-
1
-
-
84955604605
-
Radiomics: images are more than pictures, they are data
-
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016; 278(2): 563-577.
-
(2016)
Radiology
, vol.278
, Issue.2
, pp. 563-577
-
-
Gillies, R.J.1
Kinahan, P.E.2
Hricak, H.3
-
2
-
-
84867139157
-
QIN "Radiomics: The Process and the Challenges
-
Kumar V, Gu Y, Basu S, et al. QIN "Radiomics: The Process and the Challenges." Magn Reson Imaging 2012; 30(9): 1234-1248.
-
(2012)
Magn Reson Imaging
, vol.30
, Issue.9
, pp. 1234-1248
-
-
Kumar, V.1
Gu, Y.2
Basu, S.3
-
3
-
-
84857037061
-
Radiomics: extracting more information from medical images using advanced feature analysis
-
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012; 48(4): 441-446.
-
(2012)
Eur J Cancer
, vol.48
, Issue.4
, pp. 441-446
-
-
Lambin, P.1
Rios-Velazquez, E.2
Leijenaar, R.3
-
4
-
-
84901946941
-
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
-
Aerts HJWL, Velazquez ER, Leijenaar RTH, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014; doi:10.1038/ncomms5006.
-
(2014)
Nat Commun
-
-
Aerts, H.J.W.L.1
Velazquez, E.R.2
Leijenaar, R.T.H.3
-
5
-
-
0021242388
-
Tumor heterogeneity
-
Heppner GH. Tumor heterogeneity. Cancer Res 1984; 44(6): 2259-2265.
-
(1984)
Cancer Res
, vol.44
, Issue.6
, pp. 2259-2265
-
-
Heppner, G.H.1
-
6
-
-
84884368877
-
Influence of tumour micro-environment heterogeneity on therapeutic response
-
Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013; 501(7467): 346-354.
-
(2013)
Nature
, vol.501
, Issue.7467
, pp. 346-354
-
-
Junttila, M.R.1
de Sauvage, F.J.2
-
7
-
-
84920964255
-
Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome
-
O'Connor JPB, Rose CJ, Waterton JC, et al. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 2015; 21(2): 249-257.
-
(2015)
Clin Cancer Res
, vol.21
, Issue.2
, pp. 249-257
-
-
O'Connor, J.P.B.1
Rose, C.J.2
Waterton, J.C.3
-
8
-
-
0003543948
-
The Essential Physics of Medical Imaging
-
Philadelphia: Lippincott Williams & Wilkins
-
Bushberg JT, Boone JM. The Essential Physics of Medical Imaging. Philadelphia: Lippincott Williams & Wilkins 2011.
-
(2011)
-
-
Bushberg, J.T.1
Boone, J.M.2
-
9
-
-
77956565862
-
Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters
-
Galavis PE, Hollensen C, Jallow N, et al. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 2010; 49(7): 1012-1016.
-
(2010)
Acta Oncol
, vol.49
, Issue.7
, pp. 1012-1016
-
-
Galavis, P.E.1
Hollensen, C.2
Jallow, N.3
-
10
-
-
84962314053
-
Reproducibility of radiomics for deciphering tumor phenotype with imaging
-
Zhao B, Tan Y, Tsai W-Y, et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep 2016; 6: 23428.
-
(2016)
Sci Rep
, vol.6
, pp. 23428
-
-
Zhao, B.1
Tan, Y.2
Tsai, W-Y.3
-
11
-
-
84911973434
-
Test-retest reproducibility analysis of lung CT image features
-
Balagurunathan Y, Kumar V, Gu Y, et al. Test-retest reproducibility analysis of lung CT image features. J Digit Imaging 2014; 27(6): 805-823.
-
(2014)
J Digit Imaging
, vol.27
, Issue.6
, pp. 805-823
-
-
Balagurunathan, Y.1
Kumar, V.2
Gu, Y.3
-
12
-
-
84904248018
-
Robust radiomics feature quantification using semiautomatic volumetric segmentation
-
Parmar C, Rios Velazquez E, Leijenaar R, et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 2014; doi:10.1371/journal.pone.0102107.
-
(2014)
PLoS One
-
-
Parmar, C.1
Rios Velazquez, E.2
Leijenaar, R.3
-
13
-
-
84871292104
-
A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists' delineations and with the surgical specimen
-
Rios Velazquez E, Aerts HJWL, Gu Y, et al. A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists' delineations and with the surgical specimen. Radiother Oncol 2012; 105(2): 167-173.
-
(2012)
Radiother Oncol
, vol.105
, Issue.2
, pp. 167-173
-
-
Rios Velazquez, E.1
Aerts, H.J.W.L.2
Gu, Y.3
-
14
-
-
84904264664
-
Volumetric CT-based segmentation of NSCLC using 3D-Slicer
-
Velazquez ER, Parmar C, Jermoumi M, et al. Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Sci Rep 2013; doi:10.1038/srep03529.
-
(2013)
Sci Rep
-
-
Velazquez, E.R.1
Parmar, C.2
Jermoumi, M.3
-
16
-
-
85021095965
-
-
(7 February 2017, date last accessed).
-
FormatAnalyze-MRC CBU Imaging Wiki. http://imaging.mrc-cbu. cam.ac.uk/imaging/FormatAnalyze (7 February 2017, date last accessed).
-
FormatAnalyze-MRC CBU Imaging Wiki
-
-
-
17
-
-
85021169692
-
NIfTI-1 Data Format - Neuroimaging Informatics Technology Initiative
-
(7 February, date last accessed).
-
NIfTI-1 Data Format - Neuroimaging Informatics Technology Initiative. http://nifti.nimh.nih.gov/nifti-1 (7 February 2017, date last accessed).
