-
1
-
-
84926336826
-
Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment
-
Engel AG, Shen XM, Sine SM. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 2015;14:420–434.
-
(2015)
Lancet Neurol
, vol.14
, pp. 420-434
-
-
Engel, A.G.1
Shen, X.M.2
Sine, S.M.3
-
2
-
-
0035852681
-
Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans
-
Ohno K, Tsujino A, Shen XM, et al. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci USA 2001;98:2017–2022.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 2017-2022
-
-
Ohno, K.1
Tsujino, A.2
Shen, X.M.3
-
3
-
-
68349151039
-
Identification of an agrin mutation that causes congenital myasthenia and affects synapse function
-
Huze C, Bauche S, Richard P, et al. Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet 2009;85:155–167.
-
(2009)
Am J Hum Genet
, vol.85
, pp. 155-167
-
-
Huze, C.1
Bauche, S.2
Richard, P.3
-
4
-
-
84908236633
-
Synaptotagmin 2 mutations cause an autosomal-dominant form of Lambert-Eaton myasthenic syndrome and nonprogressive motor neuropathy
-
Herrmann DN, Horvath R, Snowden JE, et al. Synaptotagmin 2 mutations cause an autosomal-dominant form of Lambert-Eaton myasthenic syndrome and nonprogressive motor neuropathy. Am J Hum Genet 2014;95:332–339.
-
(2014)
Am J Hum Genet
, vol.95
, pp. 332-339
-
-
Herrmann, D.N.1
Horvath, R.2
Snowden, J.E.3
-
5
-
-
84924120978
-
Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability
-
Shen XM, Selcen D, Brengman J, et al. Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology 2014;83:2247–2255.
-
(2014)
Neurology
, vol.83
, pp. 2247-2255
-
-
Shen, X.M.1
Selcen, D.2
Brengman, J.3
-
6
-
-
85046981831
-
Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia
-
Engel AG, Selcen D, Shen XM, et al. Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia. Neurol Genet 2016;2:e105.
-
(2016)
Neurol Genet
, vol.2
-
-
Engel, A.G.1
Selcen, D.2
Shen, X.M.3
-
7
-
-
84982931972
-
Identification of mutations in the MYO9A gene in patients with congenital myasthenic syndrome
-
O'Connor E, Topf A, Muller JS, et al. Identification of mutations in the MYO9A gene in patients with congenital myasthenic syndrome. Brain 2016;139:2143–2153.
-
(2016)
Brain
, vol.139
, pp. 2143-2153
-
-
O'Connor, E.1
Topf, A.2
Muller, J.S.3
-
8
-
-
85002530674
-
Impaired presynaptic high-affinity choline transporter causes a congenital myasthenic syndrome with episodic apnea
-
Bauche S, O'Regan S, Azuma Y, et al. Impaired presynaptic high-affinity choline transporter causes a congenital myasthenic syndrome with episodic apnea. Am J Hum Genet 2016;99:753–761.
-
(2016)
Am J Hum Genet
, vol.99
, pp. 753-761
-
-
Bauche, S.1
O'Regan, S.2
Azuma, Y.3
-
9
-
-
84989911666
-
Variants in SLC18A3, vesicular acetylcholine transporter, cause congenital myasthenic syndrome
-
O'Grady GL, Verschuuren C, Yuen M, et al. Variants in SLC18A3, vesicular acetylcholine transporter, cause congenital myasthenic syndrome. Neurology 2016;87:1442–1448.
-
(2016)
Neurology
, vol.87
, pp. 1442-1448
-
-
O'Grady, G.L.1
Verschuuren, C.2
Yuen, M.3
-
10
-
-
84886998869
-
Neurotransmitter release: the last millisecond in the life of the synaptic vesicle
-
Sudhof TC. Neurotransmitter release: the last millisecond in the life of the synaptic vesicle. Neuron 2013;80:675–690.
-
(2013)
Neuron
, vol.80
, pp. 675-690
-
-
Sudhof, T.C.1
-
11
-
-
79953158803
-
The role of synaptobrevin1/VAMP1 in Ca2+-triggered neurotransmitter release at the mouse neuromuscular junction
-
Liu Y, Sugiura Y, Lin W. The role of synaptobrevin1/VAMP1 in Ca2+-triggered neurotransmitter release at the mouse neuromuscular junction. J Physiol 2011;589:1603–1618.
-
(2011)
J Physiol
, vol.589
, pp. 1603-1618
-
-
Liu, Y.1
Sugiura, Y.2
Lin, W.3
-
12
-
-
84907255154
-
Synaptobrevin 1 mediates vesicle priming and evoked release in a subpopulation of hippocampal neurons
-
Zimmermann J, Trimbuch T, Rosenmund C. Synaptobrevin 1 mediates vesicle priming and evoked release in a subpopulation of hippocampal neurons. J Neurophysiol 2014;112:1559–1565.
