-
1
-
-
0026800935
-
Bacteriophage lysis: mechanism and regulation
-
Young R. 1992. Bacteriophage lysis: mechanism and regulation. Microbiol Rev 56:430-481
-
(1992)
Microbiol Rev
, vol.56
, pp. 430-481
-
-
Young, R.1
-
2
-
-
84888133613
-
Phage lysis: do we have the hole story yet?
-
Young R. 2013. Phage lysis: do we have the hole story yet? Curr Opin Microbiol 16:790-797. https://doi.org/10.1016/j.mib.2013.08.008
-
(2013)
Curr Opin Microbiol
, vol.16
, pp. 790-797
-
-
Young, R.1
-
3
-
-
84880372200
-
High-resolution view of bacteriophage lambda gene expression by ribosome profiling
-
Liu X, Jiang H, Gu Z, Roberts JW. 2013. High-resolution view of bacteriophage lambda gene expression by ribosome profiling. Proc Natl Acad Sci U S A 110:11928-11933. https://doi.org/10.1073/pnas.1309739110
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 11928-11933
-
-
Liu, X.1
Jiang, H.2
Gu, Z.3
Roberts, J.W.4
-
4
-
-
84895198685
-
Phage lysis: three steps, three choices, one outcome
-
Young R. 2014. Phage lysis: three steps, three choices, one outcome. J Microbiol 52:243-258. https://doi.org/10.1007/s12275-014-4087-z
-
(2014)
J Microbiol
, vol.52
, pp. 243-258
-
-
Young, R.1
-
5
-
-
76649100791
-
Micron-scale holes terminate the phage infection cycle
-
Dewey JS, Savva CG, White RL, Vitha S, Holzenburg A, Young R. 2010. Micron-scale holes terminate the phage infection cycle. Proc Natl Acad Sci U S A 107:2219-2223. https://doi.org/10.1073/pnas.0914030107
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 2219-2223
-
-
Dewey, J.S.1
Savva, C.G.2
White, R.L.3
Vitha, S.4
Holzenburg, A.5
Young, R.6
-
6
-
-
84868557725
-
The spanin complex is essential for lambda lysis
-
Berry JD, Rajaure M, Pang T, Young R. 2012. The spanin complex is essential for lambda lysis. J Bacteriol 194:5667-5674. https://doi.org/10 .1128/JB.01245-12
-
(2012)
J Bacteriol
, vol.194
, pp. 5667-5674
-
-
Berry, J.D.1
Rajaure, M.2
Pang, T.3
Young, R.4
-
7
-
-
0033384639
-
Complementation and characterization of the nested Rz and Rz1 reading frames in the genome of bacteriophage lambda
-
Zhang N, Young R. 1999. Complementation and characterization of the nested Rz and Rz1 reading frames in the genome of bacteriophage lambda. Mol Gen Genet 262:659-667. https://doi.org/10.1007/s004380051128
-
(1999)
Mol Gen Genet
, vol.262
, pp. 659-667
-
-
Zhang, N.1
Young, R.2
-
8
-
-
84875584251
-
Spanin function requires subunit homodimerization through intermolecular disulfide bonds
-
Berry JD, Rajaure M, Young R. 2013. Spanin function requires subunit homodimerization through intermolecular disulfide bonds. Mol Microbiol 88:35-47. https://doi.org/10.1111/mmi.12167
-
(2013)
Mol Microbiol
, vol.88
, pp. 35-47
-
-
Berry, J.D.1
Rajaure, M.2
Young, R.3
-
9
-
-
52649112247
-
The final step in the phage infection cycle: the Rz and Rz1 lysis proteins link the inner and outer membranes
-
Berry J, Summer EJ, Struck DK, Young R. 2008. The final step in the phage infection cycle: the Rz and Rz1 lysis proteins link the inner and outer membranes. Mol Microbiol 70:341-351. https://doi.org/10.1111/j.1365-2958.2008.06408.x
-
(2008)
Mol Microbiol
, vol.70
, pp. 341-351
-
-
Berry, J.1
Summer, E.J.2
Struck, D.K.3
Young, R.4
-
10
-
-
77957307926
-
The lambda spanin components Rz and Rz1 undergo tertiary and quaternary rearrangements upon complex formation
-
Berry J, Savva C, Holzenburg A, Young R. 2010. The lambda spanin components Rz and Rz1 undergo tertiary and quaternary rearrangements upon complex formation. Protein Sci 19:1967-1977. https://doi .org/10.1002/pro.485