-
(2017)
-
-
-
18
-
-
0022683169
-
Efficient synthesis of Gaussian filters by cascaded uniform filters
-
PAMI-8
-
Wells WM. Efficient synthesis of Gaussian filters by cascaded uniform filters. IEEE Trans Pattern Anal Mach Intell 1986; PAMI-8(2): 234-239.
-
(1986)
IEEE Trans Pattern Anal Mach Intell
, Issue.2
, pp. 234-239
-
-
Wells, W.M.1
-
19
-
-
84938942773
-
The effect of SUV discretization in quantitative FDG-PET radiomics: the need for standardized methodology in tumor texture analysis
-
Leijenaar RTH, Nalbantov G, Carvalho S, et al. The effect of SUV discretization in quantitative FDG-PET radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep 2015; doi:10.1038/srep11075.
-
(2015)
Sci Rep
-
-
Leijenaar, R.T.H.1
Nalbantov, G.2
Carvalho, S.3
-
20
-
-
84956678400
-
18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer
-
Orlhac F, Soussan M, Chouahnia K, et al. 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer. PLoS ONE 2015; 10(12): e0145063.
-
(2015)
PLoS ONE
, vol.10
, Issue.12
-
-
Orlhac, F.1
Soussan, M.2
Chouahnia, K.3
-
21
-
-
84894815316
-
The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake
-
Brooks FJ, Grigsby PW. The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med. 2014; 55(1): 37-42.
-
(2014)
J Nucl Med.
, vol.55
, Issue.1
, pp. 37-42
-
-
Brooks, F.J.1
Grigsby, P.W.2
-
22
-
-
84899486643
-
Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis
-
Orlhac F, Soussan M, Maisonobe J-A, et al. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. Sci Rep 2014; 55(3): 414-422.
-
(2014)
Sci Rep
, vol.55
, Issue.3
, pp. 414-422
-
-
Orlhac, F.1
Soussan, M.2
Maisonobe, J-A.3
-
23
-
-
84975698783
-
Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of reconstruction and delineation
-
van Velden FHP, Kramer GM, Frings V, et al. Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol 2016; doi:10.1007/s11307-016-0940-2.
-
(2016)
Mol Imaging Biol
-
-
van Velden, F.H.P.1
Kramer, G.M.2
Frings, V.3
-
24
-
-
59149105325
-
Exploring feature-based approaches in PET images for predicting cancer treatment outcomes
-
El Naqa I, Grigsby PW, Apte A, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit 2009; 42(6): 1162-1171.
-
(2009)
Pattern Recognit
, vol.42
, Issue.6
, pp. 1162-1171
-
-
El Naqa, I.1
Grigsby, P.W.2
Apte, A.3
-
26
-
-
0001416258
-
Texture analysis using gray level run lengths
-
Galloway MM. Texture analysis using gray level run lengths. Comput Graph Image Process 1975; 4(2): 172-179.
-
(1975)
Comput Graph Image Process
, vol.4
, Issue.2
, pp. 172-179
-
-
Galloway, M.M.1
-
27
-
-
84896867733
-
Advanced statistical matrices for texture characterization: application to cell classification
-
Thibault G, Angulo J, Meyer F. Advanced statistical matrices for texture characterization: application to cell classification. IEEE Trans Biomed Eng. 2014; 61(3): 630-637.
-
(2014)
IEEE Trans Biomed Eng.
, vol.61
, Issue.3
, pp. 630-637
-
-
Thibault, G.1
Angulo, J.2
Meyer, F.3
-
28
-
-
0020974699
-
Neighboring gray level dependence matrix for texture classification
-
Sun C, Wee WG. Neighboring gray level dependence matrix for texture classification. Comput Vis Graph Image Process 1983; 23(3): 341-352.
-
(1983)
Comput Vis Graph Image Process
, vol.23
, Issue.3
, pp. 341-352
-
-
Sun, C.1
Wee, W.G.2
-
29
-
-
84983273906
-
Radiomics in glioblastoma: current status, challenges and potential opportunities
-
Narang S, Lehrer M, Yang D, et al. Radiomics in glioblastoma: current status, challenges and potential opportunities. Transl Cancer Res 2016; 5(4): 383-397.
-
(2016)
Transl Cancer Res
, vol.5
, Issue.4
, pp. 383-397
-
-
Narang, S.1
Lehrer, M.2
Yang, D.3
-
30
-
-
67649595528
-
STEP: Spatiotemporal enhancement pattern for MR-based breast tumor diagnosis
-
Zheng Y, Englander S, Baloch S, et al. STEP: Spatiotemporal enhancement pattern for MR-based breast tumor diagnosis. Med Phys 2009; 36(7): 3192-3204.
-
(2009)
Med Phys
, vol.36
, Issue.7
, pp. 3192-3204
-
-
Zheng, Y.1
Englander, S.2
Baloch, S.3
-
31
-
-
84881050542
-
Joint learning and weighting of visual vocabulary for bag-of-feature based tissue classification
-
Wang JJ-Y, Bensmail H, Gao X. Joint learning and weighting of visual vocabulary for bag-of-feature based tissue classification. Pattern Recognit 2013; 46(12): 3249-3255.
-
(2013)
Pattern Recognit
, vol.46
, Issue.12
, pp. 3249-3255
-
-
Wang, J.J-Y.1
Bensmail, H.2
Gao, X.3
-
32
-
-
85003481017
-
Mining textural knowledge in biological images: applications, methods and trends
-
Cataldo SD, Ficarra E. Mining textural knowledge in biological images: applications, methods and trends. Comput Struct Biotechnol J 2016; doi:10.1016/j.csbj.2016.11.002.
