메뉴 건너뛰기




Volumn 28, Issue 6, 2017, Pages 1191-1206

Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology

Author keywords

Computational medical imaging; Precision medicine; Quantitative imaging; Radiomics; Tumor biology

Indexed keywords

TUMOR MARKER;

EID: 85021117855     PISSN: 09237534     EISSN: 15698041     Source Type: Journal    
DOI: 10.1093/annonc/mdx034     Document Type: Review
Times cited : (540)

References (121)
  • 1
    • 84955604605 scopus 로고    scopus 로고
    • Radiomics: images are more than pictures, they are data
    • Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016; 278(2): 563-577.
    • (2016) Radiology , vol.278 , Issue.2 , pp. 563-577
    • Gillies, R.J.1    Kinahan, P.E.2    Hricak, H.3
  • 2
    • 84867139157 scopus 로고    scopus 로고
    • QIN "Radiomics: The Process and the Challenges
    • Kumar V, Gu Y, Basu S, et al. QIN "Radiomics: The Process and the Challenges." Magn Reson Imaging 2012; 30(9): 1234-1248.
    • (2012) Magn Reson Imaging , vol.30 , Issue.9 , pp. 1234-1248
    • Kumar, V.1    Gu, Y.2    Basu, S.3
  • 3
    • 84857037061 scopus 로고    scopus 로고
    • Radiomics: extracting more information from medical images using advanced feature analysis
    • Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012; 48(4): 441-446.
    • (2012) Eur J Cancer , vol.48 , Issue.4 , pp. 441-446
    • Lambin, P.1    Rios-Velazquez, E.2    Leijenaar, R.3
  • 4
    • 84901946941 scopus 로고    scopus 로고
    • Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    • Aerts HJWL, Velazquez ER, Leijenaar RTH, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014; doi:10.1038/ncomms5006.
    • (2014) Nat Commun
    • Aerts, H.J.W.L.1    Velazquez, E.R.2    Leijenaar, R.T.H.3
  • 5
    • 0021242388 scopus 로고
    • Tumor heterogeneity
    • Heppner GH. Tumor heterogeneity. Cancer Res 1984; 44(6): 2259-2265.
    • (1984) Cancer Res , vol.44 , Issue.6 , pp. 2259-2265
    • Heppner, G.H.1
  • 6
    • 84884368877 scopus 로고    scopus 로고
    • Influence of tumour micro-environment heterogeneity on therapeutic response
    • Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013; 501(7467): 346-354.
    • (2013) Nature , vol.501 , Issue.7467 , pp. 346-354
    • Junttila, M.R.1    de Sauvage, F.J.2
  • 7
    • 84920964255 scopus 로고    scopus 로고
    • Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome
    • O'Connor JPB, Rose CJ, Waterton JC, et al. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 2015; 21(2): 249-257.
    • (2015) Clin Cancer Res , vol.21 , Issue.2 , pp. 249-257
    • O'Connor, J.P.B.1    Rose, C.J.2    Waterton, J.C.3
  • 8
    • 0003543948 scopus 로고    scopus 로고
    • The Essential Physics of Medical Imaging
    • Philadelphia: Lippincott Williams & Wilkins
    • Bushberg JT, Boone JM. The Essential Physics of Medical Imaging. Philadelphia: Lippincott Williams & Wilkins 2011.
    • (2011)
    • Bushberg, J.T.1    Boone, J.M.2
  • 9
    • 77956565862 scopus 로고    scopus 로고
    • Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters
    • Galavis PE, Hollensen C, Jallow N, et al. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 2010; 49(7): 1012-1016.
    • (2010) Acta Oncol , vol.49 , Issue.7 , pp. 1012-1016
    • Galavis, P.E.1    Hollensen, C.2    Jallow, N.3
  • 10
    • 84962314053 scopus 로고    scopus 로고
    • Reproducibility of radiomics for deciphering tumor phenotype with imaging
    • Zhao B, Tan Y, Tsai W-Y, et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep 2016; 6: 23428.
    • (2016) Sci Rep , vol.6 , pp. 23428
    • Zhao, B.1    Tan, Y.2    Tsai, W-Y.3
  • 11
    • 84911973434 scopus 로고    scopus 로고
    • Test-retest reproducibility analysis of lung CT image features
    • Balagurunathan Y, Kumar V, Gu Y, et al. Test-retest reproducibility analysis of lung CT image features. J Digit Imaging 2014; 27(6): 805-823.
    • (2014) J Digit Imaging , vol.27 , Issue.6 , pp. 805-823
    • Balagurunathan, Y.1    Kumar, V.2    Gu, Y.3
  • 12
    • 84904248018 scopus 로고    scopus 로고
    • Robust radiomics feature quantification using semiautomatic volumetric segmentation
    • Parmar C, Rios Velazquez E, Leijenaar R, et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 2014; doi:10.1371/journal.pone.0102107.
    • (2014) PLoS One
    • Parmar, C.1    Rios Velazquez, E.2    Leijenaar, R.3
  • 13
    • 84871292104 scopus 로고    scopus 로고
    • A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists' delineations and with the surgical specimen
    • Rios Velazquez E, Aerts HJWL, Gu Y, et al. A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists' delineations and with the surgical specimen. Radiother Oncol 2012; 105(2): 167-173.
    • (2012) Radiother Oncol , vol.105 , Issue.2 , pp. 167-173
    • Rios Velazquez, E.1    Aerts, H.J.W.L.2    Gu, Y.3
  • 14
    • 84904264664 scopus 로고    scopus 로고
    • Volumetric CT-based segmentation of NSCLC using 3D-Slicer
    • Velazquez ER, Parmar C, Jermoumi M, et al. Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Sci Rep 2013; doi:10.1038/srep03529.
    • (2013) Sci Rep
    • Velazquez, E.R.1    Parmar, C.2    Jermoumi, M.3
  • 16
    • 85021095965 scopus 로고    scopus 로고
    • (7 February 2017, date last accessed).