-
(2014)
J Neurophysiol
, vol.112
, pp. 1559-1565
-
-
Zimmermann, J.1
Trimbuch, T.2
Rosenmund, C.3
-
13
-
-
0031871330
-
A splice-isoform of vesicle-associated membrane protein-1 (VAMP-1) contains a mitochondrial targeting signal
-
Isenmann S, Khew-Goodall Y, Gamble J, et al. A splice-isoform of vesicle-associated membrane protein-1 (VAMP-1) contains a mitochondrial targeting signal. Mol Biol Cell 1998;9:1649–1660.
-
(1998)
Mol Biol Cell
, vol.9
, pp. 1649-1660
-
-
Isenmann, S.1
Khew-Goodall, Y.2
Gamble, J.3
-
14
-
-
34250357314
-
Primary culture of bovine chromaffin cells
-
O'Connor DT, Mahata SK, Mahata M, et al. Primary culture of bovine chromaffin cells. NatProtoc 2007;2:1248–1253.
-
(2007)
NatProtoc
, vol.2
, pp. 1248-1253
-
-
O'Connor, D.T.1
Mahata, S.K.2
Mahata, M.3
-
15
-
-
33745714469
-
Slow-channel mutation in AChR αM4 domain and its efficient knockdown
-
Shen XM, Deymeer F, Sine SM, Engel AG. Slow-channel mutation in AChR αM4 domain and its efficient knockdown. Ann Neurol 2006;60:128–136.
-
(2006)
Ann Neurol
, vol.60
, pp. 128-136
-
-
Shen, X.M.1
Deymeer, F.2
Sine, S.M.3
Engel, A.G.4
-
16
-
-
84982253941
-
Analysis of protein-coding genetic variation in 60,706 humans
-
Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016;536:285–291.
-
(2016)
Nature
, vol.536
, pp. 285-291
-
-
Lek, M.1
Karczewski, K.J.2
Minikel, E.V.3
-
17
-
-
0025007115
-
Structures and chromosomal localizations of two human genes encoding synaptobrevins 1 and 2
-
Archer BT 3rd, Ozcelik T, Jahn R, et al. Structures and chromosomal localizations of two human genes encoding synaptobrevins 1 and 2. J Biol Chem 1990;265:17267–17273.
-
(1990)
J Biol Chem
, vol.265
, pp. 17267-17273
-
-
Archer, B.T.1
Ozcelik, T.2
Jahn, R.3
-
19
-
-
84954508205
-
Incomplete proteasomal degradation of green fluorescent proteins in the context of tandem fluorescent protein timers
-
Khmelinskii A, Meurer M, Ho CT, et al. Incomplete proteasomal degradation of green fluorescent proteins in the context of tandem fluorescent protein timers. Mol Biol Cell 2016;27:360–370.
-
(2016)
Mol Biol Cell
, vol.27
, pp. 360-370
-
-
Khmelinskii, A.1
Meurer, M.2
Ho, C.T.3
-
20
-
-
21844444781
-
v-SNAREs control exocytosis of vesicles from priming to fusion
-
Borisovska M, Zhao Y, Tsytsyura Y, et al. v-SNAREs control exocytosis of vesicles from priming to fusion. EMBO J 2005;24:2114–2126.
-
(2005)
EMBO J
, vol.24
, pp. 2114-2126
-
-
Borisovska, M.1
Zhao, Y.2
Tsytsyura, Y.3
-
21
-
-
0032903893
-
Differential expression of SNAP-25 isoforms and SNAP-23 in the adrenal gland
-
Grant NJ, Hepp R, Krasuse W, et al. Differential expression of SNAP-25 isoforms and SNAP-23 in the adrenal gland. Neuro Chem 1999;72:363–372.
-
(1999)
Neuro Chem
, vol.72
, pp. 363-372
-
-
Grant, N.J.1
Hepp, R.2
Krasuse, W.3
-
22
-
-
0018275855
-
In vivo continuous electrochemical determination of dopamine release in rat neostriatum
-
Gonon F, Cespuglio R, Ponchon JL, et al. In vivo continuous electrochemical determination of dopamine release in rat neostriatum. C R Acad Sci Hebd Seances Acad Sci D 1978;286:1203–1206.
-
(1978)
C R Acad Sci Hebd Seances Acad Sci D
, vol.286
, pp. 1203-1206
-
-
Gonon, F.1
Cespuglio, R.2
Ponchon, J.L.3
-
23
-
-
0025111205
-
Nicotinic receptor-mediated catecholamine release from individual chromaffin cell
-
Leszczyszyn DJ, Jankkowski JA, Viveros OH, et al. Nicotinic receptor-mediated catecholamine release from individual chromaffin cell. J Biol Chem 1990;265:14736–14737.
-
(1990)
J Biol Chem
, vol.265
, pp. 14736-14737
-
-
Leszczyszyn, D.J.1
Jankkowski, J.A.2
Viveros, O.H.3
-
24
-
-
0025786134
-
Temporarily resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells
-
Wightman RM, Jankowski JA, Kennedy RT, et al. Temporarily resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci USA 1991;88:10754–10758.