-
(2016)
Comput Struct Biotechnol J
-
-
Cataldo, S.D.1
Ficarra, E.2
-
33
-
-
56449099926
-
The reference image database to evaluate response to therapy in lung cancer (RIDER) project: a resource for the development of change-analysis software
-
Armato SG, Meyer CR, Mcnitt-Gray MF, et al. The reference image database to evaluate response to therapy in lung cancer (RIDER) project: a resource for the development of change-analysis software. Clin Pharmacol Ther 2008; 84(4): 448-456.
-
(2008)
Clin Pharmacol Ther
, vol.84
, Issue.4
, pp. 448-456
-
-
Armato, S.G.1
Meyer, C.R.2
Mcnitt-Gray, M.F.3
-
34
-
-
37549029793
-
The properties of highdimensional data spaces: implications for exploring gene and protein expression data
-
Clarke R, Ressom HW, Wang A, et al. The properties of highdimensional data spaces: implications for exploring gene and protein expression data. Nat Rev Cancer 2008; 8(1): 37-49.
-
(2008)
Nat Rev Cancer
, vol.8
, Issue.1
, pp. 37-49
-
-
Clarke, R.1
Ressom, H.W.2
Wang, A.3
-
35
-
-
84883018050
-
Impact of bioinformatic procedures in the development and translation of high-throughput molecular classifiers in oncology
-
Ferte C, Trister AD, Huang E, et al. Impact of bioinformatic procedures in the development and translation of high-throughput molecular classifiers in oncology. Clin Cancer Res 2013; 19(16): 4315-4325.
-
(2013)
Clin Cancer Res
, vol.19
, Issue.16
, pp. 4315-4325
-
-
Ferte, C.1
Trister, A.D.2
Huang, E.3
-
36
-
-
0002294347
-
A simple sequentially rejective multiple test procedure
-
Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat 1979; 6(2): 65-70.
-
(1979)
Scand J Stat
, vol.6
, Issue.2
, pp. 65-70
-
-
Holm, S.1
-
37
-
-
0025066941
-
More powerful procedures for multiple significance testing
-
Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Statist Med 1990; 9(7): 811-818.
-
(1990)
Statist Med
, vol.9
, Issue.7
, pp. 811-818
-
-
Hochberg, Y.1
Benjamini, Y.2
-
38
-
-
85008173453
-
Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma
-
Kanas VG, Zacharaki EI, Thomas GA, et al. Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma. Comput Methods Programs Biomed 2017; 140: 249-257.
-
(2017)
Comput Methods Programs Biomed
, vol.140
, pp. 249-257
-
-
Kanas, V.G.1
Zacharaki, E.I.2
Thomas, G.A.3
-
39
-
-
84939498419
-
Machine learning methods for quantitative radiomic biomarkers
-
Parmar C, Grossmann P, Bussink J, et al. Machine learning methods for quantitative radiomic biomarkers. Sci Rep 2015. doi:10.1038/srep13087.
-
(2015)
Sci Rep
-
-
Parmar, C.1
Grossmann, P.2
Bussink, J.3
-
41
-
-
84987658584
-
Discovery radiomics for computed tomography cancer detection
-
arXiv:1509.00117.
-
Kumar D, Shafiee MJ, Chung AG, et al. Discovery radiomics for computed tomography cancer detection. 2015; arXiv:1509.00117.
-
(2015)
-
-
Kumar, D.1
Shafiee, M.J.2
Chung, A.G.3
-
42
-
-
85010817811
-
Predicting malignant nodules from screening CT scans
-
Hawkins S, Wang H, Liu Y, et al. Predicting malignant nodules from screening CT scans. J Thoracic Oncol 2016; doi:10.1016/j.jtho.2016.07.002.
-
(2016)
J Thoracic Oncol
-
-
Hawkins, S.1
Wang, H.2
Liu, Y.3
-
43
-
-
84983670549
-
Multi-scale convolutional neural networks for lung nodule classification
-
Shen W, Zhou M, Yang F, et al. Multi-scale convolutional neural networks for lung nodule classification. In S Ourselin, DC Alexander, C-F Westin, MJ Cardoso (eds): Information Processing in Medical Imaging. Cham: Springer International Publishing, 2015; 9123: 588-599.
-
(2015)
In S Ourselin, DC Alexander, C-F Westin, MJ Cardoso (eds): Information Processing in Medical Imaging. Cham: Springer International Publishing
, vol.9123
, pp. 588-599
-
-
Shen, W.1
Zhou, M.2
Yang, F.3
-
44
-
-
84862508110
-
Survival analysis of patients with high-grade gliomas based on data mining of imaging variables
-
Zacharaki EI, Morita N, Bhatt P, et al. Survival analysis of patients with high-grade gliomas based on data mining of imaging variables. AJNR Am J Neuroradiol. 2012; 33(6): 1065.
-
(2012)
AJNR Am J Neuroradiol.
, vol.33
, Issue.6
, pp. 1065
-
-
Zacharaki, E.I.1
Morita, N.2
Bhatt, P.3
-
45
-
-
81855182180
-
Investigating machine learning techniques for MRI-based classification of brain neoplasms
-
Zacharaki EI, Kanas VG, Davatzikos C. Investigating machine learning techniques for MRI-based classification of brain neoplasms. Int J Comput Assist Radiol Surg. 2011; 6(6): 821-828.
-
(2011)
Int J Comput Assist Radiol Surg.
, vol.6
, Issue.6
, pp. 821-828
-
-
Zacharaki, E.I.1
Kanas, V.G.2
Davatzikos, C.3
-
46
-
-
85007257946
-
Radiological image traits predictive of cancer status in pulmonary nodules
-
clincanres.3102.2016.
