메뉴 건너뛰기




Volumn 8, Issue , 2017, Pages

Multifunctional roles of plant dehydrins in response to environmental stresses

Author keywords

Abiotic stresses; Conserved segments; Dehydrin; Function; LEA protein

Indexed keywords


EID: 85021102101     PISSN: None     EISSN: 1664462X     Source Type: Journal    
DOI: 10.3389/fpls.2017.01018     Document Type: Review
Times cited : (111)

References (40)
  • 1
    • 0142103428 scopus 로고    scopus 로고
    • Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation
    • Alsheikh, M. K., Heyen, B. J., and Randall, S. K. (2003). Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J. Biol. Chem. 278, 40882-40889. doi: 10.1074/jbc.M307151200
    • (2003) J. Biol. Chem , vol.278 , pp. 40882-40889
    • Alsheikh, M.K.1    Heyen, B.J.2    Randall, S.K.3
  • 2
    • 85011841828 scopus 로고    scopus 로고
    • Overexpression of Prunus mume dehydrin genes in tobacco enhances tolerance to cold and drought
    • Bao, F., Du, D., An, Y., Yang, W., Wang, J., Cheng, T., et al. (2017). Overexpression of Prunus mume dehydrin genes in tobacco enhances tolerance to cold and drought. Front. Plant Sci. 8:151. doi: 10.3389/fpls.2017.00151
    • (2017) Front. Plant Sci , vol.8 , pp. 151
    • Bao, F.1    Du, D.2    An, Y.3    Yang, W.4    Wang, J.5    Cheng, T.6
  • 4
    • 0030729290 scopus 로고    scopus 로고
    • Dehydrins: Genes, proteins, and associations with phenotypic traits
    • Campbell, S. A., and Close, T. J. (1997). Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol. 137, 61-74. doi: 10.1046/j.1469-8137.1997.00831.x
    • (1997) New Phytol , vol.137 , pp. 61-74
    • Campbell, S.A.1    Close, T.J.2
  • 5
    • 0030498675 scopus 로고    scopus 로고
    • Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins
    • Close, T. J. (1996). Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant. 97, 795-803. doi: 10.1111/j.1399-3054.1996.tb00546.x
    • (1996) Physiol. Plant , vol.97 , pp. 795-803
    • Close, T.J.1
  • 6
    • 0030988742 scopus 로고    scopus 로고
    • Biochemistry and pathology of radical-mediated protein oxidation
    • Dean, R. T., Fu, S., Stocker, R., and Davies, M. J. (1997). Biochemistry and pathology of radical-mediated protein oxidation. Biochem. J. 324, 1-18. doi: 10.1042/bj3240001
    • (1997) Biochem. J , vol.324 , pp. 1-18
    • Dean, R.T.1    Fu, S.2    Stocker, R.3    Davies, M.J.4
  • 7
    • 84925954890 scopus 로고    scopus 로고
    • Wheat dehydrin K-segments ensure bacterial stress tolerance, antiaggregation and antimicrobial effects
    • Drira, M., Saibi, W., Amara, I., Masmoudi, K., Hanin, M., and Brini, F. (2015). Wheat dehydrin K-segments ensure bacterial stress tolerance, antiaggregation and antimicrobial effects. Appl. Biochem. Biotechnol. 175, 3310-3321. doi: 10.3389/fpls.2015.00406
    • (2015) Appl. Biochem. Biotechnol , vol.175 , pp. 3310-3321
    • Drira, M.1    Saibi, W.2    Amara, I.3    Masmoudi, K.4    Hanin, M.5    Brini, F.6
  • 8
    • 84882879839 scopus 로고    scopus 로고
    • The K-segments of the wheat dehydrin DHN-5 are essential for the protection of lactate dehydrogenase and β-glucosidase activities in vitro
    • Drira, M., Saibi, W., Brini, F., Gargouri, A., Masmoudi, K., and Hanin, M. (2013). The K-segments of the wheat dehydrin DHN-5 are essential for the protection of lactate dehydrogenase and β-glucosidase activities in vitro. Mol. Biotechnol. 54, 643-650. doi: 10.1007/s12033-012-9606-8
    • (2013) Mol. Biotechnol , vol.54 , pp. 643-650
    • Drira, M.1    Saibi, W.2    Brini, F.3    Gargouri, A.4    Masmoudi, K.5    Hanin, M.6
  • 9
    • 0000867883 scopus 로고
