-
1
-
-
84922359615
-
Virus and cell fusion mechanisms
-
Podbilewicz B. 2014. Virus and cell fusion mechanisms. Annu Rev Cell Dev Biol 30:111-139. https://doi.org/10.1146/annurev-cellbio-101512-122422
-
(2014)
Annu Rev Cell Dev Biol
, vol.30
, pp. 111-139
-
-
Podbilewicz, B.1
-
2
-
-
84937761010
-
Viral membrane fusion
-
Harrison SC. 2015. Viral membrane fusion. Virology 479-480:498-507. https://doi.org/10.1016/j.virol.2015.03.043
-
(2015)
Virology
, vol.479-480
, pp. 498-507
-
-
Harrison, S.C.1
-
3
-
-
84887289231
-
HIV entry: a game of hide-and-fuse?
-
Melikyan GB. 2014. HIV entry: a game of hide-and-fuse? Curr Opin Virol 4:1-7. https://doi.org/10.1016/j.coviro.2013.09.004
-
(2014)
Curr Opin Virol
, vol.4
, pp. 1-7
-
-
Melikyan, G.B.1
-
4
-
-
84858255142
-
Molecular mechanisms of HIV entry
-
Wilen CB, Tilton JC, Doms RW. 2012. Molecular mechanisms of HIV entry. Adv Exp Med Biol 726:223-242. https://doi.org/10.1007/978-1-4614-0980-9_10
-
(2012)
Adv Exp Med Biol
, vol.726
, pp. 223-242
-
-
Wilen, C.B.1
Tilton, J.C.2
Doms, R.W.3
-
5
-
-
45849108331
-
Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme
-
White JM, Delos SE, Brecher M, Schornberg K. 2008. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 43:189-219. https://doi.org/10.1080/10409230802058320
-
(2008)
Crit Rev Biochem Mol Biol
, vol.43
, pp. 189-219
-
-
White, J.M.1
Delos, S.E.2
Brecher, M.3
Schornberg, K.4
-
6
-
-
79960466427
-
Receptors and tropisms of envelope viruses
-
Morizono K, Chen IS. 2011. Receptors and tropisms of envelope viruses. Curr Opin Virol 1:13-18. https://doi.org/10.1016/j.coviro.2011.05.001
-
(2011)
Curr Opin Virol
, vol.1
, pp. 13-18
-
-
Morizono, K.1
Chen, I.S.2
-
8
-
-
84939939551
-
Adenovirus membrane penetration: tickling the tail of a sleeping dragon
-
Wiethoff CM, Nemerow GR. 2015. Adenovirus membrane penetration: tickling the tail of a sleeping dragon. Virology 479-480:591-599. https://doi.org/10.1016/j.virol.2015.03.006
-
(2015)
Virology
, vol.479-480
, pp. 591-599
-
-
Wiethoff, C.M.1
Nemerow, G.R.2
-
9
-
-
41949101389
-
Activation, exposure and penetration of virally encoded, membrane-active polypeptides during non-enveloped virus entry
-
Banerjee M, Johnson JE. 2008. Activation, exposure and penetration of virally encoded, membrane-active polypeptides during non-enveloped virus entry. Curr Protein Pept Sci 9:16-27. https://doi.org/10.2174/138920308783565732
-
(2008)
Curr Protein Pept Sci
, vol.9
, pp. 16-27
-
-
Banerjee, M.1
Johnson, J.E.2
-
10
-
-
79952111899
-
Flock house virus: a model system for understanding non-enveloped virus entry and membrane penetration
-
Odegard A, Banerjee M, Johnson JE. 2010. Flock house virus: a model system for understanding non-enveloped virus entry and membrane penetration. Curr Top Microbiol Immunol 343:1-22. https://doi.org/10 .1007/82_2010_35
-
(2010)
Curr Top Microbiol Immunol
, vol.343
, pp. 1-22
-
-
Odegard, A.1
Banerjee, M.2
Johnson, J.E.3
-
11
-
-
85027930977
-
Popping the cork: mechanisms of phage genome ejection
-
Molineux IJ, Panja D. 2013. Popping the cork: mechanisms of phage genome ejection. Nat Rev Microbiol 11:194-204. https://doi.org/10 .1038/nrmicro2988
-
(2013)
Nat Rev Microbiol