-
Liu Y, Balagurunathan Y, Atwater T, et al. Radiological image traits predictive of cancer status in pulmonary nodules. Clin Cancer Res 2016; clincanres.3102.2016.
-
(2016)
Clin Cancer Res
-
-
Liu, Y.1
Balagurunathan, Y.2
Atwater, T.3
-
47
-
-
73149086838
-
Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme
-
Zacharaki EI, Wang S, Chawla S, et al. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 2009; 62(6): 1609-1618.
-
(2009)
Magn Reson Med
, vol.62
, Issue.6
, pp. 1609-1618
-
-
Zacharaki, E.I.1
Wang, S.2
Chawla, S.3
-
49
-
-
84994560182
-
Rectal cancer: assessment of neoadjuvant chemo-radiation outcome based on radiomics of multi-parametric MRI
-
Nie K, Shi L, Chen Q, et al. Rectal cancer: assessment of neoadjuvant chemo-radiation outcome based on radiomics of multi-parametric MRI. Clin Cancer Res 2016; doi:10.1158/1078-0432.CCR-15-2997.
-
(2016)
Clin Cancer Res
-
-
Nie, K.1
Shi, L.2
Chen, Q.3
-
50
-
-
84982182244
-
Deep learning based classification of breast tumors with shear-wave elastography
-
Zhang Q, Xiao Y, Dai W, et al. Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics 2016; 72: 150-157.
-
(2016)
Ultrasonics
, vol.72
, pp. 150-157
-
-
Zhang, Q.1
Xiao, Y.2
Dai, W.3
-
51
-
-
84968638584
-
Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks
-
Setio AAA, Ciompi F, Litjens G, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 2016; 35(5): 1160-1169.
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.5
, pp. 1160-1169
-
-
Setio, A.A.A.1
Ciompi, F.2
Litjens, G.3
-
52
-
-
85021115846
-
Automated 5-year mortality prediction using deep learning and radiomics features from chest computed tomography
-
Carneiro G, Oakden-Rayner L, Bradley AP, et al. Automated 5-year mortality prediction using deep learning and radiomics features from chest computed tomography. 2016.
-
(2016)
-
-
Carneiro, G.1
Oakden-Rayner, L.2
Bradley, A.P.3
-
53
-
-
84964292829
-
Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans
-
Cheng J-Z, Ni D, Chou Y-H, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep 2016; 6: 24454.
-
(2016)
Sci Rep
, vol.6
, pp. 24454
-
-
Cheng, J-Z.1
Ni, D.2
Chou, Y-H.3
-
54
-
-
84968572894
-
Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
-
Kallenberg M, Petersen K, Nielsen M, et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging 2016; 35(5): 1322-1331.
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.5
, pp. 1322-1331
-
-
Kallenberg, M.1
Petersen, K.2
Nielsen, M.3
-
55
-
-
0033127826
-
Three-dimensional volume rendering of spiral CT data: theory and method 1
-
Calhoun PS, Kuszyk BS, Heath DG, et al. Three-dimensional volume rendering of spiral CT data: theory and method 1. Radiographics 1999; 19(3): 745-764.
-
(1999)
Radiographics
, vol.19
, Issue.3
, pp. 745-764
-
-
Calhoun, P.S.1
Kuszyk, B.S.2
Heath, D.G.3
-
57
-
-
13344277921
-
Theragnostic imaging for radiation oncology: dosepainting by numbers
-
Bentzen SM. Theragnostic imaging for radiation oncology: dosepainting by numbers. Lancet Oncol 2005; 6(2): 112-117.
-
(2005)
Lancet Oncol
, vol.6
, Issue.2
, pp. 112-117
-
-
Bentzen, S.M.1
-
58
-
-
79952013846
-
Molecular-imaging-based dose painting-a novel paradigm for radiation therapy prescription
-
Bentzen SM, Gregoire V. Molecular-imaging-based dose painting-a novel paradigm for radiation therapy prescription. Semin Radiat Oncol 2011; 21(2): 101-110.
-
(2011)
Semin Radiat Oncol
, vol.21
, Issue.2
, pp. 101-110
-
-
Bentzen, S.M.1
Gregoire, V.2
-
59
-
-
85021131444
-
-
IMV Medical Information Division, Inc.
-
IMV CT Benchmark Report. IMV Medical Information Division, Inc. 2015.
-
(2015)
IMV CT Benchmark Report
-
-
-
61
-
-
84928902792
-
Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma
-
Grove O, Berglund AE, Schabath MB, et al. Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. PLoS ONE 2015; 10(3): e0118261.
-
(2015)
PLoS ONE
, vol.10
, Issue.3
-
-
Grove, O.1
Berglund, A.E.2
Schabath, M.B.3
-
62
-
-
85054102101
-
Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set
-
Li H, Zhu Y, Burnside ES, et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. Npj Breast Cancer 2016; 2: 16012.
-
(2016)
Npj Breast Cancer
, vol.2
, pp. 16012
-
-
Li, H.1
Zhu, Y.2
Burnside, E.S.3
-
63
-
-
84871704418
-
Non-small cell lung cancer: histopathologic correlates for texture parameters at CT
-
Ganeshan B, Goh V, Mandeville HC, et al. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology 2013; 266(1): 326-336.
-
(2013)
Radiology
, vol.266
, Issue.1
, pp. 326-336
-
-
Ganeshan, B.1
Goh, V.2
Mandeville, H.C.3
-
64
-
-
42449156691
-
Identification of noninvasive imaging surrogates for brain tumor gene-expression modules
-
Diehn M, Nardini C, Wang DS, et al. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc Natl Acad Sci 2008; 105(13): 5213-5218.