-
(1991)
Proc Natl Acad Sci USA
, vol.88
, pp. 10754-10758
-
-
Wightman, R.M.1
Jankowski, J.A.2
Kennedy, R.T.3
-
25
-
-
0015226795
-
Quantal components of end-plate potentials in the myasthenic syndrome
-
Lambert EH, Elmqvist D. Quantal components of end-plate potentials in the myasthenic syndrome. Ann NY Acad Sci 1971;183:183–199.
-
(1971)
Ann NY Acad Sci
, vol.183
, pp. 183-199
-
-
Lambert, E.H.1
Elmqvist, D.2
-
26
-
-
84944892374
-
Vesicular synaptobrevin/VAMP2 levels guarded by AP180 control efficient neurotransmission
-
Koo SJ, Kochlamazashvili G, Rost B, et al. Vesicular synaptobrevin/VAMP2 levels guarded by AP180 control efficient neurotransmission. Neuron 2015;88:330–344.
-
(2015)
Neuron
, vol.88
, pp. 330-344
-
-
Koo, S.J.1
Kochlamazashvili, G.2
Rost, B.3
-
27
-
-
84940855905
-
Architecture of the synaptophysin/synaptobrevin complex: structural evidence for an entropic clustering function at the synapse
-
Adams DJ, Arthur CP, Stowell MH. Architecture of the synaptophysin/synaptobrevin complex: structural evidence for an entropic clustering function at the synapse. Sci Rep 2015;5:13659.
-
(2015)
Sci Rep
, vol.5
, pp. 13659
-
-
Adams, D.J.1
Arthur, C.P.2
Stowell, M.H.3
-
28
-
-
84958120375
-
Synaptophysin 1 clears synaptobrevin 2 from the presynaptic active zone to prevent short-term depression
-
Rajappa R, Gauthier-Kemper A, Boning D, et al. Synaptophysin 1 clears synaptobrevin 2 from the presynaptic active zone to prevent short-term depression. Cell Rep 2016;14:1369–1381.
-
(2016)
Cell Rep
, vol.14
, pp. 1369-1381
-
-
Rajappa, R.1
Gauthier-Kemper, A.2
Boning, D.3
-
29
-
-
84981240726
-
v-SNARE transmembrane domains function as catalysts for vesicle fusion
-
Dhara M, Yarzagaray A, Makke M, et al. v-SNARE transmembrane domains function as catalysts for vesicle fusion. eLife 2016; 5:e17571.
-
(2016)
eLife
, vol.5
-
-
Dhara, M.1
Yarzagaray, A.2
Makke, M.3
-
30
-
-
78649902357
-
Role of the synaptobrevin C terminus in fusion pore formation
-
Ngatchou AN, Kisler K, Fang Q, et al. Role of the synaptobrevin C terminus in fusion pore formation. Proc Natl Acad Sci USA 2010;107:18463–18468.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 18463-18468
-
-
Ngatchou, A.N.1
Kisler, K.2
Fang, Q.3
-
31
-
-
84865798240
-
Coarse-grain simulations reveal movement of the synaptobrevin C-terminus in response to piconewton forces
-
Lindau M, Hall BA, Chetwynd A, et al. Coarse-grain simulations reveal movement of the synaptobrevin C-terminus in response to piconewton forces. Biophys J 2012;103:9959–9969.
-
(2012)
Biophys J
, vol.103
, pp. 9959-9969
-
-
Lindau, M.1
Hall, B.A.2
Chetwynd, A.3
-
32
-
-
84903577113
-
How could SNARE proteins open a fusion pore?
-
Fang Q, Lindau M. How could SNARE proteins open a fusion pore? Physiology (Bethesda) 2014;29:278–285.
-
(2014)
Physiology (Bethesda)
, vol.29
, pp. 278-285
-
-
Fang, Q.1
Lindau, M.2
-
33
-
-
33845635691
-
A null mutation in VAMP1/synaptobrevin is associated with neurological defects and prewean mortality in the lethal-wasting mouse mutant
-
Nystuen AM, Schwendinger JK, Sachs AJ, et al. A null mutation in VAMP1/synaptobrevin is associated with neurological defects and prewean mortality in the lethal-wasting mouse mutant. Neurogenetics 2007;8:1–10.
-
(2007)
Neurogenetics
, vol.8
, pp. 1-10
-
-
Nystuen, A.M.1
Schwendinger, J.K.2
Sachs, A.J.3
-
34
-
-
84866071490
-
VAMP1 mutation causes dominant hereditary spastic ataxia in Newfoundland families
-
Bourassa CV, Meijer IA, Merner ND, et al. VAMP1 mutation causes dominant hereditary spastic ataxia in Newfoundland families. Am J Hum Genet 2012;91:548–552.
-
(2012)
Am J Hum Genet
, vol.91
, pp. 548-552
-
-
Bourassa, C.V.1
Meijer, I.A.2
Merner, N.D.3
|