, vol.11
, pp. 194-204
-
-
Molineux, I.J.1
Panja, D.2
-
12
-
-
37749051185
-
Portal motor velocity and internal force resisting viral DNA packaging in bacteriophage phi29
-
Rickgauer JP, Fuller DN, Grimes S, Jardine PJ, Anderson DL, Smith DE. 2008. Portal motor velocity and internal force resisting viral DNA packaging in bacteriophage phi29. Biophys J 94:159-167. https://doi.org/10 .1529/biophysj.107.104612
-
(2008)
Biophys J
, vol.94
, pp. 159-167
-
-
Rickgauer, J.P.1
Fuller, D.N.2
Grimes, S.3
Jardine, P.J.4
Anderson, D.L.5
Smith, D.E.6
-
13
-
-
0035909370
-
The bacteriophage straight phi29 portal motor can package DNA against a large internal force
-
Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, Bustamante C. 2001. The bacteriophage straight phi29 portal motor can package DNA against a large internal force. Nature 413:748-752. https://doi.org/10 .1038/35099581
-
(2001)
Nature
, vol.413
, pp. 748-752
-
-
Smith, D.E.1
Tans, S.J.2
Smith, S.B.3
Grimes, S.4
Anderson, D.L.5
Bustamante, C.6
-
14
-
-
0030047151
-
The permeability of the wall fabric of Escherichia coli and Bacillus subtilis
-
Demchick P, Koch AL. 1996. The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J Bacteriol 178:768-773. https://doi .org/10.1128/jb.178.3.768-773.1996
-
(1996)
J Bacteriol
, vol.178
, pp. 768-773
-
-
Demchick, P.1
Koch, A.L.2
-
15
-
-
84858189224
-
Contractile tail machines of bacteriophages
-
Leiman PG, Shneider MM. 2012. Contractile tail machines of bacteriophages. Adv Exp Med Biol 726:93-114. https://doi.org/10.1007/978-1-4614-0980-9_5
-
(2012)
Adv Exp Med Biol
, vol.726
, pp. 93-114
-
-
Leiman, P.G.1
Shneider, M.M.2
-
16
-
-
0038392706
-
Bacteriophage observations and evolution
-
Ackermann HW. 2003. Bacteriophage observations and evolution. Res Microbiol 154:245-251. https://doi.org/10.1016/S0923-2508(03)00067-6
-
(2003)
Res Microbiol
, vol.154
, pp. 245-251
-
-
Ackermann, H.W.1
-
17
-
-
78649536914
-
Morphogenesis of the T4 tail and tail fibers
-
Leiman PG, Arisaka F, van Raaij MJ, Kostyuchenko VA, Aksyuk AA, Kanamaru S, Rossmann MG. 2010. Morphogenesis of the T4 tail and tail fibers. Virol J 7:355. https://doi.org/10.1186/1743-422X-7-355
-
(2010)
Virol J
, vol.7
, pp. 355
-
-
Leiman, P.G.1
Arisaka, F.2
van Raaij, M.J.3
Kostyuchenko, V.A.4
Aksyuk, A.A.5
Kanamaru, S.6
Rossmann, M.G.7
-
18
-
-
0017757241
-
Molecular reorganization in the hexagon to star transition of the baseplate of bacteriophage T4
-
Crowther RA, Lenk EV, Kikuchi Y, King J. 1977. Molecular reorganization in the hexagon to star transition of the baseplate of bacteriophage T4. J Mol Biol 116:489-523. https://doi.org/10.1016/0022-2836(77)90081-X
-
(1977)
J Mol Biol
, vol.116
, pp. 489-523
-
-
Crowther, R.A.1
Lenk, E.V.2
Kikuchi, Y.3
King, J.4
-
19
-
-
4644242580
-
Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host
-
Leiman PG, Chipman PR, Kostyuchenko VA, Mesyanzhinov VV, Rossmann MG. 2004. Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 118:419-429. https://doi .org/10.1016/j.cell.2004.07.022
-
(2004)
Cell
, vol.118
, pp. 419-429
-
-
Leiman, P.G.1
Chipman, P.R.2
Kostyuchenko, V.A.3
Mesyanzhinov, V.V.4
Rossmann, M.G.5
-
20
-
-
0018834129
-