-
(2008)
Proc Natl Acad Sci
, vol.105
, Issue.13
, pp. 5213-5218
-
-
Diehn, M.1
Nardini, C.2
Wang, D.S.3
-
65
-
-
84910089469
-
Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging
-
Mazurowski MA, Zhang J, Grimm LJ, et al. Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging. Radiology 2014; 273(2): 365-372.
-
(2014)
Radiology
, vol.273
, Issue.2
, pp. 365-372
-
-
Mazurowski, M.A.1
Zhang, J.2
Grimm, L.J.3
-
66
-
-
84864349266
-
Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data-methods and preliminary results
-
Gevaert O, Xu J, Hoang CD, et al. Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data-methods and preliminary results. Radiology 2012; 264(2): 387-396.
-
(2012)
Radiology
, vol.264
, Issue.2
, pp. 387-396
-
-
Gevaert, O.1
Xu, J.2
Hoang, C.D.3
-
67
-
-
84893454823
-
Illuminating radiogenomic characteristics of glioblastoma multiforme through integration of MR imaging, messenger RNA expression, and DNA copy number variation
-
Jamshidi N, Diehn M, Bredel M, Kuo MD. Illuminating radiogenomic characteristics of glioblastoma multiforme through integration of MR imaging, messenger RNA expression, and DNA copy number variation. Radiology 2014; 270(1): 1-2.
-
(2014)
Radiology
, vol.270
, Issue.1
, pp. 1-2
-
-
Jamshidi, N.1
Diehn, M.2
Bredel, M.3
Kuo, M.D.4
-
68
-
-
84964693952
-
Texture analysis of noncontrast- enhanced computed tomography for assessing angiogenesis and survival of soft tissue sarcoma
-
Hayano K, Tian F, Kambadakone AR, et al. Texture analysis of noncontrast- enhanced computed tomography for assessing angiogenesis and survival of soft tissue sarcoma. J Comput Assist Tomogr 2015; 39(4): 607-612.
-
(2015)
J Comput Assist Tomogr
, vol.39
, Issue.4
, pp. 607-612
-
-
Hayano, K.1
Tian, F.2
Kambadakone, A.R.3
-
69
-
-
84961616005
-
Identifying molecular genetic features and oncogenic pathways of clear cell renal cell carcinoma through the anatomical (PADUA) scoring system
-
Zhu H, Chen H, Lin Z, et al. Identifying molecular genetic features and oncogenic pathways of clear cell renal cell carcinoma through the anatomical (PADUA) scoring system. Oncotarget 2016; 7(9): 10006-10014.
-
(2016)
Oncotarget
, vol.7
, Issue.9
, pp. 10006-10014
-
-
Zhu, H.1
Chen, H.2
Lin, Z.3
-
70
-
-
0034614637
-
The hallmarks of cancer
-
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57-70.
-
(2000)
Cell
, vol.100
, Issue.1
, pp. 57-70
-
-
Hanahan, D.1
Weinberg, R.A.2
-
71
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-674.
-
(2011)
Cell
, vol.144
, Issue.5
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
72
-
-
77957909316
-
Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage
-
Ganeshan B, Abaleke S, Young RCD, et al. Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging 2010; 10(1): 137-143.
-
(2010)
Cancer Imaging
, vol.10
, Issue.1
, pp. 137-143
-
-
Ganeshan, B.1
Abaleke, S.2
Young, R.C.D.3
-
73
-
-
84944174994
-
Is there a causal relationship between genetic changes and radiomics-based image features? An in vivo preclinical experiment with doxycycline inducible GADD34 tumor cells
-
Panth KM, Leijenaar RTH, Carvalho S, et al. Is there a causal relationship between genetic changes and radiomics-based image features? An in vivo preclinical experiment with doxycycline inducible GADD34 tumor cells. Radiother Oncol 2015; 116(3): 462-466.
-
(2015)
Radiother Oncol
, vol.116
, Issue.3
, pp. 462-466
-
-
Panth, K.M.1
Leijenaar, R.T.H.2
Carvalho, S.3
-
74
-
-
84949527829
-
Deciphering genomic underpinnings of quantitative MRI-based radiomic phenotypes of invasive breast carcinoma
-
Zhu Y, Li H, Guo W, et al. Deciphering genomic underpinnings of quantitative MRI-based radiomic phenotypes of invasive breast carcinoma. Sci Rep 2015; 5: 17787.
-
(2015)
Sci Rep
, vol.5
, pp. 17787
-
-
Zhu, Y.1
Li, H.2
Guo, W.3
-
75
-
-
80053599063
-
Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme
-
Zinn PO, Mahajan B, Majadan B, et al. Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS ONE 2011; 6(10): e25451.
-
(2011)
PLoS ONE
, vol.6
, Issue.10
-
-
Zinn, P.O.1
Mahajan, B.2
Majadan, B.3
-
76
-
-
77649084558
-
Computerized image-based detection and grading of lymphocytic infiltration in HER2+ breast cancer histopathology
-
Basavanhally AN, Ganesan S, Agner S, et al. Computerized image-based detection and grading of lymphocytic infiltration in HER2+ breast cancer histopathology. IEEE Trans Biomed Eng 2010; 57(3): 642-653.
-
(2010)
IEEE Trans Biomed Eng
, vol.57
, Issue.3
, pp. 642-653
-
-
Basavanhally, A.N.1
Ganesan, S.2
Agner, S.3
-
77
-
-
34250195010
-
Decoding global gene expression programs in liver cancer by noninvasive imaging
-
Segal E, Sirlin CB, Ooi C, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol 2007; 25(6): 675-680.
