite mixtures of generalized linear regressions in R. Computational Statistics & Data Analysis, 51(11):5247-5252, 2007. URL https://doi.org/10.1016/j.csda.2006.08.014.
    • (2007) Computational Statistics & Data Analysis , vol.51 , Issue.11 , pp. 5247-5252
    • Grün, B.1    Leisch, F.2
  • 17
    • 54949126376 scopus 로고    scopus 로고
    • FlexMix version 2: Finite mixtures with concomitant variables and varying and constant parameters
    • B. Grün and F. Leisch. FlexMix version 2: Finite mixtures with concomitant variables and varying and constant parameters. Journal of Statistical Software, 28(4):1-35, 2008. URL https://doi.org/10.18637/jss.v028.i04.
    • (2008) Journal of Statistical Software , vol.28 , Issue.4 , pp. 1-35
    • Grün, B.1    Leisch, F.2
  • 18
    • 84876106588 scopus 로고    scopus 로고
    • Unsupervised learning of categorical data with competing models
    • R. Ilin. Unsupervised learning of categorical data with competing models. IEEE transactions on neural networks and learning systems, 23(11):1726-1737, 2012. URL https://doi.org/10.1109/tnnls.2012.2213266.
    • (2012) IEEE transactions on neural networks and learning systems , vol.23 , Issue.11 , pp. 1726-1737
    • Ilin, R.1
  • 20
    • 0036887599 scopus 로고    scopus 로고
    • On the use of Bernoulli mixture models for text classification
    • A. Juan and E. Vidal. On the use of Bernoulli mixture models for text classification. Pattern Recognition, 35(12):2705-2710, 2002. URL https://doi.org/10.1016/s0031-3203(01)00242-4.
    • (2002) Pattern Recognition , vol.35 , Issue.12 , pp. 2705-2710
    • Juan, A.1    Vidal, E.2
  • 21
    • 11244333649 scopus 로고    scopus 로고
    • FlexMix: A general framework for finite mixture models and latent class regression in R
    • F. Leisch. FlexMix: A general framework for finite mixture models and latent class regression in R. Journal of Statistical Software, 11(8):1-18, 2004. URL https://doi.org/10.18637/jss.v011.i08.
    • (2004) Journal of Statistical Software , vol.11 , Issue.8 , pp. 1-18
    • Leisch, F.1
  • 22
    • 33750289836 scopus 로고    scopus 로고
    • A toolbox for k-centroids cluster analysis
    • F. Leisch. A toolbox for k-centroids cluster analysis. Computational Statistics & Data Analysis, 51(2): 526-544, 2006. URL https://doi.org/10.1016/j.csda.2005.10.006.
    • (2006) Computational Statistics & Data Analysis , vol.51 , Issue.2 , pp. 526-544
    • Leisch, F.1
  • 26
    • 79951870792 scopus 로고
    • The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem
    • J. S. Liu. The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem. Journal of the American Statistical Association, 89(427):958-966, 1994. URL https://doi.org/10.2307/2290921.
    • (1994) Journal of the American Statistical Association , vol.89 , Issue.427 , pp. 958-966
    • Liu, J.S.1
  • 27
    • 33750274518 scopus 로고    scopus 로고
    • Bayesian modelling and inference on mixtures of distributions
    • J. M. Marin, K. Mengersen, and C. P. Robert. Bayesian modelling and inference on mixtures of distributions. Handbook of Statistics, 25(1):577-590, 2005. URL https://doi.org/10.1016/s0169-7161(05)25016-2.
    • (2005) Handbook of Statistics , vol.25 , Issue.1 , pp. 577-590
    • Marin, J.M.1    Mengersen, K.2    Robert, C.P.3
  • 29
    • 34249673263 scopus 로고    scopus 로고
    • Bayesian finite mixtures with an unknown number of components: The allocation sampler
    • A. Nobile and A. T. Fearnside. Bayesian finite mixtures with an unknown number of components: The allocation sampler. Statistics and Computing, 17(2):147-162, 2007. URL https://doi.org/10.1007/s11222-006-9014-7.
    • (2007) Statistics and Computing , vol.17 , Issue.2 , pp. 147-162
    • Nobile, A.1    Fearnside, A.T.2
  • 30
    • 84887047429 scopus 로고    scopus 로고
    • Handling the label switching problem in latent class models via the ECR algorithm
    • P. Papastamoulis. Handling the label switching problem in latent class models via the ECR algorithm. Communications in Statistics-Simulation and Computation, 43(4):913-927, 2014. URL https://doi.org/10.1080/03610918.2012.718840.
    • (2014) Communications in Statistics-Simulation and Computation , vol.43 , Issue.4 , pp. 913-927
    • Papastamoulis, P.1
  • 31
    • 84956900027 scopus 로고    scopus 로고
    • Label.switching: An R package for dealing with the label switching problem in MCMC outputs
    • P. Papastamoulis. Label.switching: An R package for dealing with the label switching problem in MCMC outputs. Journal of Statistical Software, 69(1):1-24, 2016. URL https://doi.org/10.18637/jss.v069.c01.
    • (2016) Journal of Statistical Software , vol.69 , Issue.1 , pp. 1-24
    • Papastamoulis, P.1
  • 32
    • 58549097308 scopus 로고    scopus 로고
    • Reversible jump MCMC in mixtures of normal distributions with the same component means
    • P. Papastamoulis and G. Iliopoulos. Reversible jump MCMC in mixtures of normal distributions with the same component means. Computational Statistics & Data Analysis, 53(4):900-911, 2009. URL https://doi.org/10.1016/j.csda.2008.10.022.