-
(2010)
Protein Sci
, vol.19
, pp. 1967-1977
-
-
Berry, J.1
Savva, C.2
Holzenburg, A.3
Young, R.4
-
11
-
-
84928691064
-
Membrane fusion during phage lysis
-
Rajaure M, Berry J, Kongari R, Cahill J, Young R. 2015. Membrane fusion during phage lysis. Proc Natl Acad Sci U S A 112:5497-5502. https://doi .org/10.1073/pnas.1420588112
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 5497-5502
-
-
Rajaure, M.1
Berry, J.2
Kongari, R.3
Cahill, J.4
Young, R.5
-
12
-
-
85012864552
-
Genetic analysis of the lambda spanins Rz and Rz1: identification of functional domains
-
Cahill J, Rajaure M, O'Leary C, Sloan J, Marrufo A, Holt A, Kulkarni A, Hernandez O, Young R. 2016. Genetic analysis of the lambda spanins Rz and Rz1: identification of functional domains. G3 (Bethesda) 7:741-753. https://doi.org/10.1534/g3.116.037192
-
(2016)
G3 (Bethesda)
, vol.7
, pp. 741-753
-
-
Cahill, J.1
Rajaure, M.2
O'Leary, C.3
Sloan, J.4
Marrufo, A.5
Holt, A.6
Kulkarni, A.7
Hernandez, O.8
Young, R.9
-
13
-
-
84922359615
-
Virus and cell fusion mechanisms
-
Podbilewicz B. 2014. Virus and cell fusion mechanisms. Annu Rev Cell Dev Biol 30:111-139. https://doi.org/10.1146/annurev-cellbio-101512-122422
-
(2014)
Annu Rev Cell Dev Biol
, vol.30
, pp. 111-139
-
-
Podbilewicz, B.1
-
14
-
-
33746915109
-
N-to C-terminal SNARE complex assembly promotes rapid membrane fusion
-
Pobbati AV, Stein A, Fasshauer D. 2006. N-to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313:673-676. https://doi.org/10.1126/science.1129486
-
(2006)
Science
, vol.313
, pp. 673-676
-
-
Pobbati, A.V.1
Stein, A.2
Fasshauer, D.3
-
15
-
-
21044438202
-
The rate of compensatory mutation in the DNA bacteriophage γX174
-
Poon A, Chao L. 2005. The rate of compensatory mutation in the DNA bacteriophage γX174. Genetics 170:989-999. https://doi.org/10.1534/genetics.104.039438
-
(2005)
Genetics
, vol.170
, pp. 989-999
-
-
Poon, A.1
Chao, L.2
-
16
-
-
0036228521
-
Engineering a reduced Escherichia coli genome
-
Kolisnychenko V, Plunkett G, III, Herring CD, Feher T, Posfai J, Blattner FR, Posfai G. 2002. Engineering a reduced Escherichia coli genome. Genome Res 12:640-647. https://doi.org/10.1101/gr.217202
-
(2002)
Genome Res
, vol.12
, pp. 640-647
-
-
Kolisnychenko, V.1
Plunkett, G.2
Herring, C.D.3
Feher, T.4
Posfai, J.5
Blattner, F.R.6
Posfai, G.7
-
17
-
-
0034092676
-
Allele-specific suppression as a tool to study proteinprotein interactions in bacteria
-
Manson MD. 2000. Allele-specific suppression as a tool to study proteinprotein interactions in bacteria. Methods 20:18-34. https://doi.org/10 .1006/meth.1999.0902
-
(2000)
Methods
, vol.20
, pp. 18-34
-
-
Manson, M.D.1
-
18
-
-
0027480940
-
Disulfide bond contribution to protein stability: positional effects of substitution in the hydrophobic core of the two-stranded alpha-helical coiled-coil
-
Zhou NE, Kay CM, Hodges RS. 1993. Disulfide bond contribution to protein stability: positional effects of substitution in the hydrophobic core of the two-stranded alpha-helical coiled-coil. Biochemistry 32: 3178-3187. https://doi.org/10.1021/bi00063a033
-
(1993)
Biochemistry
, vol.32
, pp. 3178-3187
-
-
Zhou, N.E.1
Kay, C.M.2
Hodges, R.S.3
-
19
-
-
2442655493
-
Stabilizing and destabilizing clusters in the hydrophobic core of long two-stranded α-helical coiled-coils
-
Kwok SC, Hodges RS. 2004. Stabilizing and destabilizing clusters in the hydrophobic core of long two-stranded α-helical coiled-coils. J Biol Chem 279:21576-21588. https://doi.org/10.1074/jbc.M401074200
-
(2004)
J Biol Chem