-
(2007)
Nat Biotechnol
, vol.25
, Issue.6
, pp. 675-680
-
-
Segal, E.1
Sirlin, C.B.2
Ooi, C.3
-
78
-
-
84856153283
-
Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease
-
Washington, DC: National Academies Press
-
Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease, Washington, DC: National Academies Press, 2011.
-
(2011)
-
-
-
79
-
-
79961108629
-
Reduced lung-cancer mortality with low-dose computed tomographic screening
-
Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011; 365(5): 395-409.
-
(2011)
N Engl J Med
, vol.365
, Issue.5
, pp. 395-409
-
-
-
81
-
-
84964417455
-
Exploratory study to identify radiomics classifiers for lung cancer histology
-
Wu W, Parmar C, Grossmann P, et al. Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol 2016; doi:10.3389/fonc.2016.00071.
-
(2016)
Front Oncol
-
-
Wu, W.1
Parmar, C.2
Grossmann, P.3
-
82
-
-
84875395563
-
Noninvasive characterization of the histopathologic features of pulmonary nodules of the lung adenocarcinoma spectrum using computer-aided nodule assessment and risk yield (CANARY)-a Pilot study
-
Maldonado F, Boland JM, Raghunath S, et al. Noninvasive characterization of the histopathologic features of pulmonary nodules of the lung adenocarcinoma spectrum using computer-aided nodule assessment and risk yield (CANARY)-a Pilot study. J Thorac Oncol 2013; 8(4): 452-460.
-
(2013)
J Thorac Oncol
, vol.8
, Issue.4
, pp. 452-460
-
-
Maldonado, F.1
Boland, J.M.2
Raghunath, S.3
-
83
-
-
63649084909
-
Texture analysis in non-contrast enhanced CT: impact of malignancy on texture in apparently disease-free areas of the liver
-
Ganeshan B, Miles KA, Young RCD, Chatwin CR. Texture analysis in non-contrast enhanced CT: impact of malignancy on texture in apparently disease-free areas of the liver. Eur J Radiol 2009; 70(1): 101-110.
-
(2009)
Eur J Radiol
, vol.70
, Issue.1
, pp. 101-110
-
-
Ganeshan, B.1
Miles, K.A.2
Young, R.C.D.3
Chatwin, C.R.4
-
84
-
-
84927569956
-
CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma
-
Coroller TP, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 2015; 114(3): 345-350.
-
(2015)
Radiother Oncol
, vol.114
, Issue.3
, pp. 345-350
-
-
Coroller, T.P.1
Grossmann, P.2
Hou, Y.3
-
85
-
-
84973651850
-
Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer
-
Huang Y, Liang C, He L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol 2016; doi:10.1200/JCO.2015.65.9128.
-
(2016)
J Clin Oncol
-
-
Huang, Y.1
Liang, C.2
He, L.3
-
86
-
-
84971500987
-
The development and validation of a CTbased radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer
-
Liang C, Huan Y, He L, et al. The development and validation of a CTbased radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer. Oncotarget 2014; doi:10.18632/oncotarget.8919.
-
(2014)
Oncotarget
-
-
Liang, C.1
Huan, Y.2
He, L.3
-
87
-
-
84938850455
-
Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer
-
Parmar C, Leijenaar RTH, Grossmann P, et al. Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci Rep 2015; 5: 11044.
-
(2015)
Sci Rep
, vol.5
, pp. 11044
-
-
Parmar, C.1
Leijenaar, R.T.H.2
Grossmann, P.3
-
88
-
-
84955724184
-
External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma
-
Leijenaar RTH, Carvalho S, Hoebers FJP, et al. External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma. Acta Oncol 2015; 54(9): 1423-1429.
-
(2015)
Acta Oncol
, vol.54
, Issue.9
, pp. 1423-1429
-
-
Leijenaar, R.T.H.1
Carvalho, S.2
Hoebers, F.J.P.3
-
89
-
-
84947484166
-
Spatial habitat features derived from multiparametric magnetic resonance imaging data are associated with molecular subtype and 12-month survival status in glioblastoma multiforme
-
Lee J, Narang S, Martinez J, et al. Spatial habitat features derived from multiparametric magnetic resonance imaging data are associated with molecular subtype and 12-month survival status in glioblastoma multiforme. PLoS ONE 2015; 10(9): e0136557.
-
(2015)
PLoS ONE
, vol.10
, Issue.9
-
-
Lee, J.1
Narang, S.2
Martinez, J.3
-
90
-
-
84986191505
-
Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models
-
Kickingereder P, Burth S, Wick A, et al. Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology.2016; 280(3): 880-889.
-
(2016)
Radiology
, vol.280
, Issue.3
, pp. 880-889
-
-
Kickingereder, P.1
Burth, S.2
Wick, A.3
-
91
-
-
84975222065
-
CT features associated with epidermal growth factor receptor mutation status in patients with lung adenocarcinoma
-
Liu Y, Kim J, Qu F, et al. CT features associated with epidermal growth factor receptor mutation status in patients with lung adenocarcinoma. Radiology 2016; 280(1): 271-280. doi: 10.1148/radiol.2016151455.
-
(2016)
Radiology
, vol.280
, Issue.1
, pp. 271-280
-
-
Liu, Y.1
Kim, J.2
Qu, F.3
-
92
-
-
84988511917
-
Defining a radiomic response phenotype: a Pilot study using targeted therapy in NSCLC
-
Aerts HJWL, Grossmann P, Tan Y, et al. Defining a radiomic response phenotype: a Pilot study using targeted therapy in NSCLC. Sci Rep 2016; doi:10.1038/srep33860.
