메뉴 건너뛰기




Volumn 4, Issue 2, 2017, Pages 130-138

Corrigendum to: Novel synaptobrevin-1 mutation causes fatal congenital myasthenic syndrome (Annals of Clinical and Translational Neurology, (2017), 4, 2, (130-138), 10.1002/acn3.387);Novel synaptobrevin-1 mutation causes fatal congenital myasthenic syndrome

Author keywords

[No Author keywords available]

Indexed keywords

PYRIDOSTIGMINE; RAB PROTEIN; SYNAPSIN I; SYNAPTOBREVIN 1; SYNAPTOTAGMIN I; SYNAPTOTAGMIN II;

EID: 85020480964     PISSN: None     EISSN: 23289503     Source Type: Journal    
DOI: 10.1002/acn3.422     Document Type: Erratum
Times cited : (34)

References (34)
  • 1
    • 84926336826 scopus 로고    scopus 로고
    • Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment
    • Engel AG, Shen XM, Sine SM. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 2015;14:420–434.
    • (2015) Lancet Neurol , vol.14 , pp. 420-434
    • Engel, A.G.1    Shen, X.M.2    Sine, S.M.3
  • 2
    • 0035852681 scopus 로고    scopus 로고
    • Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans
    • Ohno K, Tsujino A, Shen XM, et al. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci USA 2001;98:2017–2022.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 2017-2022
    • Ohno, K.1    Tsujino, A.2    Shen, X.M.3
  • 3
    • 68349151039 scopus 로고    scopus 로고
    • Identification of an agrin mutation that causes congenital myasthenia and affects synapse function
    • Huze C, Bauche S, Richard P, et al. Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet 2009;85:155–167.
    • (2009) Am J Hum Genet , vol.85 , pp. 155-167
    • Huze, C.1    Bauche, S.2    Richard, P.3
  • 4
    • 84908236633 scopus 로고    scopus 로고
    • Synaptotagmin 2 mutations cause an autosomal-dominant form of Lambert-Eaton myasthenic syndrome and nonprogressive motor neuropathy
    • Herrmann DN, Horvath R, Snowden JE, et al. Synaptotagmin 2 mutations cause an autosomal-dominant form of Lambert-Eaton myasthenic syndrome and nonprogressive motor neuropathy. Am J Hum Genet 2014;95:332–339.
    • (2014) Am J Hum Genet , vol.95 , pp. 332-339
    • Herrmann, D.N.1    Horvath, R.2    Snowden, J.E.3
  • 5
    • 84924120978 scopus 로고    scopus 로고
    • Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability
    • Shen XM, Selcen D, Brengman J, et al. Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology 2014;83:2247–2255.
    • (2014) Neurology , vol.83 , pp. 2247-2255
    • Shen, X.M.1    Selcen, D.2    Brengman, J.3
  • 6
    • 85046981831 scopus 로고    scopus 로고
    • Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia
    • Engel AG, Selcen D, Shen XM, et al. Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia. Neurol Genet 2016;2:e105.
    • (2016) Neurol Genet , vol.2
    • Engel, A.G.1    Selcen, D.2    Shen, X.M.3
  • 7
    • 84982931972 scopus 로고    scopus 로고
    • Identification of mutations in the MYO9A gene in patients with congenital myasthenic syndrome
    • O'Connor E, Topf A, Muller JS, et al. Identification of mutations in the MYO9A gene in patients with congenital myasthenic syndrome. Brain 2016;139:2143–2153.
    • (2016) Brain , vol.139 , pp. 2143-2153
    • O'Connor, E.1    Topf, A.2    Muller, J.S.3
  • 8
    • 85002530674 scopus 로고    scopus 로고
    • Impaired presynaptic high-affinity choline transporter causes a congenital myasthenic syndrome with episodic apnea