, vol.279
, pp. 21576-21588
-
-
Kwok, S.C.1
Hodges, R.S.2
-
20
-
-
0348224027
-
Detection of α-helical coiled-coil dimer formation by spin-labeled synthetic peptides: a model parallel coiled-coil peptide and the antiparallel coiled coil formed by a replica of the ProP C terminus
-
Hillar A, Tripet B, Zoetewey D, Wood JM, Hodges RS, Boggs JM. 2003. Detection of α-helical coiled-coil dimer formation by spin-labeled synthetic peptides: a model parallel coiled-coil peptide and the antiparallel coiled coil formed by a replica of the ProP C terminus. Biochemistry 42:15170-15178. https://doi.org/10.1021/bi035122t
-
(2003)
Biochemistry
, vol.42
, pp. 15170-15178
-
-
Hillar, A.1
Tripet, B.2
Zoetewey, D.3
Wood, J.M.4
Hodges, R.S.5
Boggs, J.M.6
-
21
-
-
0033168997
-
Suppression mechanisms: themes from variations
-
Prelich G. 1999. Suppression mechanisms: themes from variations. Trends Genet 15:261-266. https://doi.org/10.1016/S0168-9525(99)01749-7
-
(1999)
Trends Genet
, vol.15
, pp. 261-266
-
-
Prelich, G.1
-
22
-
-
33744918278
-
Second-site revertants of a Semliki Forest virus fusion-block mutation reveal the dynamics of a class II membrane fusion protein
-
Chanel-Vos C, Kielian M. 2006. Second-site revertants of a Semliki Forest virus fusion-block mutation reveal the dynamics of a class II membrane fusion protein. J Virol 80:6115-6122. https://doi.org/10 .1128/JVI.00167-06
-
(2006)
J Virol
, vol.80
, pp. 6115-6122
-
-
Chanel-Vos, C.1
Kielian, M.2
-
23
-
-
78049487538
-
Alphavirus entry and membrane fusion
-
Kielian M, Chanel-Vos C, Liao M. 2010. Alphavirus entry and membrane fusion. Viruses 2:796-825. https://doi.org/10.3390/v2040796
-
(2010)
Viruses
, vol.2
, pp. 796-825
-
-
Kielian, M.1
Chanel-Vos, C.2
Liao, M.3
-
24
-
-
84855757315
-
Basic amino-acid side chains regulate transmembrane integrin signalling
-
Kim C, Schmidt T, Cho E-G, Ye F, Ulmer TS, Ginsberg MH. 2011. Basic amino-acid side chains regulate transmembrane integrin signalling. Nature 481:209-213. https://doi.org/10.1038/nature10697
-
(2011)
Nature
, vol.481
, pp. 209-213
-
-
Kim, C.1
Schmidt, T.2
Cho, E.-G.3
Ye, F.4
Ulmer, T.S.5
Ginsberg, M.H.6
-
25
-
-
0037448550
-
The flexing/twirling helix: exploring the flexibility about molecular hinges formed by proline and glycine motifs in transmembrane helices
-
Bright JN, Sansom MSP. 2003. The flexing/twirling helix: exploring the flexibility about molecular hinges formed by proline and glycine motifs in transmembrane helices. J Phys Chem B 107:627-636. https://doi.org/10.1021/jp026686u
-
(2003)
J Phys Chem B
, vol.107
, pp. 627-636
-
-
Bright, J.N.1
Sansom, M.S.P.2
-
26
-
-
0242298583
-
A dual-functional paramyxovirus F protein regulatory switch segment activation and membrane fusion
-
Russell CJ, Kantor KL, Jardetzky TS, Lamb RA. 2003. A dual-functional paramyxovirus F protein regulatory switch segment activation and membrane fusion. J Cell Biol 163:363-374. https://doi.org/10.1083/jcb .200305130
-
(2003)
J Cell Biol
, vol.163
, pp. 363-374
-
-
Russell, C.J.1
Kantor, K.L.2
Jardetzky, T.S.3
Lamb, R.A.4
-
27
-
-
0034712879
-
Fusion protein of the paramyxovirus SV5: destabilizing and stabilizing mutants of fusion activation
-
Paterson RG, Russell CJ, Lamb RA. 2000. Fusion protein of the paramyxovirus SV5: destabilizing and stabilizing mutants of fusion activation. Virology 270:17-30. https://doi.org/10.1006/viro.2000.0267
-
(2000)
Virology
, vol.270
, pp. 17-30
-
-
Paterson, R.G.1
Russell, C.J.2
Lamb, R.A.3
-
28
-
-
13744252333
-