-
(2016)
Sci Rep
-
-
Aerts, H.J.W.L.1
Grossmann, P.2
Tan, Y.3
-
93
-
-
84938579445
-
Texture analysis on MR images helps predicting non-response to NAC in breast cancer
-
Michoux N, Van den Broeck S, Lacoste L, et al. Texture analysis on MR images helps predicting non-response to NAC in breast cancer. BMC Cancer 2015; 15: 574.
-
(2015)
BMC Cancer
, vol.15
, pp. 574
-
-
Michoux, N.1
Van den Broeck, S.2
Lacoste, L.3
-
94
-
-
84880123189
-
Texture analysis in assessment and prediction of chemotherapy response in breast cancer
-
Ahmed A, Gibbs P, Pickles M, Turnbull L. Texture analysis in assessment and prediction of chemotherapy response in breast cancer. J Magn Reson Imaging 2013; 38(1): 89-101.
-
(2013)
J Magn Reson Imaging
, vol.38
, Issue.1
, pp. 89-101
-
-
Ahmed, A.1
Gibbs, P.2
Pickles, M.3
Turnbull, L.4
-
95
-
-
84940869624
-
Non-small cell lung cancer treated with erlotinib: heterogeneity of (18)F-FDG uptake at PET-association with treatment response and prognosis
-
Cook GJR, O'BrienME, SiddiqueMet al. Non-small cell lung cancer treated with erlotinib: heterogeneity of (18)F-FDG uptake at PET-association with treatment response and prognosis. Radiology 2015; 276(3): 883-893.
-
(2015)
Radiology
, vol.276
, Issue.3
, pp. 883-893
-
-
Cook, G.J.R.1
O'Brien, M.E.2
Siddique, M.3
-
96
-
-
80053066718
-
Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker
-
Goh V, Ganeshan B, Nathan P, et al. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology.2011; 261(1): 165-171.
-
(2011)
Radiology
, vol.261
, Issue.1
, pp. 165-171
-
-
Goh, V.1
Ganeshan, B.2
Nathan, P.3
-
97
-
-
84903122418
-
Textural parameters of tumor heterogeneity in 18F-FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer
-
Bundschuh RA, Dinges J, Neumann L, et al. Textural parameters of tumor heterogeneity in 18F-FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer. Sci Rep 2014; 55(6): 891-897.
-
(2014)
Sci Rep
, vol.55
, Issue.6
, pp. 891-897
-
-
Bundschuh, R.A.1
Dinges, J.2
Neumann, L.3
-
98
-
-
84947248057
-
Pseudoprogression and immune-related response in solid tumors
-
Chiou VL, Burotto M. Pseudoprogression and immune-related response in solid tumors. J Clin Oncol. 2015; 33(31): 3541-3543.
-
(2015)
J Clin Oncol.
, vol.33
, Issue.31
, pp. 3541-3543
-
-
Chiou, V.L.1
Burotto, M.2
-
99
-
-
84920956732
-
PD-1 blockade induces responses by inhibiting adaptive immune resistance
-
Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014; 515(7528): 568-571.
-
(2014)
Nature
, vol.515
, Issue.7528
, pp. 568-571
-
-
Tumeh, P.C.1
Harview, C.L.2
Yearley, J.H.3
-
100
-
-
85021078121
-
Dynamic quantitative imaging approaches to identify pseudoprogression in cancer patients treated by immune checkpoints blockers
-
Ferté C. Dynamic quantitative imaging approaches to identify pseudoprogression in cancer patients treated by immune checkpoints blockers. Sci RepTherapeutics 2015.
-
(2015)
Sci RepTherapeutics
-
-
Ferté, C.1
-
101
-
-
63849319215
-
Differential diagnosis and management of focal ground-glass opacities
-
Infante M, Lutman RF, Imparato S, et al. Differential diagnosis and management of focal ground-glass opacities. Eur Respir J 2009; 33(4): 821-827.
-
(2009)
Eur Respir J
, vol.33
, Issue.4
, pp. 821-827
-
-
Infante, M.1
Lutman, R.F.2
Imparato, S.3
-
102
-
-
85021087740
-
Automated texture analysis for prediction of recurrence after stereotactic ablative radiation therapy for lung cancer
-
Mattonen SA, Tetar S, Palma DA, et al. Automated texture analysis for prediction of recurrence after stereotactic ablative radiation therapy for lung cancer. Int J Radiat Oncol Biol Phys 2015; 93(3): S5-S6.
-
(2015)
Int J Radiat Oncol Biol Phys
, vol.93
, Issue.3
, pp. S5-S6
-
-
Mattonen, S.A.1
Tetar, S.2
Palma, D.A.3
-
103
-
-
84963507404
-
Radiomics analysis on FLTPET/MRI for characterization of early treatment response in renal cell carcinoma: a proof-of-concept study
-
Antunes J, Viswanath S, Rusu M, et al. Radiomics analysis on FLTPET/MRI for characterization of early treatment response in renal cell carcinoma: a proof-of-concept study. Transl Oncol 2016; 9(2): 155-162.
-
(2016)
Transl Oncol
, vol.9
, Issue.2
, pp. 155-162
-
-
Antunes, J.1
Viswanath, S.2
Rusu, M.3
-
104
-
-
84979286180
-
Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine
-
Drucker E, Krapfenbauer K. Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. EPMA J 2013; 4(1): 7.
-
(2013)
EPMA J
, vol.4
, Issue.1
, pp. 7
-
-
Drucker, E.1
Krapfenbauer, K.2
-
105
-
-
77951427198
-
The Biomarkers Consortium: practice and Pitfalls of open-source precompetitive collaboration
-
Wagner JA, Prince M, Wright EC, et al. The Biomarkers Consortium: practice and Pitfalls of open-source precompetitive collaboration. Clin Pharmacol Ther 2010; 87(5): 539-542.