    • (2009) Computational Statistics & Data Analysis , vol.53 , Issue.4 , pp. 900-911
    • Papastamoulis, P.1    Iliopoulos, G.2
  • 33
    • 77956665562 scopus 로고    scopus 로고
    • An artificial allocations based solution to the label switching problem in Bayesian analysis of mixtures of distributions
    • P. Papastamoulis and G. Iliopoulos. An artificial allocations based solution to the label switching problem in Bayesian analysis of mixtures of distributions. Journal of Computational and Graphical Statistics, 19:313-331, 2010.URL https://doi.org/10.1198/jcgs.2010.09008.
    • (2010) Journal of Computational and Graphical Statistics , vol.19 , pp. 313-331
    • Papastamoulis, P.1    Iliopoulos, G.2
  • 34
    • 84876687117 scopus 로고    scopus 로고
    • On the convergence rate of random permutation sampler and ECR algorithm in missing data models
    • P. Papastamoulis and G. Iliopoulos. On the convergence rate of random permutation sampler and ECR algorithm in missing data models. Methodology and Computing in Applied Probability, 15(2): 293-304, 2013. ISSN 1573-7713. URL https://doi.org/10.1007/s11009-011-9238-7.
    • (2013) Methodology and Computing in Applied Probability , vol.15 , Issue.2 , pp. 293-304
    • Papastamoulis, P.1    Iliopoulos, G.2
  • 35
  • 36
    • 41149087694 scopus 로고    scopus 로고
    • CODA: Convergence diagnosis and output analysis for MCMC
    • M. Plummer, N. Best, K. Cowles, and K. Vines. CODA: Convergence diagnosis and output analysis for MCMC. R News, 6(1):7-11, 2006. URL https://journal.r-project.org/archive/.
    • (2006) R News , vol.6 , Issue.1 , pp. 7-11
    • Plummer, M.1    Best, N.2    Cowles, K.3    Vines, K.4
  • 37
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and the EM algorithm. SIAM review, 26(2):195-239, 1984. URL https://doi.org/10.1137/1026034.
    • (1984) SIAM review , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 40
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components
    • S. Richardson and P. J. Green. On Bayesian analysis of mixtures with an unknown number of components. Journal of the Royal Statistical Society B, 59(4):731-758, 1997. URL https://doi.org/10.1111/1467-9868.00095.
    • (1997) Journal of the Royal Statistical Society B , vol.59 , Issue.4 , pp. 731-758
    • Richardson, S.1    Green, P.J.2
  • 41
    • 84901804666 scopus 로고    scopus 로고
    • Label switching in Bayesian mixture models: Deterministic relabeling strategies
    • C. E. Rodríguez and S. G. Walker. Label switching in Bayesian mixture models: Deterministic relabeling strategies. Journal of Computational and Graphical Statistics, 23(1):25-45, 2014. URL https://doi.org/10.1080/10618600.2012.735624.
    • (2014) Journal of Computational and Graphical Statistics , vol.23 , Issue.1 , pp. 25-45
    • Rodríguez, C.E.1    Walker, S.G.2
  • 42
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461-464, 1978. URL https://doi.org/10.1214/aos/1176344136.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 43
    • 0034374610 scopus 로고    scopus 로고
    • Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods
    • M. Stephens. Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods. The Annals of Statistics, 28(1):40-74, 2000a.
    • (2000) The Annals of Statistics , vol.28 , Issue.1 , pp. 40-74
    • Stephens, M.1
  • 44
    • 0034354410 scopus 로고    scopus 로고
    • Dealing with label switching in mixture models
    • M. Stephens. Dealing with label switching in mixture models. Journal of the Royal Statistical Society B, 62(4):795-809, 2000b. URL https://doi.org/10.1111/1467-9868.00265.
    • (2000) Journal of the Royal Statistical Society B , vol.62 , Issue.4 , pp. 795-809
    • Stephens, M.1
  • 45
    • 34548395146 scopus 로고    scopus 로고
    • Multivariate Bernoulli mixture models with application to postmortem tissue studies in schizophrenia
    • Z. Sun, O. Rosen, and A. R. Sampson. Multivariate Bernoulli mixture models with application to postmortem tissue studies in schizophrenia. Biometrics, 63(3):901-909, 2007. ISSN 1541-0420. URL https://doi.org/10.1111/j.1541-0420.2007.00762.x.
    • (2007) Biometrics , vol.63 , Issue.3 , pp. 901-909
    • Sun, Z.1    Rosen, O.2    Sampson, A.R.3
  • 46
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • M. Tanner and W.Wong. The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association, 82(398):528-540, 1987. URL https://doi.org/10.2307/2289457.
    • (1987) Journal of the American Statistical Association , vol.82 , Issue.398 , pp. 528-540
    • Tanner, M.1    Wong, W.2
  • 47
    • 84953350678 scopus 로고    scopus 로고
    • Bayesian variable selection for latent class analysis using a collapsed Gibbs sampler
    • A. White, J. Wyse, and T. B. Murphy. Bayesian variable selection for latent class analysis using a collapsed Gibbs sampler. Statistics and Computing, 26(1-2):511-527, 2016. URL https://doi.org/10.1007/s11222-014-9542-5.
    • (2016) Statistics and Computing , vol.26 , Issue.1-2 , pp. 511-527
    • White, A.1    Wyse, J.2    Murphy, T.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.