    • FormatAnalyze-MRC CBU Imaging Wiki. http://imaging.mrc-cbu. cam.ac.uk/imaging/FormatAnalyze (7 February 2017, date last accessed).
    • FormatAnalyze-MRC CBU Imaging Wiki
  • 17
    • 85021169692 scopus 로고    scopus 로고
    • NIfTI-1 Data Format - Neuroimaging Informatics Technology Initiative
    • (7 February, date last accessed).
    • NIfTI-1 Data Format - Neuroimaging Informatics Technology Initiative. http://nifti.nimh.nih.gov/nifti-1 (7 February 2017, date last accessed).
    • (2017)
  • 18
    • 0022683169 scopus 로고
    • Efficient synthesis of Gaussian filters by cascaded uniform filters
    • PAMI-8
    • Wells WM. Efficient synthesis of Gaussian filters by cascaded uniform filters. IEEE Trans Pattern Anal Mach Intell 1986; PAMI-8(2): 234-239.
    • (1986) IEEE Trans Pattern Anal Mach Intell , Issue.2 , pp. 234-239
    • Wells, W.M.1
  • 19
    • 84938942773 scopus 로고    scopus 로고
    • The effect of SUV discretization in quantitative FDG-PET radiomics: the need for standardized methodology in tumor texture analysis
    • Leijenaar RTH, Nalbantov G, Carvalho S, et al. The effect of SUV discretization in quantitative FDG-PET radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep 2015; doi:10.1038/srep11075.
    • (2015) Sci Rep
    • Leijenaar, R.T.H.1    Nalbantov, G.2    Carvalho, S.3
  • 20
    • 84956678400 scopus 로고    scopus 로고
    • 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer
    • Orlhac F, Soussan M, Chouahnia K, et al. 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer. PLoS ONE 2015; 10(12): e0145063.
    • (2015) PLoS ONE , vol.10 , Issue.12
    • Orlhac, F.1    Soussan, M.2    Chouahnia, K.3
  • 21
    • 84894815316 scopus 로고    scopus 로고
    • The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake
    • Brooks FJ, Grigsby PW. The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med. 2014; 55(1): 37-42.
    • (2014) J Nucl Med. , vol.55 , Issue.1 , pp. 37-42
    • Brooks, F.J.1    Grigsby, P.W.2
  • 22
    • 84899486643 scopus 로고    scopus 로고
    • Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis
    • Orlhac F, Soussan M, Maisonobe J-A, et al. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. Sci Rep 2014; 55(3): 414-422.
    • (2014) Sci Rep , vol.55 , Issue.3 , pp. 414-422
    • Orlhac, F.1    Soussan, M.2    Maisonobe, J-A.3
  • 23
    • 84975698783 scopus 로고    scopus 로고
    • Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of reconstruction and delineation
    • van Velden FHP, Kramer GM, Frings V, et al. Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol 2016; doi:10.1007/s11307-016-0940-2.
    • (2016) Mol Imaging Biol
    • van Velden, F.H.P.1    Kramer, G.M.2    Frings, V.3
  • 24
    • 59149105325 scopus 로고    scopus 로고
    • Exploring feature-based approaches in PET images for predicting cancer treatment outcomes
    • El Naqa I, Grigsby PW, Apte A, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit 2009; 42(6): 1162-1171.
    • (2009) Pattern Recognit , vol.42 , Issue.6 , pp. 1162-1171
    • El Naqa, I.1    Grigsby, P.W.2    Apte, A.3
  • 26
    • 0001416258 scopus 로고
    • Texture analysis using gray level run lengths
    • Galloway MM. Texture analysis using gray level run lengths. Comput Graph Image Process 1975; 4(2): 172-179.
    • (1975) Comput Graph Image Process , vol.4 , Issue.2 , pp. 172-179
    • Galloway, M.M.1
  • 27
    • 84896867733 scopus 로고    scopus 로고
    • Advanced statistical matrices for texture characterization: application to cell classification
    • Thibault G, Angulo J, Meyer F. Advanced statistical matrices for texture characterization: application to cell classification. IEEE Trans Biomed Eng. 2014; 61(3): 630-637.
    • (2014) IEEE Trans Biomed Eng. , vol.61 , Issue.3 , pp. 630-637
    • Thibault, G.1    Angulo, J.2    Meyer, F.3
  • 28
    • 0020974699 scopus 로고
    • Neighboring gray level dependence matrix for texture classification
    • Sun C, Wee WG. Neighboring gray level dependence matrix for texture classification. Comput Vis Graph Image Process 1983; 23(3): 341-352.
    • (1983) Comput Vis Graph Image Process , vol.23 , Issue.3 , pp. 341-352
    • Sun, C.1    Wee, W.G.2
  • 29
    • 84983273906 scopus 로고    scopus 로고
    • Radiomics in glioblastoma: current status, challenges and potential opportunities
    • Narang S, Lehrer M, Yang D, et al. Radiomics in glioblastoma: current status, challenges and potential opportunities. Transl Cancer Res 2016; 5(4): 383-397.
    • (2016) Transl Cancer Res , vol.5 , Issue.4 , pp. 383-397
    • Narang, S.1    Lehrer, M.2    Yang, D.3
  • 30
    • 67649595528 scopus 로고    scopus 로고
    • STEP: Spatiotemporal enhancement pattern for MR-based breast tumor diagnosis
    • Zheng Y, Englander S, Baloch S, et al. STEP: Spatiotemporal enhancement pattern for MR-based breast tumor diagnosis. Med Phys 2009; 36(7): 3192-3204.
    • (2009) Med Phys , vol.36 , Issue.7 , pp. 3192-3204
    • Zheng, Y.1    Englander, S.2    Baloch, S.3
  • 31
    • 84881050542 scopus 로고    scopus 로고
    • Joint learning and weighting of visual vocabulary for bag-of-feature based tissue classification
    • Wang JJ-Y, Bensmail H, Gao X. Joint learning and weighting of visual vocabulary for bag-of-feature based tissue classification. Pattern Recognit 2013; 46(12): 3249-3255.