    • Developmental biochemistry of cotton seed embryogenesis and germination XIII. Regulation of biosynthesis of principal storage proteins
    • Dure, L., and Galau, G. A. (1981). Developmental biochemistry of cotton seed embryogenesis and germination XIII. Regulation of biosynthesis of principal storage proteins. Plant Physiol. 68, 187-194. doi: 10.1104/pp.68.1.187
    • (1981) Plant Physiol , vol.68 , pp. 187-194
    • Dure, L.1    Galau, G.A.2
  • 10
    • 84973643498 scopus 로고    scopus 로고
    • Membrane-induced folding of the plant-stress protein Lti30
    • Eriksson, S., Eremina, N., Barth, A., Danielsson, J., and Harryson, P. (2016). Membrane-induced folding of the plant-stress protein Lti30. Plant Physiol. 71, 932-943. doi: 10.1104/pp.15.01531
    • (2016) Plant Physiol , vol.71 , pp. 932-943
    • Eriksson, S.1    Eremina, N.2    Barth, A.3    Danielsson, J.4    Harryson, P.5
  • 11
    • 79960857518 scopus 로고    scopus 로고
    • Tunable membrane binding of the intrinsically disordered dehydrin Lti30, a cold-induced plant stress protein
    • Eriksson, S. K., Kutzer, M., Procek, J., Grobner, G., and Harryson, P. (2011). Tunable membrane binding of the intrinsically disordered dehydrin Lti30, a cold-induced plant stress protein. Plant Cell 23, 2391-2404. doi: 10.1105/tpc.111.085183
    • (2011) Plant Cell , vol.23 , pp. 2391-2404
    • Eriksson, S.K.1    Kutzer, M.2    Procek, J.3    Grobner, G.4    Harryson, P.5
  • 12
    • 85021081778 scopus 로고    scopus 로고
    • Expression of CdDHN4, a novel YSK2-type dehydrin gene from bermudagrass, responses to drought stress through ABA-dependent signal pathway
    • Fan, N., Lv, A., Xie, J., Yuan, S., An, Y., and Zhou, P. (2017). Expression of CdDHN4, a novel YSK2-type dehydrin gene from bermudagrass, responses to drought stress through ABA-dependent signal pathway. Front. Plant Sci. 8:748. doi: 10.3389/fpls.2017.00748
    • (2017) Front. Plant Sci , vol.8 , pp. 748
    • Fan, N.1    Lv, A.2    Xie, J.3    Yuan, S.4    An, Y.5    Zhou, P.6
  • 13
    • 0033980712 scopus 로고    scopus 로고
    • Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum
    • Frank, W., Munnik, T., Kerkmann, K., Salamini, F., and Bartels, D. (2000). Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell 12, 111-123. doi: 10.1105/tpc.12.1.111
    • (2000) Plant Cell , vol.12 , pp. 111-123
    • Frank, W.1    Munnik, T.2    Kerkmann, K.3    Salamini, F.4    Bartels, D.5
  • 14
    • 0034007384 scopus 로고    scopus 로고
    • Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit
    • Garay-Arroyo, A., Colmenero-Flores, J. M., Garciarrubio, A., and Covarrubias, A. A. (2000). Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J. Biol. Chem. 275, 5668-5674. doi: 10.1074/jbc.275.8.5668
    • (2000) J. Biol. Chem , vol.275 , pp. 5668-5674
    • Garay-Arroyo, A.1    Colmenero-Flores, J.M.2    Garciarrubio, A.3    Covarrubias, A.A.4
  • 15
    • 0028388157 scopus 로고
    • The maize abscisic-acid responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals
    • Goday, A., Jensen, A. B., Culiàñez-Macià, F., Albà, M. M., Figueras, M., Serratosa, J., et al. (1994). The maize abscisic-acid responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell 6, 351-360. doi: 10.1105/tpc.6.3.351
    • (1994) Plant Cell , vol.6 , pp. 351-360
    • Goday, A.1    Jensen, A.B.2    Culiàñez-Macià, F.3    Albà, M.M.4    Figueras, M.5    Serratosa, J.6
  • 16
    • 24944438537 scopus 로고    scopus 로고
    • Metal binding by citrus dehydrin with histidine-rich domains
    • Hara, M., Fujinaga, M., and Kuboi, T. (2005). Metal binding by citrus dehydrin with histidine-rich domains. J. Exp. Bot. 56, 2695-2703. doi: 10.1093/jxb/eri262