Baseplate protein of bacteriophage-T4 with both structural and lytic functions
-
Kao SH, McClain WH. 1980. Baseplate protein of bacteriophage-T4 with both structural and lytic functions. J Virol 34:95-103
-
(1980)
J Virol
, vol.34
, pp. 95-103
-
-
Kao, S.H.1
McClain, W.H.2
-
21
-
-
84941011872
-
Structural remodeling of bacteriophage T4 and host membranes during infection initiation
-
Hu B, Margolin W, Molineux IJ, Liu J. 2015. Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proc Natl Acad Sci U S A 112:E4919-E4928. https://doi.org/10.1073/pnas .1501064112
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. E4919-E4928
-
-
Hu, B.1
Margolin, W.2
Molineux, I.J.3
Liu, J.4
-
22
-
-
33744962964
-
The ectodomain of the viral receptor YueB forms a fiber that triggers ejection of bacteriophage SPP1 DNA
-
Sao-Jose C, Lhuillier S, Lurz R, Melki R, Lepault J, Santos MA, Tavares P. 2006. The ectodomain of the viral receptor YueB forms a fiber that triggers ejection of bacteriophage SPP1 DNA. J Biol Chem 281: 11464-11470. https://doi.org/10.1074/jbc.M513625200
-
(2006)
J Biol Chem
, vol.281
, pp. 11464-11470
-
-
Sao-Jose, C.1
Lhuillier, S.2
Lurz, R.3
Melki, R.4
Lepault, J.5
Santos, M.A.6
Tavares, P.7
-
23
-
-
34547732899
-
Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection
-
Plisson C, White HE, Auzat I, Zafarani A, Sao-Jose C, Lhuillier S, Tavares P, Orlova EV. 2007. Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection. EMBO J 26:3720-3728. https://doi.org/10.1038/sj.emboj .7601786
-
(2007)
EMBO J
, vol.26
, pp. 3720-3728
-
-
Plisson, C.1
White, H.E.2
Auzat, I.3
Zafarani, A.4
Sao-Jose, C.5
Lhuillier, S.6
Tavares, P.7
Orlova, E.V.8
-
24
-
-
84891710087
-
Insights into bacteriophage T5 structure from analysis of its morphogenesis genes and protein components
-
Zivanovic Y, Confalonieri F, Ponchon L, Lurz R, Chami M, Flayhan A, Renouard M, Huet A, Decottignies P, Davidson AR, Breyton C, Boulanger P. 2014. Insights into bacteriophage T5 structure from analysis of its morphogenesis genes and protein components. J Virol 88:1162-1174. https://doi.org/10.1128/JVI.02262-13
-
(2014)
J Virol
, vol.88
, pp. 1162-1174
-
-
Zivanovic, Y.1
Confalonieri, F.2
Ponchon, L.3
Lurz, R.4
Chami, M.5
Flayhan, A.6
Renouard, M.7
Huet, A.8
Decottignies, P.9
Davidson, A.R.10
Breyton, C.11
Boulanger, P.12
-
25
-
-
0027938423
-
Translocation of DNA across bacterial membranes
-
Dreiseikelmann B. 1994. Translocation of DNA across bacterial membranes. Microbiol Rev 58:293-316
-
(1994)
Microbiol Rev
, vol.58
, pp. 293-316
-
-
Dreiseikelmann, B.1
-
26
-
-
0017264204
-
Phage lambda DNA injection into Escherichia coli pelβ mutants is restored by mutations in phage gene V or gene H
-
Scandella D, Arber W. 1976. Phage lambda DNA injection into Escherichia coli pelβ mutants is restored by mutations in phage gene V or gene H. Virology 69:206-215. https://doi.org/10.1016/0042-6822(76)90207-5
-
(1976)
Virology
, vol.69
, pp. 206-215
-
-
Scandella, D.1
Arber, W.2
-
27
-
-
0026726725
-
Involvement of phage T5 tail proteins and contact sites between the outer and inner membrane of Escherichia coli in phage T5 DNA injection
-