    • (2013) Pattern Recognit , vol.46 , Issue.12 , pp. 3249-3255
    • Wang, J.J-Y.1    Bensmail, H.2    Gao, X.3
  • 32
    • 85003481017 scopus 로고    scopus 로고
    • Mining textural knowledge in biological images: applications, methods and trends
    • Cataldo SD, Ficarra E. Mining textural knowledge in biological images: applications, methods and trends. Comput Struct Biotechnol J 2016; doi:10.1016/j.csbj.2016.11.002.
    • (2016) Comput Struct Biotechnol J
    • Cataldo, S.D.1    Ficarra, E.2
  • 33
    • 56449099926 scopus 로고    scopus 로고
    • The reference image database to evaluate response to therapy in lung cancer (RIDER) project: a resource for the development of change-analysis software
    • Armato SG, Meyer CR, Mcnitt-Gray MF, et al. The reference image database to evaluate response to therapy in lung cancer (RIDER) project: a resource for the development of change-analysis software. Clin Pharmacol Ther 2008; 84(4): 448-456.
    • (2008) Clin Pharmacol Ther , vol.84 , Issue.4 , pp. 448-456
    • Armato, S.G.1    Meyer, C.R.2    Mcnitt-Gray, M.F.3
  • 34
    • 37549029793 scopus 로고    scopus 로고
    • The properties of highdimensional data spaces: implications for exploring gene and protein expression data
    • Clarke R, Ressom HW, Wang A, et al. The properties of highdimensional data spaces: implications for exploring gene and protein expression data. Nat Rev Cancer 2008; 8(1): 37-49.
    • (2008) Nat Rev Cancer , vol.8 , Issue.1 , pp. 37-49
    • Clarke, R.1    Ressom, H.W.2    Wang, A.3
  • 35
    • 84883018050 scopus 로고    scopus 로고
    • Impact of bioinformatic procedures in the development and translation of high-throughput molecular classifiers in oncology
    • Ferte C, Trister AD, Huang E, et al. Impact of bioinformatic procedures in the development and translation of high-throughput molecular classifiers in oncology. Clin Cancer Res 2013; 19(16): 4315-4325.
    • (2013) Clin Cancer Res , vol.19 , Issue.16 , pp. 4315-4325
    • Ferte, C.1    Trister, A.D.2    Huang, E.3
  • 36
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat 1979; 6(2): 65-70.
    • (1979) Scand J Stat , vol.6 , Issue.2 , pp. 65-70
    • Holm, S.1
  • 37
    • 0025066941 scopus 로고
    • More powerful procedures for multiple significance testing
    • Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Statist Med 1990; 9(7): 811-818.
    • (1990) Statist Med , vol.9 , Issue.7 , pp. 811-818
    • Hochberg, Y.1    Benjamini, Y.2
  • 38
    • 85008173453 scopus 로고    scopus 로고
    • Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma
    • Kanas VG, Zacharaki EI, Thomas GA, et al. Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma. Comput Methods Programs Biomed 2017; 140: 249-257.
    • (2017) Comput Methods Programs Biomed , vol.140 , pp. 249-257
    • Kanas, V.G.1    Zacharaki, E.I.2    Thomas, G.A.3
  • 39
    • 84939498419 scopus 로고    scopus 로고
    • Machine learning methods for quantitative radiomic biomarkers
    • Parmar C, Grossmann P, Bussink J, et al. Machine learning methods for quantitative radiomic biomarkers. Sci Rep 2015. doi:10.1038/srep13087.
    • (2015) Sci Rep
    • Parmar, C.1    Grossmann, P.2    Bussink, J.3
  • 41
    • 84987658584 scopus 로고    scopus 로고
    • Discovery radiomics for computed tomography cancer detection
    • arXiv:1509.00117.
    • Kumar D, Shafiee MJ, Chung AG, et al. Discovery radiomics for computed tomography cancer detection. 2015; arXiv:1509.00117.
    • (2015)
    • Kumar, D.1    Shafiee, M.J.2    Chung, A.G.3
  • 42
    • 85010817811 scopus 로고    scopus 로고
    • Predicting malignant nodules from screening CT scans
    • Hawkins S, Wang H, Liu Y, et al. Predicting malignant nodules from screening CT scans. J Thoracic Oncol 2016; doi:10.1016/j.jtho.2016.07.002.
    • (2016) J Thoracic Oncol
    • Hawkins, S.1    Wang, H.2    Liu, Y.3
  • 44
    • 84862508110 scopus 로고    scopus 로고
    • Survival analysis of patients with high-grade gliomas based on data mining of imaging variables
    • Zacharaki EI, Morita N, Bhatt P, et al. Survival analysis of patients with high-grade gliomas based on data mining of imaging variables. AJNR Am J Neuroradiol. 2012; 33(6): 1065.
    • (2012) AJNR Am J Neuroradiol. , vol.33 , Issue.6 , pp. 1065
    • Zacharaki, E.I.1    Morita, N.2    Bhatt, P.3
  • 45
    • 81855182180 scopus 로고    scopus 로고
    • Investigating machine learning techniques for MRI-based classification of brain neoplasms
    • Zacharaki EI, Kanas VG, Davatzikos C. Investigating machine learning techniques for MRI-based classification of brain neoplasms. Int J Comput Assist Radiol Surg. 2011; 6(6): 821-828.
    • (2011) Int J Comput Assist Radiol Surg. , vol.6 , Issue.6 , pp. 821-828
    • Zacharaki, E.I.1    Kanas, V.G.2    Davatzikos, C.3
  • 46
    • 85007257946 scopus 로고    scopus 로고
    • Radiological image traits predictive of cancer status in pulmonary nodules
    • clincanres.3102.2016.
    • Liu Y, Balagurunathan Y, Atwater T, et al. Radiological image traits predictive of cancer status in pulmonary nodules. Clin Cancer Res 2016; clincanres.3102.2016.