    • Bauche S, O'Regan S, Azuma Y, et al. Impaired presynaptic high-affinity choline transporter causes a congenital myasthenic syndrome with episodic apnea. Am J Hum Genet 2016;99:753–761.
    • (2016) Am J Hum Genet , vol.99 , pp. 753-761
    • Bauche, S.1    O'Regan, S.2    Azuma, Y.3
  • 9
    • 84989911666 scopus 로고    scopus 로고
    • Variants in SLC18A3, vesicular acetylcholine transporter, cause congenital myasthenic syndrome
    • O'Grady GL, Verschuuren C, Yuen M, et al. Variants in SLC18A3, vesicular acetylcholine transporter, cause congenital myasthenic syndrome. Neurology 2016;87:1442–1448.
    • (2016) Neurology , vol.87 , pp. 1442-1448
    • O'Grady, G.L.1    Verschuuren, C.2    Yuen, M.3
  • 10
    • 84886998869 scopus 로고    scopus 로고
    • Neurotransmitter release: the last millisecond in the life of the synaptic vesicle
    • Sudhof TC. Neurotransmitter release: the last millisecond in the life of the synaptic vesicle. Neuron 2013;80:675–690.
    • (2013) Neuron , vol.80 , pp. 675-690
    • Sudhof, T.C.1
  • 11
    • 79953158803 scopus 로고    scopus 로고
    • The role of synaptobrevin1/VAMP1 in Ca2+-triggered neurotransmitter release at the mouse neuromuscular junction
    • Liu Y, Sugiura Y, Lin W. The role of synaptobrevin1/VAMP1 in Ca2+-triggered neurotransmitter release at the mouse neuromuscular junction. J Physiol 2011;589:1603–1618.
    • (2011) J Physiol , vol.589 , pp. 1603-1618
    • Liu, Y.1    Sugiura, Y.2    Lin, W.3
  • 12
    • 84907255154 scopus 로고    scopus 로고
    • Synaptobrevin 1 mediates vesicle priming and evoked release in a subpopulation of hippocampal neurons
    • Zimmermann J, Trimbuch T, Rosenmund C. Synaptobrevin 1 mediates vesicle priming and evoked release in a subpopulation of hippocampal neurons. J Neurophysiol 2014;112:1559–1565.
    • (2014) J Neurophysiol , vol.112 , pp. 1559-1565
    • Zimmermann, J.1    Trimbuch, T.2    Rosenmund, C.3
  • 13
    • 0031871330 scopus 로고    scopus 로고
    • A splice-isoform of vesicle-associated membrane protein-1 (VAMP-1) contains a mitochondrial targeting signal
    • Isenmann S, Khew-Goodall Y, Gamble J, et al. A splice-isoform of vesicle-associated membrane protein-1 (VAMP-1) contains a mitochondrial targeting signal. Mol Biol Cell 1998;9:1649–1660.
    • (1998) Mol Biol Cell , vol.9 , pp. 1649-1660
    • Isenmann, S.1    Khew-Goodall, Y.2    Gamble, J.3
  • 14
    • 34250357314 scopus 로고    scopus 로고
    • Primary culture of bovine chromaffin cells
    • O'Connor DT, Mahata SK, Mahata M, et al. Primary culture of bovine chromaffin cells. NatProtoc 2007;2:1248–1253.
    • (2007) NatProtoc , vol.2 , pp. 1248-1253
    • O'Connor, D.T.1    Mahata, S.K.2    Mahata, M.3
  • 15
    • 33745714469 scopus 로고    scopus 로고
    • Slow-channel mutation in AChR αM4 domain and its efficient knockdown
    • Shen XM, Deymeer F, Sine SM, Engel AG. Slow-channel mutation in AChR αM4 domain and its efficient knockdown. Ann Neurol 2006;60:128–136.
    • (2006) Ann Neurol , vol.60 , pp. 128-136
    • Shen, X.M.1    Deymeer, F.2    Sine, S.M.3    Engel, A.G.4
  • 16
    • 84982253941 scopus 로고    scopus 로고
    • Analysis of protein-coding genetic variation in 60,706 humans
    • Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016;536:285–291.
    • (2016) Nature , vol.536 , pp. 285-291
    • Lek, M.1    Karczewski, K.J.2    Minikel, E.V.3
  • 17
    • 0025007115 scopus 로고
    • Structures and chromosomal localizations of two human genes encoding synaptobrevins 1 and 2