-
(2010)
Clin Pharmacol Ther
, vol.87
, Issue.5
, pp. 539-542
-
-
Wagner, J.A.1
Prince, M.2
Wright, E.C.3
-
106
-
-
84861472646
-
Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration
-
Altman DG, McShane LM, Sauerbrei W, Taube SE. Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration. BMC Med 2012; 10: 51.
-
(2012)
BMC Med
, vol.10
, pp. 51
-
-
Altman, D.G.1
McShane, L.M.2
Sauerbrei, W.3
Taube, S.E.4
-
107
-
-
18344396568
-
Minimum information about a microarray experiment (MIAME)-toward standards for microarray data
-
Brazma A, Hingamp P, Quackenbush J, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 2001; 29(4): 365-371.
-
(2001)
Nat Genet
, vol.29
, Issue.4
, pp. 365-371
-
-
Brazma, A.1
Hingamp, P.2
Quackenbush, J.3
-
109
-
-
85021130626
-
-
(7 February 2017, date last accessed).
-
https://www.deepmind.com/health (7 February 2017, date last accessed).
-
-
-
-
110
-
-
85021059832
-
-
(7 February 2017, date last accessed).
-
Grand-challenges-all challenges. https://grand-challenge.org/All_ Challenges/(7 February 2017, date last accessed).
-
Grand-challenges-all challenges
-
-
-
111
-
-
85021169915
-
-
(7 February 2017, date last accessed).
-
LUNA-Home. https://luna.grand-challenge.org/(7 February 2017, date last accessed).
-
LUNA-Home
-
-
-
112
-
-
85021120517
-
The Digital Mammography DREAM Challenge-Sage Bionetworks
-
(7 February 2017, date last accessed).
-
The Digital Mammography DREAM Challenge-Sage Bionetworks. https://www.synapse.org/#!Synapse:syn4224222/wiki/401743 (7 February 2017, date last accessed).
-
-
-
-
113
-
-
84943774122
-
Measuring computed tomography scanner variability of radiomics features
-
Mackin D, Fave X, Zhang L, et al. Measuring computed tomography scanner variability of radiomics features. Invest Radiol 2015; 50(11): 757-765.
-
(2015)
Invest Radiol
, vol.50
, Issue.11
, pp. 757-765
-
-
Mackin, D.1
Fave, X.2
Zhang, L.3
-
114
-
-
84991764347
-
Impact of reconstruction algorithms on CT radiomic features of pulmonary tumors: analysis of intra- and inter-reader variability and inter-reconstruction algorithm variability
-
Kim H, Park CM, Lee M et al. Impact of reconstruction algorithms on CT radiomic features of pulmonary tumors: analysis of intra- and inter-reader variability and inter-reconstruction algorithm variability. PLoS ONE 2016; 11(10): e0164924.
-
(2016)
PLoS ONE
, vol.11
, Issue.10
-
-
Kim, H.1
Park, C.M.2
Lee, M.3
-
115
-
-
84888198904
-
The cancer imaging archive (TCIA): maintaining and operating a public information repository
-
Clark K, Vendt B, Smith K et al. The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 2013; 26(6): 1045-1057.
-
(2013)
J Digit Imaging
, vol.26
, Issue.6
, pp. 1045-1057
-
-
Clark, K.1
Vendt, B.2
Smith, K.3
-
116
-
-
85021137034
-
-
(7 February 2017, date last accessed).
-
Home - GEO - NCBI. http://www.ncbi.nlm.nih.gov/geo/(7 February 2017, date last accessed).
-
-
-
-
117
-
-
84902485651
-
The quantitative imaging network: NCI's historical perspective and planned goals
-
Clarke LP, Nordstrom RJ, Zhang H et al. The quantitative imaging network: NCI's historical perspective and planned goals. Transl Oncol.2014; 7(1): 1-4.
-
(2014)
Transl Oncol
, vol.7
, Issue.1
, pp. 1-4
-
-
Clarke, L.P.1
Nordstrom, R.J.2
Zhang, H.3
-
118
-
-
85021090997
-
Standards for Quantitative Imaging Biomarkers to Advance Research and Outcomes as part of the Cancer Moonshot
-
(7 February 2017, date last accessed).
-
Sullivan, DC. Standards for Quantitative Imaging Biomarkers to Advance Research and Outcomes as part of the Cancer Moonshot. https://medium.com/cancer-moonshot/standards-for-quantitative-imaging-biomarkers-to-advance-research-and-outcomes-in-the-cancer-6e4e4ebf4e75#.9wfwnojfn (7 February 2017, date last accessed).
-
-
-
Sullivan, D.C.1
-
119
-
-
85021069784
-
-
euroCAT.info: home (7 February 2017, date last accessed).
-
euroCAT.info: home. http://www.eurocat.info/(7 February 2017, date last accessed).
-
-
-
-
120
-
-
84966335551
-
Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images
-
Fehr D, Veeraraghavan H, Wibmer A et al. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc Natl Acad Sci USA. 2015; 112(46): E6265-E6273.
-
(2015)
Proc Natl Acad Sci USA.
, vol.112
, Issue.46
, pp. E6265-E6273
-
-
Fehr, D.1
Veeraraghavan, H.2
Wibmer, A.3
-
121
-
-
84992036747
-
MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 Gene Assays
-
Li H, Zhu Y, Burnside ES et al. MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 Gene Assays. Radiology 2016; 152110.
-
(2016)
Radiology
, pp. 152110
-
-
Li, H.1
Zhu, Y.2
Burnside, E.S.3
|