    • (2005) J. Exp. Bot , vol.56 , pp. 2695-2703
    • Hara, M.1    Fujinaga, M.2    Kuboi, T.3
  • 17
    • 84876030483 scopus 로고    scopus 로고
    • A KS-type dehydrin and its related domains reduce Cu-promoted radical generation and the histidine residues contribute to the radical-reducing activities
    • Hara, M., Kondo, M., and Kato, T. (2013). A KS-type dehydrin and its related domains reduce Cu-promoted radical generation and the histidine residues contribute to the radical-reducing activities. J. Exp. Bot. 64, 1615-1624. doi: 10.1093/jxb/ert016
    • (2013) J. Exp. Bot , vol.64 , pp. 1615-1624
    • Hara, M.1    Kondo, M.2    Kato, T.3
  • 18
    • 84958280779 scopus 로고    scopus 로고
    • The Arabidopsis KS-type dehydrin recovers lactate dehydrogenase activity inhibited by copper with the contribution of his residues
    • Hara, M., Monna, S., Murata, T., Nakano, T., Amano, S., Nachbar, M., et al. (2016). The Arabidopsis KS-type dehydrin recovers lactate dehydrogenase activity inhibited by copper with the contribution of his residues. Plant Sci. 245, 135-142. doi: 10.1016/j.plantsci.2016.02.006
    • (2016) Plant Sci , vol.245 , pp. 135-142
    • Hara, M.1    Monna, S.2    Murata, T.3    Nakano, T.4    Amano, S.5    Nachbar, M.6
  • 19
    • 80054122556 scopus 로고    scopus 로고
    • Biochemical characterization of the Arabidopsis KS-type dehydrin protein, whose gene expression is constitutively abundant rather than stress dependent
    • Hara, M., Shinoda, Y., Kubo, M., Kashima, D., Takahashi, I., Kato, T., et al. (2011). Biochemical characterization of the Arabidopsis KS-type dehydrin protein, whose gene expression is constitutively abundant rather than stress dependent. Acta Physiol. Plant. 33, 2103-2116. doi: 10.1007/s11738-011-0749-1
    • (2011) Acta Physiol. Plant , vol.33 , pp. 2103-2116
    • Hara, M.1    Shinoda, Y.2    Kubo, M.3    Kashima, D.4    Takahashi, I.5    Kato, T.6
  • 20
    • 64149112683 scopus 로고    scopus 로고
    • DNA binding of citrus dehydrin promoted by zinc ion
    • Hara, M., Shinoda, Y., Tanaka, Y., and Kuboi, T. (2009). DNA binding of citrus dehydrin promoted by zinc ion. Plant Cell Environ. 32, 532-541. doi: 10.1111/j.1365-3040.2009.01947.x
    • (2009) Plant Cell Environ , vol.32 , pp. 532-541
    • Hara, M.1    Shinoda, Y.2    Tanaka, Y.3    Kuboi, T.4
  • 21
    • 0038758836 scopus 로고    scopus 로고
    • Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco
    • Hara, M., Terashima, S., Fukaya, T., and Kuboi, T. (2003). Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217, 290-298. doi: 10.1007/s00425-003-0986-7
    • (2003) Planta , vol.217 , pp. 290-298
    • Hara, M.1    Terashima, S.2    Fukaya, T.3    Kuboi, T.4
  • 22
    • 0034781789 scopus 로고    scopus 로고
    • Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu
    • Hara, M., Terashima, S., and Kuboi, T. (2001). Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J. Plant Physiol. 158, 1333-1339. doi: 10.1078/0176-1617-00600
    • (2001) J. Plant Physiol , vol.158 , pp. 1333-1339
    • Hara, M.1    Terashima, S.2    Kuboi, T.3
  • 24
    • 0032033115 scopus 로고    scopus 로고
    • Phosphorylation mediates the nuclear targeting of the maize Rab17 protein
    • Jensen, A. B., Goday, A., Figueras, M., Jessop, A. C., and Pages, M. (1998). Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant J. 13, 691-697. doi: 10.1046/j.1365-313X.1998.00069.x
    • (1998) Plant J , vol.13 , pp. 691-697
    • Jensen, A.B.1    Goday, A.2    Figueras, M.3    Jessop, A.C.4    Pages, M.5
  • 25
    • 10644286555 scopus 로고    scopus 로고