    • Archer BT 3rd, Ozcelik T, Jahn R, et al. Structures and chromosomal localizations of two human genes encoding synaptobrevins 1 and 2. J Biol Chem 1990;265:17267–17273.
    • (1990) J Biol Chem , vol.265 , pp. 17267-17273
    • Archer, B.T.1    Ozcelik, T.2    Jahn, R.3
  • 19
    • 84954508205 scopus 로고    scopus 로고
    • Incomplete proteasomal degradation of green fluorescent proteins in the context of tandem fluorescent protein timers
    • Khmelinskii A, Meurer M, Ho CT, et al. Incomplete proteasomal degradation of green fluorescent proteins in the context of tandem fluorescent protein timers. Mol Biol Cell 2016;27:360–370.
    • (2016) Mol Biol Cell , vol.27 , pp. 360-370
    • Khmelinskii, A.1    Meurer, M.2    Ho, C.T.3
  • 20
    • 21844444781 scopus 로고    scopus 로고
    • v-SNAREs control exocytosis of vesicles from priming to fusion
    • Borisovska M, Zhao Y, Tsytsyura Y, et al. v-SNAREs control exocytosis of vesicles from priming to fusion. EMBO J 2005;24:2114–2126.
    • (2005) EMBO J , vol.24 , pp. 2114-2126
    • Borisovska, M.1    Zhao, Y.2    Tsytsyura, Y.3
  • 21
    • 0032903893 scopus 로고    scopus 로고
    • Differential expression of SNAP-25 isoforms and SNAP-23 in the adrenal gland
    • Grant NJ, Hepp R, Krasuse W, et al. Differential expression of SNAP-25 isoforms and SNAP-23 in the adrenal gland. Neuro Chem 1999;72:363–372.
    • (1999) Neuro Chem , vol.72 , pp. 363-372
    • Grant, N.J.1    Hepp, R.2    Krasuse, W.3
  • 22
    • 0018275855 scopus 로고
    • In vivo continuous electrochemical determination of dopamine release in rat neostriatum
    • Gonon F, Cespuglio R, Ponchon JL, et al. In vivo continuous electrochemical determination of dopamine release in rat neostriatum. C R Acad Sci Hebd Seances Acad Sci D 1978;286:1203–1206.
    • (1978) C R Acad Sci Hebd Seances Acad Sci D , vol.286 , pp. 1203-1206
    • Gonon, F.1    Cespuglio, R.2    Ponchon, J.L.3
  • 23
    • 0025111205 scopus 로고
    • Nicotinic receptor-mediated catecholamine release from individual chromaffin cell
    • Leszczyszyn DJ, Jankkowski JA, Viveros OH, et al. Nicotinic receptor-mediated catecholamine release from individual chromaffin cell. J Biol Chem 1990;265:14736–14737.
    • (1990) J Biol Chem , vol.265 , pp. 14736-14737
    • Leszczyszyn, D.J.1    Jankkowski, J.A.2    Viveros, O.H.3
  • 24
    • 0025786134 scopus 로고
    • Temporarily resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells
    • Wightman RM, Jankowski JA, Kennedy RT, et al. Temporarily resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci USA 1991;88:10754–10758.
    • (1991) Proc Natl Acad Sci USA , vol.88 , pp. 10754-10758
    • Wightman, R.M.1    Jankowski, J.A.2    Kennedy, R.T.3
  • 25
    • 0015226795 scopus 로고
    • Quantal components of end-plate potentials in the myasthenic syndrome
    • Lambert EH, Elmqvist D. Quantal components of end-plate potentials in the myasthenic syndrome. Ann NY Acad Sci 1971;183:183–199.
    • (1971) Ann NY Acad Sci , vol.183 , pp. 183-199
    • Lambert, E.H.1    Elmqvist, D.2
  • 26
    • 84944892374 scopus 로고    scopus 로고
    • Vesicular synaptobrevin/VAMP2 levels guarded by AP180 control efficient neurotransmission
    • Koo SJ, Kochlamazashvili G, Rost B, et al. Vesicular synaptobrevin/VAMP2 levels guarded by AP180 control efficient neurotransmission. Neuron 2015;88:330–344.
    • (2015) Neuron , vol.88 , pp. 330-344