Role of the simian virus 5 fusion protein N-terminal coiled-coil domain in folding and promotion of membrane fusion
-
West DS, Sheehan MS, Segeleon PK, Dutch RE. 2005. Role of the simian virus 5 fusion protein N-terminal coiled-coil domain in folding and promotion of membrane fusion. J Virol 79:1543-1551. https://doi.org/10.1128/JVI.79.3.1543-1551.2005
-
(2005)
J Virol
, vol.79
, pp. 1543-1551
-
-
West, D.S.1
Sheehan, M.S.2
Segeleon, P.K.3
Dutch, R.E.4
-
29
-
-
0033197735
-
The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion
-
McNew JA, Weber T, Engelman DM, Söllner TH, Rothman JE. 1999. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol Cell 4:415-421. https://doi.org/10.1016/S1097-2765(00)80343-3
-
(1999)
Mol Cell
, vol.4
, pp. 415-421
-
-
McNew, J.A.1
Weber, T.2
Engelman, D.M.3
Söllner, T.H.4
Rothman, J.E.5
-
31
-
-
45849152550
-
Mechanisms of membrane fusion: disparate players and common principles
-
Martens S, McMahon HT. 2008. Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9:543-556. https://doi.org/10.1038/nrm2417
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, pp. 543-556
-
-
Martens, S.1
McMahon, H.T.2
-
32
-
-
84866132236
-
Single reconstituted neuronal SNARE complexes zipper in three distinct stages
-
Gao Y, Zorman S, Gundersen G, Xi Z, Ma L, Sirinakis G, Rothman JE, Zhang Y. 2012. Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337:1340-1343. https://doi.org/10.1126/science.1224492
-
(2012)
Science
, vol.337
, pp. 1340-1343
-
-
Gao, Y.1
Zorman, S.2
Gundersen, G.3
Xi, Z.4
Ma, L.5
Sirinakis, G.6
Rothman, J.E.7
Zhang, Y.8
-
33
-
-
3142510881
-
Intracellular and viral membrane fusion: a uniting mechanism
-
Söllner TH. 2004. Intracellular and viral membrane fusion: a uniting mechanism. Curr Opin Cell Biol 16:429-435. https://doi.org/10.1016/j .ceb.2004.06.015
-
(2004)
Curr Opin Cell Biol
, vol.16
, pp. 429-435
-
-
Söllner, T.H.1
-
34
-
-
0028604471
-
Rapid confirmation of single copy lambda prophage integration by PCR
-
Powell BS, Rivas MP, Court DL, Nakamura Y, Turnbough CL, Jr. 1994. Rapid confirmation of single copy lambda prophage integration by PCR. Nucleic Acids Res 22:5765-5766. https://doi.org/10.1093/nar/22.25.5765
-
(1994)
Nucleic Acids Res
, vol.22
, pp. 5765-5766
-
-
Powell, B.S.1
Rivas, M.P.2
Court, D.L.3
Nakamura, Y.4
Turnbough, C.L.5
-
35
-
-
0027984891
-
A dominant mutation in the bacteriophage lambda S gene causes premature lysis and an absolute defective plating phenotype
-
Johnson-Boaz R, Chang CY, Young R. 1994. A dominant mutation in the bacteriophage lambda S gene causes premature lysis and an absolute defective plating phenotype. Mol Microbiol 13:495-504. https://doi.org/10.1111/j.1365-2958.1994.tb00444.x
-
(1994)
Mol Microbiol
, vol.13
, pp. 495-504
-
-
Johnson-Boaz, R.1
Chang, C.Y.2
Young, R.3
-
36
-
-
75149113312
-
The N-terminal transmembrane domain of λ S is required for holin but not antiholin function
-
White R, Tran TA, Dankenbring CA, Deaton J, Young R. 2010. The N-terminal transmembrane domain of λ S is required for holin but not antiholin function. J Bacteriol 192:725-733. https://doi.org/10 .1128/JB.01263-09
-
(2010)
J Bacteriol
, vol.192
, pp. 725-733
-
-
White, R.1
Tran, T.A.2
Dankenbring, C.A.3
Deaton, J.4
Young, R.5
-
37
-
-
31544450286
-
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection
-
2006.008
-
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.008. https://doi.org/10.1038/msb4100050
-
(2006)
Mol Syst Biol
, vol.2
-
-
Baba, T.1
Ara, T.2
Hasegawa, M.3
Takai, Y.4
Okumura, Y.5
Baba, M.6
Datsenko, K.A.7
Tomita, M.8
Wanner, B.L.9
Mori, H.10
|