    • (2016) Clin Cancer Res
    • Liu, Y.1    Balagurunathan, Y.2    Atwater, T.3
  • 47
    • 73149086838 scopus 로고    scopus 로고
    • Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme
    • Zacharaki EI, Wang S, Chawla S, et al. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 2009; 62(6): 1609-1618.
    • (2009) Magn Reson Med , vol.62 , Issue.6 , pp. 1609-1618
    • Zacharaki, E.I.1    Wang, S.2    Chawla, S.3
  • 49
    • 84994560182 scopus 로고    scopus 로고
    • Rectal cancer: assessment of neoadjuvant chemo-radiation outcome based on radiomics of multi-parametric MRI
    • Nie K, Shi L, Chen Q, et al. Rectal cancer: assessment of neoadjuvant chemo-radiation outcome based on radiomics of multi-parametric MRI. Clin Cancer Res 2016; doi:10.1158/1078-0432.CCR-15-2997.
    • (2016) Clin Cancer Res
    • Nie, K.1    Shi, L.2    Chen, Q.3
  • 50
    • 84982182244 scopus 로고    scopus 로고
    • Deep learning based classification of breast tumors with shear-wave elastography
    • Zhang Q, Xiao Y, Dai W, et al. Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics 2016; 72: 150-157.
    • (2016) Ultrasonics , vol.72 , pp. 150-157
    • Zhang, Q.1    Xiao, Y.2    Dai, W.3
  • 51
    • 84968638584 scopus 로고    scopus 로고
    • Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks
    • Setio AAA, Ciompi F, Litjens G, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 2016; 35(5): 1160-1169.
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.5 , pp. 1160-1169
    • Setio, A.A.A.1    Ciompi, F.2    Litjens, G.3
  • 52
    • 85021115846 scopus 로고    scopus 로고
    • Automated 5-year mortality prediction using deep learning and radiomics features from chest computed tomography
    • Carneiro G, Oakden-Rayner L, Bradley AP, et al. Automated 5-year mortality prediction using deep learning and radiomics features from chest computed tomography. 2016.
    • (2016)
    • Carneiro, G.1    Oakden-Rayner, L.2    Bradley, A.P.3
  • 53
    • 84964292829 scopus 로고    scopus 로고
    • Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans
    • Cheng J-Z, Ni D, Chou Y-H, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep 2016; 6: 24454.
    • (2016) Sci Rep , vol.6 , pp. 24454
    • Cheng, J-Z.1    Ni, D.2    Chou, Y-H.3
  • 54
    • 84968572894 scopus 로고    scopus 로고
    • Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
    • Kallenberg M, Petersen K, Nielsen M, et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging 2016; 35(5): 1322-1331.
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.5 , pp. 1322-1331
    • Kallenberg, M.1    Petersen, K.2    Nielsen, M.3
  • 55
    • 0033127826 scopus 로고    scopus 로고
    • Three-dimensional volume rendering of spiral CT data: theory and method 1
    • Calhoun PS, Kuszyk BS, Heath DG, et al. Three-dimensional volume rendering of spiral CT data: theory and method 1. Radiographics 1999; 19(3): 745-764.
    • (1999) Radiographics , vol.19 , Issue.3 , pp. 745-764
    • Calhoun, P.S.1    Kuszyk, B.S.2    Heath, D.G.3
  • 57
    • 13344277921 scopus 로고    scopus 로고
    • Theragnostic imaging for radiation oncology: dosepainting by numbers
    • Bentzen SM. Theragnostic imaging for radiation oncology: dosepainting by numbers. Lancet Oncol 2005; 6(2): 112-117.
    • (2005) Lancet Oncol , vol.6 , Issue.2 , pp. 112-117
    • Bentzen, S.M.1
  • 58
    • 79952013846 scopus 로고    scopus 로고
    • Molecular-imaging-based dose painting-a novel paradigm for radiation therapy prescription
    • Bentzen SM, Gregoire V. Molecular-imaging-based dose painting-a novel paradigm for radiation therapy prescription. Semin Radiat Oncol 2011; 21(2): 101-110.
    • (2011) Semin Radiat Oncol , vol.21 , Issue.2 , pp. 101-110
    • Bentzen, S.M.1    Gregoire, V.2
  • 59
    • 85021131444 scopus 로고    scopus 로고
    • IMV Medical Information Division, Inc.
    • IMV CT Benchmark Report. IMV Medical Information Division, Inc. 2015.
    • (2015) IMV CT Benchmark Report
  • 61
    • 84928902792 scopus 로고    scopus 로고
    • Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma
    • Grove O, Berglund AE, Schabath MB, et al. Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. PLoS ONE 2015; 10(3): e0118261.
    • (2015) PLoS ONE , vol.10 , Issue.3
    • Grove, O.1    Berglund, A.E.2    Schabath, M.B.3
  • 62
    • 85054102101 scopus 로고    scopus 로고
    • Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set
    • Li H, Zhu Y, Burnside ES, et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. Npj Breast Cancer 2016; 2: 16012.
    • (2016) Npj Breast Cancer , vol.2 , pp. 16012
    • Li, H.1    Zhu, Y.2    Burnside, E.S.3
  • 63
    • 84871704418 scopus 로고    scopus 로고
    • Non-small cell lung cancer: histopathologic correlates for texture parameters at CT
    • Ganeshan B, Goh V, Mandeville HC, et al. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology 2013; 266(1): 326-336.
    • (2013) Radiology , vol.266 , Issue.1 , pp. 326-336
    • Ganeshan, B.1    Goh, V.2    Mandeville, H.C.3
  • 64
    • 42449156691 scopus 로고    scopus 로고
    • Identification of noninvasive imaging surrogates for brain tumor gene-expression modules
    • Diehn M, Nardini C, Wang DS, et al. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc Natl Acad Sci 2008; 105(13): 5213-5218.