    • Koo, S.J.1    Kochlamazashvili, G.2    Rost, B.3
  • 27
    • 84940855905 scopus 로고    scopus 로고
    • Architecture of the synaptophysin/synaptobrevin complex: structural evidence for an entropic clustering function at the synapse
    • Adams DJ, Arthur CP, Stowell MH. Architecture of the synaptophysin/synaptobrevin complex: structural evidence for an entropic clustering function at the synapse. Sci Rep 2015;5:13659.
    • (2015) Sci Rep , vol.5 , pp. 13659
    • Adams, D.J.1    Arthur, C.P.2    Stowell, M.H.3
  • 28
    • 84958120375 scopus 로고    scopus 로고
    • Synaptophysin 1 clears synaptobrevin 2 from the presynaptic active zone to prevent short-term depression
    • Rajappa R, Gauthier-Kemper A, Boning D, et al. Synaptophysin 1 clears synaptobrevin 2 from the presynaptic active zone to prevent short-term depression. Cell Rep 2016;14:1369–1381.
    • (2016) Cell Rep , vol.14 , pp. 1369-1381
    • Rajappa, R.1    Gauthier-Kemper, A.2    Boning, D.3
  • 29
    • 84981240726 scopus 로고    scopus 로고
    • v-SNARE transmembrane domains function as catalysts for vesicle fusion
    • Dhara M, Yarzagaray A, Makke M, et al. v-SNARE transmembrane domains function as catalysts for vesicle fusion. eLife 2016; 5:e17571.
    • (2016) eLife , vol.5
    • Dhara, M.1    Yarzagaray, A.2    Makke, M.3
  • 30
    • 78649902357 scopus 로고    scopus 로고
    • Role of the synaptobrevin C terminus in fusion pore formation
    • Ngatchou AN, Kisler K, Fang Q, et al. Role of the synaptobrevin C terminus in fusion pore formation. Proc Natl Acad Sci USA 2010;107:18463–18468.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 18463-18468
    • Ngatchou, A.N.1    Kisler, K.2    Fang, Q.3
  • 31
    • 84865798240 scopus 로고    scopus 로고
    • Coarse-grain simulations reveal movement of the synaptobrevin C-terminus in response to piconewton forces
    • Lindau M, Hall BA, Chetwynd A, et al. Coarse-grain simulations reveal movement of the synaptobrevin C-terminus in response to piconewton forces. Biophys J 2012;103:9959–9969.
    • (2012) Biophys J , vol.103 , pp. 9959-9969
    • Lindau, M.1    Hall, B.A.2    Chetwynd, A.3
  • 32
    • 84903577113 scopus 로고    scopus 로고
    • How could SNARE proteins open a fusion pore?
    • Fang Q, Lindau M. How could SNARE proteins open a fusion pore? Physiology (Bethesda) 2014;29:278–285.
    • (2014) Physiology (Bethesda) , vol.29 , pp. 278-285
    • Fang, Q.1    Lindau, M.2
  • 33
    • 33845635691 scopus 로고    scopus 로고
    • A null mutation in VAMP1/synaptobrevin is associated with neurological defects and prewean mortality in the lethal-wasting mouse mutant
    • Nystuen AM, Schwendinger JK, Sachs AJ, et al. A null mutation in VAMP1/synaptobrevin is associated with neurological defects and prewean mortality in the lethal-wasting mouse mutant. Neurogenetics 2007;8:1–10.
    • (2007) Neurogenetics , vol.8 , pp. 1-10
    • Nystuen, A.M.1    Schwendinger, J.K.2    Sachs, A.J.3
  • 34
    • 84866071490 scopus 로고    scopus 로고
    • VAMP1 mutation causes dominant hereditary spastic ataxia in Newfoundland families
    • Bourassa CV, Meijer IA, Merner ND, et al. VAMP1 mutation causes dominant hereditary spastic ataxia in Newfoundland families. Am J Hum Genet 2012;91:548–552.
    • (2012) Am J Hum Genet , vol.91 , pp. 548-552
    • Bourassa, C.V.1    Meijer, I.A.2    Merner, N.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.