Guihard G, Boulanger P, Letellier L. 1992. Involvement of phage T5 tail proteins and contact sites between the outer and inner membrane of Escherichia coli in phage T5 DNA injection. J Biol Chem 267:3173-3178
-
(1992)
J Biol Chem
, vol.267
, pp. 3173-3178
-
-
Guihard, G.1
Boulanger, P.2
Letellier, L.3
-
28
-
-
84928402372
-
The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97
-
Cumby N, Reimer K, Mengin-Lecreulx D, Davidson AR, Maxwell KL. 2015. The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97. Mol Microbiol 96:437-447. https://doi .org/10.1111/mmi.12918
-
(2015)
Mol Microbiol
, vol.96
, pp. 437-447
-
-
Cumby, N.1
Reimer, K.2
Mengin-Lecreulx, D.3
Davidson, A.R.4
Maxwell, K.L.5
-
29
-
-
84858216564
-
Long noncontractile tail machines of bacteriophages
-
Davidson AR, Cardarelli L, Pell LG, Radford DR, Maxwell KL. 2012. Long noncontractile tail machines of bacteriophages. Adv Exp Med Biol 726: 115-142. https://doi.org/10.1007/978-1-4614-0980-9_6
-
(2012)
Adv Exp Med Biol
, vol.726
, pp. 115-142
-
-
Davidson, A.R.1
Cardarelli, L.2
Pell, L.G.3
Radford, D.R.4
Maxwell, K.L.5
-
30
-
-
0021351884
-
Proteinase sensitivity of bacteriophage lambda tail protein gpJ and protein pH* in complexes with the lambda receptor
-
Roessner CA, Ihler GM. 1984. Proteinase sensitivity of bacteriophage lambda tail protein gpJ and protein pH* in complexes with the lambda receptor. J Bacteriol 157:165-170
-
(1984)
J Bacteriol
, vol.157
, pp. 165-170
-
-
Roessner, C.A.1
Ihler, G.M.2
-
31
-
-
46649087608
-
Phage T5 straight tail fiber is a multifunctional protein acting as a tape measure and carrying fusogenic and muralytic activities
-
Boulanger P, Jacquot P, Plancon L, Chami M, Engel A, Parquet C, Herbeuval C, Letellier L. 2008. Phage T5 straight tail fiber is a multifunctional protein acting as a tape measure and carrying fusogenic and muralytic activities. J Biol Chem 283:13556-13564. https://doi.org/10.1074/jbc .M800052200
-
(2008)
J Biol Chem
, vol.283
, pp. 13556-13564
-
-
Boulanger, P.1
Jacquot, P.2
Plancon, L.3
Chami, M.4
Engel, A.5
Parquet, C.6
Herbeuval, C.7
Letellier, L.8
-
32
-
-
0025009142
-
Pore formation associated with the tail-tip protein pb2 of bacteriophage T5
-
Feucht A, Schmid A, Benz R, Schwarz H, Heller KJ. 1990. Pore formation associated with the tail-tip protein pb2 of bacteriophage T5. J Biol Chem 265:18561-18567
-
(1990)
J Biol Chem
, vol.265
, pp. 18561-18567
-
-
Feucht, A.1
Schmid, A.2
Benz, R.3
Schwarz, H.4
Heller, K.J.5
-
33
-
-
0035822681
-
FhuA-mediated phage genome transfer into liposomes: a cryoelectron tomography study
-
Bohm J, Lambert O, Frangakis AS, Letellier L, Baumeister W, Rigaud JL. 2001. FhuA-mediated phage genome transfer into liposomes: a cryoelectron tomography study. Curr Biol 11:1168-1175. https://doi.org/10 .1016/S0960-9822(01)00349-9
-
(2001)
Curr Biol
, vol.11
, pp. 1168-1175
-
-
Bohm, J.1
Lambert, O.2
Frangakis, A.S.3
Letellier, L.4
Baumeister, W.5
Rigaud, J.L.6
-
34
-
-
84855759113
-
Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection
-
Vinga I, Baptista C, Auzat I, Petipas I, Lurz R, Tavares P, Santos MA, Sao-Jose C. 2012. Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection. Mol Microbiol 83:289-303. https://doi.org/10.1111/j.1365-2958.2011 .07931.x