    • (2008) Proc Natl Acad Sci , vol.105 , Issue.13 , pp. 5213-5218
    • Diehn, M.1    Nardini, C.2    Wang, D.S.3
  • 65
    • 84910089469 scopus 로고    scopus 로고
    • Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging
    • Mazurowski MA, Zhang J, Grimm LJ, et al. Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging. Radiology 2014; 273(2): 365-372.
    • (2014) Radiology , vol.273 , Issue.2 , pp. 365-372
    • Mazurowski, M.A.1    Zhang, J.2    Grimm, L.J.3
  • 66
    • 84864349266 scopus 로고    scopus 로고
    • Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data-methods and preliminary results
    • Gevaert O, Xu J, Hoang CD, et al. Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data-methods and preliminary results. Radiology 2012; 264(2): 387-396.
    • (2012) Radiology , vol.264 , Issue.2 , pp. 387-396
    • Gevaert, O.1    Xu, J.2    Hoang, C.D.3
  • 67
    • 84893454823 scopus 로고    scopus 로고
    • Illuminating radiogenomic characteristics of glioblastoma multiforme through integration of MR imaging, messenger RNA expression, and DNA copy number variation
    • Jamshidi N, Diehn M, Bredel M, Kuo MD. Illuminating radiogenomic characteristics of glioblastoma multiforme through integration of MR imaging, messenger RNA expression, and DNA copy number variation. Radiology 2014; 270(1): 1-2.
    • (2014) Radiology , vol.270 , Issue.1 , pp. 1-2
    • Jamshidi, N.1    Diehn, M.2    Bredel, M.3    Kuo, M.D.4
  • 68
    • 84964693952 scopus 로고    scopus 로고
    • Texture analysis of noncontrast- enhanced computed tomography for assessing angiogenesis and survival of soft tissue sarcoma
    • Hayano K, Tian F, Kambadakone AR, et al. Texture analysis of noncontrast- enhanced computed tomography for assessing angiogenesis and survival of soft tissue sarcoma. J Comput Assist Tomogr 2015; 39(4): 607-612.
    • (2015) J Comput Assist Tomogr , vol.39 , Issue.4 , pp. 607-612
    • Hayano, K.1    Tian, F.2    Kambadakone, A.R.3
  • 69
    • 84961616005 scopus 로고    scopus 로고
    • Identifying molecular genetic features and oncogenic pathways of clear cell renal cell carcinoma through the anatomical (PADUA) scoring system
    • Zhu H, Chen H, Lin Z, et al. Identifying molecular genetic features and oncogenic pathways of clear cell renal cell carcinoma through the anatomical (PADUA) scoring system. Oncotarget 2016; 7(9): 10006-10014.
    • (2016) Oncotarget , vol.7 , Issue.9 , pp. 10006-10014
    • Zhu, H.1    Chen, H.2    Lin, Z.3
  • 70
    • 0034614637 scopus 로고    scopus 로고
    • The hallmarks of cancer
    • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57-70.
    • (2000) Cell , vol.100 , Issue.1 , pp. 57-70
    • Hanahan, D.1    Weinberg, R.A.2
  • 71
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-674.
    • (2011) Cell , vol.144 , Issue.5 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 72
    • 77957909316 scopus 로고    scopus 로고
    • Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage
    • Ganeshan B, Abaleke S, Young RCD, et al. Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging 2010; 10(1): 137-143.
    • (2010) Cancer Imaging , vol.10 , Issue.1 , pp. 137-143
    • Ganeshan, B.1    Abaleke, S.2    Young, R.C.D.3
  • 73
    • 84944174994 scopus 로고    scopus 로고
    • Is there a causal relationship between genetic changes and radiomics-based image features? An in vivo preclinical experiment with doxycycline inducible GADD34 tumor cells
    • Panth KM, Leijenaar RTH, Carvalho S, et al. Is there a causal relationship between genetic changes and radiomics-based image features? An in vivo preclinical experiment with doxycycline inducible GADD34 tumor cells. Radiother Oncol 2015; 116(3): 462-466.
    • (2015) Radiother Oncol , vol.116 , Issue.3 , pp. 462-466
    • Panth, K.M.1    Leijenaar, R.T.H.2    Carvalho, S.3
  • 74
    • 84949527829 scopus 로고    scopus 로고
    • Deciphering genomic underpinnings of quantitative MRI-based radiomic phenotypes of invasive breast carcinoma
    • Zhu Y, Li H, Guo W, et al. Deciphering genomic underpinnings of quantitative MRI-based radiomic phenotypes of invasive breast carcinoma. Sci Rep 2015; 5: 17787.
    • (2015) Sci Rep , vol.5 , pp. 17787
    • Zhu, Y.1    Li, H.2    Guo, W.3
  • 75
    • 80053599063 scopus 로고    scopus 로고
    • Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme
    • Zinn PO, Mahajan B, Majadan B, et al. Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS ONE 2011; 6(10): e25451.
    • (2011) PLoS ONE , vol.6 , Issue.10
    • Zinn, P.O.1    Mahajan, B.2    Majadan, B.3
  • 76
    • 77649084558 scopus 로고    scopus 로고
    • Computerized image-based detection and grading of lymphocytic infiltration in HER2+ breast cancer histopathology
    • Basavanhally AN, Ganesan S, Agner S, et al. Computerized image-based detection and grading of lymphocytic infiltration in HER2+ breast cancer histopathology. IEEE Trans Biomed Eng 2010; 57(3): 642-653.
    • (2010) IEEE Trans Biomed Eng , vol.57 , Issue.3 , pp. 642-653
    • Basavanhally, A.N.1    Ganesan, S.2    Agner, S.3
  • 77
    • 34250195010 scopus 로고    scopus 로고
    • Decoding global gene expression programs in liver cancer by noninvasive imaging
    • Segal E, Sirlin CB, Ooi C, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol 2007; 25(6): 675-680.