    • β-Elimination coupled with tandem mass spectrometry for the identification of in vivo and in vitro phosphorylation sites in maize dehydrin DHN1 protein
    • Jiang, X., and Wang, Y. (2004). β-Elimination coupled with tandem mass spectrometry for the identification of in vivo and in vitro phosphorylation sites in maize dehydrin DHN1 protein. Biochemistry 43, 15567-15576. doi: 10.1021/bi0483965
    • (2004) Biochemistry , vol.43 , pp. 15567-15576
    • Jiang, X.1    Wang, Y.2
  • 26
    • 22044439857 scopus 로고    scopus 로고
    • An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana
    • Katagiri, T., Ishiyama, K., Kato, T., Tabata, S., Kobayashi, M., and Shinozaki, K. (2005). An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana. Plant J. 43, 107-117. doi: 10.1111/j.1365-313X.2005.02431.x
    • (2005) Plant J , vol.43 , pp. 107-117
    • Katagiri, T.1    Ishiyama, K.2    Kato, T.3    Tabata, S.4    Kobayashi, M.5    Shinozaki, K.6
  • 27
    • 0034921932 scopus 로고    scopus 로고
    • Involvement of a novel Arabidopsis phospholipase D, AtPLDS, in dehydration-inducible accumulation of phosphatidic acid in stress signalling
    • Katagiri, T., Takahashi, S., and Shinozaki, K. (2001). Involvement of a novel Arabidopsis phospholipase D, AtPLDS, in dehydration-inducible accumulation of phosphatidic acid in stress signalling. Plant J. 26, 595-605. doi: 10.1046/j.1365-313x.2001.01060.x
    • (2001) Plant J , vol.26 , pp. 595-605
    • Katagiri, T.1    Takahashi, S.2    Shinozaki, K.3
  • 28
    • 67650175436 scopus 로고    scopus 로고
    • The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes
    • Koag, M. C., Wilkens, S., Fenton, R. D., Resnik, J., Vo, E., and Close, T. J. (2009). The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol. 150, 1503-1514. doi: 10.1104/pp.109.136697
    • (2009) Plant Physiol , vol.150 , pp. 1503-1514
    • Koag, M.C.1    Wilkens, S.2    Fenton, R.D.3    Resnik, J.4    Vo, E.5    Close, T.J.6
  • 29
    • 34249685982 scopus 로고    scopus 로고
    • An electrostatic/hydrogen bond switch as the basis for the specific interaction of phosphatidic acid with proteins
    • Kooijman, E. E., Tieleman, D. P., Testerink, C., Munnik, T., Rijkers, D. T., Burger, K. N., et al. (2007). An electrostatic/hydrogen bond switch as the basis for the specific interaction of phosphatidic acid with proteins. J. Biol. Chem. 282, 11356-11364. doi: 10.1074/jbc.M609737200
    • (2007) J. Biol. Chem , vol.282 , pp. 11356-11364
    • Kooijman, E.E.1    Tieleman, D.P.2    Testerink, C.3    Munnik, T.4    Rijkers, D.T.5    Burger, K.N.6
  • 30
    • 0037067730 scopus 로고    scopus 로고
    • A metalbinding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L
    • Krüger, C., Berkowitz, O., Stephan, U. W., and Hell, R. (2002). A metalbinding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J. Biol. Chem. 277, 25062-25069. doi: 10.1074/jbc.M201896200
    • (2002) J. Biol. Chem , vol.277 , pp. 25062-25069
    • Krüger, C.1    Berkowitz, O.2    Stephan, U.W.3    Hell, R.4
  • 31
    • 84861048357 scopus 로고    scopus 로고
    • Characterization of a novel Y2K-type dehydrin VrDhn1 from Vigna radiata
    • Lin, C. H., Peng, P. H., Ko, C. Y., Markhart, A. H., and Lin, T. Y. (2012). Characterization of a novel Y2K-type dehydrin VrDhn1 from Vigna radiata. Plant Cell Physiol. 53, 930-942. doi: 10.1093/pcp/pcs040
    • (2012) Plant Cell Physiol , vol.53 , pp. 930-942
    • Lin, C.H.1    Peng, P.H.2    Ko, C.Y.3    Markhart, A.H.4    Lin, T.Y.5
  • 32
    • 84919934328 scopus 로고    scopus 로고
    • Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato
    • Liu, H., Yu, C., Li, H., Ouyang, B., Wang, T., Zhang, J., et al. (2015). Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci. 231, 198-211. doi: 10.1016/j.plantsci.2014.12.006
    • (2015) Plant Sci , vol.231 , pp. 198-211
    • Liu, H.1    Yu, C.2    Li, H.3    Ouyang, B.4    Wang, T.5    Zhang, J.6
  • 33
    • 84978737349 scopus 로고    scopus 로고
    • Group 3 LEA protein, ZmLEA3, is involved in protection from low temperature stress
    • Liu, Y., Liang, J., Sun, L., Yang, X., and Li, D. (2016). Group 3 LEA protein, ZmLEA3, is involved in protection from low temperature stress. Front. Plant Sci. 7:1011. doi: 10.3389/fpls.2016.01011
    • (2016) Front. Plant Sci , vol.7 , pp. 1011
    • Liu, Y.1    Liang, J.2    Sun, L.3    Yang, X.4    Li, D.5
  • 34
    • 84878891130 scopus 로고    scopus 로고
    • ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses
    • Liu, Y., Wang, L., Xing, X., Sun, L., Pan, J., Kong, X., et al. (2013). ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol. 54, 944-959. doi: 10.1093/pcp/pct047
    • (2013) Plant Cell Physiol , vol.54 , pp. 944-959
    • Liu, Y.1    Wang, L.2    Xing, X.3    Sun, L.4    Pan, J.5    Kong, X.6
  • 35
  • 36
    • 0036728244 scopus 로고    scopus 로고
    • Oxidative stress, antioxidants and stress tolerance
    • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405-410. doi: 10.1016/S1360-1385(02)02312-9
    • (2002) Trends Plant Sci , vol.7 , pp. 405-410
    • Mittler, R.1
  • 37
    • 84865504353 scopus 로고    scopus 로고
    • The lysine-rich motif of intrinsically disordered stress protein CDeT11-24 from Craterostigma plantagineum is responsible for phosphatidic acid binding and protection of enzymes from damaging effects caused by desiccation
    • Petersen, J., Eriksson, S. K., Harryson, P., Pierog, S., Colby, T., Bartels, D., et al. (2012). The lysine-rich motif of intrinsically disordered stress protein CDeT11-24 from Craterostigma plantagineum is responsible for phosphatidic acid binding and protection of enzymes from damaging effects caused by desiccation. J. Exp. Bot. 63, 4919-4929. doi: 10.1093/jxb/ers173
    • (2012) J. Exp. Bot , vol.63 , pp. 4919-4929
    • Petersen, J.1    Eriksson, S.K.2    Harryson, P.3    Pierog, S.4    Colby, T.5    Bartels, D.6
  • 38
    • 0742323272 scopus 로고    scopus 로고
    • POPP the question: What do LEA proteins do?
    • Wise, M. J., and Tunnacliffe, A. (2004). POPP the question: what do LEA proteins do? Trends Plant Sci. 9, 13-17. doi: 10.1016/j.tplants.2003.10.012
    • (2004) Trends Plant Sci , vol.9 , pp. 13-17
    • Wise, M.J.1    Tunnacliffe, A.2
  • 39
    • 84861480848 scopus 로고    scopus 로고
    • Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density
    • Xie, C., Zhang, R. X., Qu, Y. T., Miao, Z. Y., Zhang, Y. Q., Shen, X. Y., et al. (2012). Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density. New Phytol. 195, 124-135. doi: 10.1111/j.1469-8137.2012.04136.x
    • (2012) New Phytol , vol.195 , pp. 124-135
    • Xie, C.1    Zhang, R.X.2    Qu, Y.T.3    Miao, Z.Y.4    Zhang, Y.Q.5    Shen, X.Y.6
  • 40
    • 84935840755 scopus 로고    scopus 로고
    • The K-segments of wheat dehydrin WZY2 are essential for its protective functions under temperature stress
    • Yang, W., Zhang, L., Lv, H., Li, H., Zhang, Y., Xu, Y., et al. (2015). The K-segments of wheat dehydrin WZY2 are essential for its protective functions under temperature stress. Front. Plant Sci. 6:406. doi:10.3389/fpls.2015.00406
    • (2015) Front. Plant Sci , vol.6 , pp. 406
    • Yang, W.1    Zhang, L.2    Lv, H.3    Li, H.4    Zhang, Y.5    Xu, Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.