    • (2007) Nat Biotechnol , vol.25 , Issue.6 , pp. 675-680
    • Segal, E.1    Sirlin, C.B.2    Ooi, C.3
  • 78
    • 84856153283 scopus 로고    scopus 로고
    • Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease
    • Washington, DC: National Academies Press
    • Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease, Washington, DC: National Academies Press, 2011.
    • (2011)
  • 79
    • 79961108629 scopus 로고    scopus 로고
    • Reduced lung-cancer mortality with low-dose computed tomographic screening
    • Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011; 365(5): 395-409.
    • (2011) N Engl J Med , vol.365 , Issue.5 , pp. 395-409
  • 81
    • 84964417455 scopus 로고    scopus 로고
    • Exploratory study to identify radiomics classifiers for lung cancer histology
    • Wu W, Parmar C, Grossmann P, et al. Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol 2016; doi:10.3389/fonc.2016.00071.
    • (2016) Front Oncol
    • Wu, W.1    Parmar, C.2    Grossmann, P.3
  • 82
    • 84875395563 scopus 로고    scopus 로고
    • Noninvasive characterization of the histopathologic features of pulmonary nodules of the lung adenocarcinoma spectrum using computer-aided nodule assessment and risk yield (CANARY)-a Pilot study
    • Maldonado F, Boland JM, Raghunath S, et al. Noninvasive characterization of the histopathologic features of pulmonary nodules of the lung adenocarcinoma spectrum using computer-aided nodule assessment and risk yield (CANARY)-a Pilot study. J Thorac Oncol 2013; 8(4): 452-460.
    • (2013) J Thorac Oncol , vol.8 , Issue.4 , pp. 452-460
    • Maldonado, F.1    Boland, J.M.2    Raghunath, S.3
  • 83
    • 63649084909 scopus 로고    scopus 로고
    • Texture analysis in non-contrast enhanced CT: impact of malignancy on texture in apparently disease-free areas of the liver
    • Ganeshan B, Miles KA, Young RCD, Chatwin CR. Texture analysis in non-contrast enhanced CT: impact of malignancy on texture in apparently disease-free areas of the liver. Eur J Radiol 2009; 70(1): 101-110.
    • (2009) Eur J Radiol , vol.70 , Issue.1 , pp. 101-110
    • Ganeshan, B.1    Miles, K.A.2    Young, R.C.D.3    Chatwin, C.R.4
  • 84
    • 84927569956 scopus 로고    scopus 로고
    • CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma
    • Coroller TP, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 2015; 114(3): 345-350.
    • (2015) Radiother Oncol , vol.114 , Issue.3 , pp. 345-350
    • Coroller, T.P.1    Grossmann, P.2    Hou, Y.3
  • 85
    • 84973651850 scopus 로고    scopus 로고
    • Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer
    • Huang Y, Liang C, He L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol 2016; doi:10.1200/JCO.2015.65.9128.
    • (2016) J Clin Oncol
    • Huang, Y.1    Liang, C.2    He, L.3
  • 86
    • 84971500987 scopus 로고    scopus 로고
    • The development and validation of a CTbased radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer
    • Liang C, Huan Y, He L, et al. The development and validation of a CTbased radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer. Oncotarget 2014; doi:10.18632/oncotarget.8919.
    • (2014) Oncotarget
    • Liang, C.1    Huan, Y.2    He, L.3
  • 87
    • 84938850455 scopus 로고    scopus 로고
    • Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer
    • Parmar C, Leijenaar RTH, Grossmann P, et al. Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci Rep 2015; 5: 11044.
    • (2015) Sci Rep , vol.5 , pp. 11044
    • Parmar, C.1    Leijenaar, R.T.H.2    Grossmann, P.3
  • 88
    • 84955724184 scopus 로고    scopus 로고
    • External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma
    • Leijenaar RTH, Carvalho S, Hoebers FJP, et al. External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma. Acta Oncol 2015; 54(9): 1423-1429.
    • (2015) Acta Oncol , vol.54 , Issue.9 , pp. 1423-1429
    • Leijenaar, R.T.H.1    Carvalho, S.2    Hoebers, F.J.P.3
  • 89
    • 84947484166 scopus 로고    scopus 로고
    • Spatial habitat features derived from multiparametric magnetic resonance imaging data are associated with molecular subtype and 12-month survival status in glioblastoma multiforme
    • Lee J, Narang S, Martinez J, et al. Spatial habitat features derived from multiparametric magnetic resonance imaging data are associated with molecular subtype and 12-month survival status in glioblastoma multiforme. PLoS ONE 2015; 10(9): e0136557.
    • (2015) PLoS ONE , vol.10 , Issue.9
    • Lee, J.1    Narang, S.2    Martinez, J.3
  • 90
    • 84986191505 scopus 로고    scopus 로고
    • Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models
    • Kickingereder P, Burth S, Wick A, et al. Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology.2016; 280(3): 880-889.
    • (2016) Radiology , vol.280 , Issue.3 , pp. 880-889
    • Kickingereder, P.1    Burth, S.2    Wick, A.3
  • 91
    • 84975222065 scopus 로고    scopus 로고
    • CT features associated with epidermal growth factor receptor mutation status in patients with lung adenocarcinoma
    • Liu Y, Kim J, Qu F, et al. CT features associated with epidermal growth factor receptor mutation status in patients with lung adenocarcinoma. Radiology 2016; 280(1): 271-280. doi: 10.1148/radiol.2016151455.
    • (2016) Radiology , vol.280 , Issue.1 , pp. 271-280
    • Liu, Y.1    Kim, J.2    Qu, F.3
  • 92
    • 84988511917 scopus 로고    scopus 로고
    • Defining a radiomic response phenotype: a Pilot study using targeted therapy in NSCLC
    • Aerts HJWL, Grossmann P, Tan Y, et al. Defining a radiomic response phenotype: a Pilot study using targeted therapy in NSCLC. Sci Rep 2016; doi:10.1038/srep33860.
    • (2016) Sci Rep
    • Aerts, H.J.W.L.1    Grossmann, P.2    Tan, Y.3
  • 93
    • 84938579445 scopus 로고    scopus 로고
    • Texture analysis on MR images helps predicting non-response to NAC in breast cancer
    • Michoux N, Van den Broeck S, Lacoste L, et al. Texture analysis on MR images helps predicting non-response to NAC in breast cancer. BMC Cancer 2015; 15: 574.
    • (2015) BMC Cancer , vol.15 , pp. 574
    • Michoux, N.1    Van den Broeck, S.2    Lacoste, L.3
  • 94
    • 84880123189 scopus 로고    scopus 로고
    • Texture analysis in assessment and prediction of chemotherapy response in breast cancer
    • Ahmed A, Gibbs P, Pickles M, Turnbull L. Texture analysis in assessment and prediction of chemotherapy response in breast cancer. J Magn Reson Imaging 2013; 38(1): 89-101.
    • (2013) J Magn Reson Imaging , vol.38 , Issue.1 , pp. 89-101
    • Ahmed, A.1    Gibbs, P.2    Pickles, M.3    Turnbull, L.4
  • 95
    • 84940869624 scopus 로고    scopus 로고
    • Non-small cell lung cancer treated with erlotinib: heterogeneity of (18)F-FDG uptake at PET-association with treatment response and prognosis
    • Cook GJR, O'BrienME, SiddiqueMet al. Non-small cell lung cancer treated with erlotinib: heterogeneity of (18)F-FDG uptake at PET-association with treatment response and prognosis. Radiology 2015; 276(3): 883-893.
    • (2015) Radiology , vol.276 , Issue.3 , pp. 883-893
    • Cook, G.J.R.1    O'Brien, M.E.2    Siddique, M.3
  • 96
    • 80053066718 scopus 로고    scopus 로고
    • Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker
    • Goh V, Ganeshan B, Nathan P, et al. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology.2011; 261(1): 165-171.
    • (2011) Radiology , vol.261 , Issue.1 , pp. 165-171
    • Goh, V.1    Ganeshan, B.2    Nathan, P.3
  • 97
    • 84903122418 scopus 로고    scopus 로고
    • Textural parameters of tumor heterogeneity in 18F-FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer
    • Bundschuh RA, Dinges J, Neumann L, et al. Textural parameters of tumor heterogeneity in 18F-FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer. Sci Rep 2014; 55(6): 891-897.
    • (2014) Sci Rep , vol.55 , Issue.6 , pp. 891-897
    • Bundschuh, R.A.1    Dinges, J.2    Neumann, L.3
  • 98
    • 84947248057 scopus 로고    scopus 로고
    • Pseudoprogression and immune-related response in solid tumors
    • Chiou VL, Burotto M. Pseudoprogression and immune-related response in solid tumors. J Clin Oncol. 2015; 33(31): 3541-3543.
    • (2015) J Clin Oncol. , vol.33 , Issue.31 , pp. 3541-3543
    • Chiou, V.L.1    Burotto, M.2
  • 99
    • 84920956732 scopus 로고    scopus 로고
    • PD-1 blockade induces responses by inhibiting adaptive immune resistance
    • Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014; 515(7528): 568-571.
    • (2014) Nature , vol.515 , Issue.7528 , pp. 568-571
    • Tumeh, P.C.1    Harview, C.L.2    Yearley, J.H.3
  • 100
    • 85021078121 scopus 로고    scopus 로고
    • Dynamic quantitative imaging approaches to identify pseudoprogression in cancer patients treated by immune checkpoints blockers
    • Ferté C. Dynamic quantitative imaging approaches to identify pseudoprogression in cancer patients treated by immune checkpoints blockers. Sci RepTherapeutics 2015.
    • (2015) Sci RepTherapeutics
    • Ferté, C.1
  • 101
    • 63849319215 scopus 로고    scopus 로고
    • Differential diagnosis and management of focal ground-glass opacities
    • Infante M, Lutman RF, Imparato S, et al. Differential diagnosis and management of focal ground-glass opacities. Eur Respir J 2009; 33(4): 821-827.
    • (2009) Eur Respir J , vol.33 , Issue.4 , pp. 821-827
    • Infante, M.1    Lutman, R.F.2    Imparato, S.3
  • 102
    • 85021087740 scopus 로고    scopus 로고
    • Automated texture analysis for prediction of recurrence after stereotactic ablative radiation therapy for lung cancer
    • Mattonen SA, Tetar S, Palma DA, et al. Automated texture analysis for prediction of recurrence after stereotactic ablative radiation therapy for lung cancer. Int J Radiat Oncol Biol Phys 2015; 93(3): S5-S6.
    • (2015) Int J Radiat Oncol Biol Phys , vol.93 , Issue.3 , pp. S5-S6
    • Mattonen, S.A.1    Tetar, S.2    Palma, D.A.3
  • 103
    • 84963507404 scopus 로고    scopus 로고
    • Radiomics analysis on FLTPET/MRI for characterization of early treatment response in renal cell carcinoma: a proof-of-concept study
    • Antunes J, Viswanath S, Rusu M, et al. Radiomics analysis on FLTPET/MRI for characterization of early treatment response in renal cell carcinoma: a proof-of-concept study. Transl Oncol 2016; 9(2): 155-162.
    • (2016) Transl Oncol , vol.9 , Issue.2 , pp. 155-162
    • Antunes, J.1    Viswanath, S.2    Rusu, M.3
  • 104
    • 84979286180 scopus 로고    scopus 로고
    • Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine
    • Drucker E, Krapfenbauer K. Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. EPMA J 2013; 4(1): 7.
    • (2013) EPMA J , vol.4 , Issue.1 , pp. 7
    • Drucker, E.1    Krapfenbauer, K.2
  • 105
    • 77951427198 scopus 로고    scopus 로고
    • The Biomarkers Consortium: practice and Pitfalls of open-source precompetitive collaboration
    • Wagner JA, Prince M, Wright EC, et al. The Biomarkers Consortium: practice and Pitfalls of open-source precompetitive collaboration. Clin Pharmacol Ther 2010; 87(5): 539-542.
    • (2010) Clin Pharmacol Ther , vol.87 , Issue.5 , pp. 539-542
    • Wagner, J.A.1    Prince, M.2    Wright, E.C.3
  • 106
    • 84861472646 scopus 로고    scopus 로고
    • Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration
    • Altman DG, McShane LM, Sauerbrei W, Taube SE. Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration. BMC Med 2012; 10: 51.
    • (2012) BMC Med , vol.10 , pp. 51
    • Altman, D.G.1    McShane, L.M.2    Sauerbrei, W.3    Taube, S.E.4
  • 107
    • 18344396568 scopus 로고    scopus 로고
    • Minimum information about a microarray experiment (MIAME)-toward standards for microarray data
    • Brazma A, Hingamp P, Quackenbush J, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 2001; 29(4): 365-371.
    • (2001) Nat Genet , vol.29 , Issue.4 , pp. 365-371
    • Brazma, A.1    Hingamp, P.2    Quackenbush, J.3
  • 109
    • 85021130626 scopus 로고    scopus 로고
    • (7 February 2017, date last accessed).
    • https://www.deepmind.com/health (7 February 2017, date last accessed).
  • 110
    • 85021059832 scopus 로고    scopus 로고
    • (7 February 2017, date last accessed).
    • Grand-challenges-all challenges. https://grand-challenge.org/All_ Challenges/(7 February 2017, date last accessed).
    • Grand-challenges-all challenges
  • 111
    • 85021169915 scopus 로고    scopus 로고
    • (7 February 2017, date last accessed).
    • LUNA-Home. https://luna.grand-challenge.org/(7 February 2017, date last accessed).
    • LUNA-Home
  • 112
    • 85021120517 scopus 로고    scopus 로고
    • The Digital Mammography DREAM Challenge-Sage Bionetworks
    • (7 February 2017, date last accessed).
    • The Digital Mammography DREAM Challenge-Sage Bionetworks. https://www.synapse.org/#!Synapse:syn4224222/wiki/401743 (7 February 2017, date last accessed).
  • 113
    • 84943774122 scopus 로고    scopus 로고
    • Measuring computed tomography scanner variability of radiomics features
    • Mackin D, Fave X, Zhang L, et al. Measuring computed tomography scanner variability of radiomics features. Invest Radiol 2015; 50(11): 757-765.
    • (2015) Invest Radiol , vol.50 , Issue.11 , pp. 757-765
    • Mackin, D.1    Fave, X.2    Zhang, L.3
  • 114
    • 84991764347 scopus 로고    scopus 로고
    • Impact of reconstruction algorithms on CT radiomic features of pulmonary tumors: analysis of intra- and inter-reader variability and inter-reconstruction algorithm variability
    • Kim H, Park CM, Lee M et al. Impact of reconstruction algorithms on CT radiomic features of pulmonary tumors: analysis of intra- and inter-reader variability and inter-reconstruction algorithm variability. PLoS ONE 2016; 11(10): e0164924.
    • (2016) PLoS ONE , vol.11 , Issue.10
    • Kim, H.1    Park, C.M.2    Lee, M.3
  • 115
    • 84888198904 scopus 로고    scopus 로고
    • The cancer imaging archive (TCIA): maintaining and operating a public information repository
    • Clark K, Vendt B, Smith K et al. The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 2013; 26(6): 1045-1057.
    • (2013) J Digit Imaging , vol.26 , Issue.6 , pp. 1045-1057
    • Clark, K.1    Vendt, B.2    Smith, K.3
  • 116
    • 85021137034 scopus 로고    scopus 로고
    • (7 February 2017, date last accessed).
    • Home - GEO - NCBI. http://www.ncbi.nlm.nih.gov/geo/(7 February 2017, date last accessed).
  • 117
    • 84902485651 scopus 로고    scopus 로고
    • The quantitative imaging network: NCI's historical perspective and planned goals
    • Clarke LP, Nordstrom RJ, Zhang H et al. The quantitative imaging network: NCI's historical perspective and planned goals. Transl Oncol.2014; 7(1): 1-4.
    • (2014) Transl Oncol , vol.7 , Issue.1 , pp. 1-4
    • Clarke, L.P.1    Nordstrom, R.J.2    Zhang, H.3
  • 118
    • 85021090997 scopus 로고    scopus 로고
    • Standards for Quantitative Imaging Biomarkers to Advance Research and Outcomes as part of the Cancer Moonshot
    • (7 February 2017, date last accessed).
    • Sullivan, DC. Standards for Quantitative Imaging Biomarkers to Advance Research and Outcomes as part of the Cancer Moonshot. https://medium.com/cancer-moonshot/standards-for-quantitative-imaging-biomarkers-to-advance-research-and-outcomes-in-the-cancer-6e4e4ebf4e75#.9wfwnojfn (7 February 2017, date last accessed).
    • Sullivan, D.C.1
  • 119
    • 85021069784 scopus 로고    scopus 로고
    • euroCAT.info: home (7 February 2017, date last accessed).
    • euroCAT.info: home. http://www.eurocat.info/(7 February 2017, date last accessed).
  • 120
    • 84966335551 scopus 로고    scopus 로고
    • Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images
    • Fehr D, Veeraraghavan H, Wibmer A et al. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc Natl Acad Sci USA. 2015; 112(46): E6265-E6273.
    • (2015) Proc Natl Acad Sci USA. , vol.112 , Issue.46 , pp. E6265-E6273
    • Fehr, D.1    Veeraraghavan, H.2    Wibmer, A.3
  • 121
    • 84992036747 scopus 로고    scopus 로고
    • MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 Gene Assays
    • Li H, Zhu Y, Burnside ES et al. MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 Gene Assays. Radiology 2016; 152110.
    • (2016) Radiology , pp. 152110
    • Li, H.1    Zhu, Y.2    Burnside, E.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.