-
(2012)
Mol Microbiol
, vol.83
, pp. 289-303
-
-
Vinga, I.1
Baptista, C.2
Auzat, I.3
Petipas, I.4
Lurz, R.5
Tavares, P.6
Santos, M.A.7
Sao-Jose, C.8
-
35
-
-
84873097195
-
The bacteriophage T7 virion undergoes extensive structural remodeling during infection
-
Hu B, Margolin W, Molineux IJ, Liu J. 2013. The bacteriophage T7 virion undergoes extensive structural remodeling during infection. Science 339:576-579. https://doi.org/10.1126/science.1231887
-
(2013)
Science
, vol.339
, pp. 576-579
-
-
Hu, B.1
Margolin, W.2
Molineux, I.J.3
Liu, J.4
-
36
-
-
84892585316
-
Icosahedral bacteriophage phi X174 forms a tail for DNA transport during infection
-
Sun L, Young LN, Zhang XZ, Boudko SP, Fokine A, Zbornik E, Roznowski AP, Molineux IJ, Rossmann MG, Fane BA. 2014. Icosahedral bacteriophage phi X174 forms a tail for DNA transport during infection. Nature 505:432-435. https://doi.org/10.1038/nature12816
-
(2014)
Nature
, vol.505
, pp. 432-435
-
-
Sun, L.1
Young, L.N.2
Zhang, X.Z.3
Boudko, S.P.4
Fokine, A.5
Zbornik, E.6
Roznowski, A.P.7
Molineux, I.J.8
Rossmann, M.G.9
Fane, B.A.10
-
37
-
-
33750450852
-
Structural changes of bacteriophage phi29 upon DNA packaging and release
-
Xiang Y, Morais MC, Battisti AJ, Grimes S, Jardine PJ, Anderson DL, Rossmann MG. 2006. Structural changes of bacteriophage phi29 upon DNA packaging and release. EMBO J 25:5229-5239. https://doi.org/10 .1038/sj.emboj.7601386
-
(2006)
EMBO J
, vol.25
, pp. 5229-5239
-
-
Xiang, Y.1
Morais, M.C.2
Battisti, A.J.3
Grimes, S.4
Jardine, P.J.5
Anderson, D.L.6
Rossmann, M.G.7
-
38
-
-
65549169054
-
Crystallographic insights into the autocatalytic assembly mechanism of a bacteriophage tail spike
-
Xiang Y, Leiman PG, Li L, Grimes S, Anderson DL, Rossmann MG. 2009. Crystallographic insights into the autocatalytic assembly mechanism of a bacteriophage tail spike. Mol Cell 34:375-386. https://doi.org/10.1016/j.molcel.2009.04.009
-
(2009)
Mol Cell
, vol.34
, pp. 375-386
-
-
Xiang, Y.1
Leiman, P.G.2
Li, L.3
Grimes, S.4
Anderson, D.L.5
Rossmann, M.G.6
-
39
-
-
47749144031
-
Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage phi29 tail
-
Xiang Y, Morais MC, Cohen DN, Bowman VD, Anderson DL, Rossmann MG. 2008. Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage phi29 tail. Proc Natl Acad Sci U S A 105:9552-9557. https://doi.org/10.1073/pnas.0803787105
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 9552-9557
-
-
Xiang, Y.1
Morais, M.C.2
Cohen, D.N.3
Bowman, V.D.4
Anderson, D.L.5
Rossmann, M.G.6
-
40
-
-
84975705927
-
The bacteriophage phi29 tail possesses a pore-forming loop for cell membrane penetration
-
Xu J, Gui M, Wang D, Xiang Y. 2016. The bacteriophage phi29 tail possesses a pore-forming loop for cell membrane penetration. Nature 534:544-547. https://doi.org/10.1038/nature18017
-
(2016)
Nature
, vol.534
, pp. 544-547
-
-
Xu, J.1
Gui, M.2
Wang, D.3
Xiang, Y.4
-
41
-
-
0036079366
-
Viral fusion peptides and identification of membrane-interacting segments
-
Del Angel VD, Dupuis F, Mornon JP, Callebaut I. 2002. Viral fusion peptides and identification of membrane-interacting segments. Biochem Biophys Res Commun 293:1153-1160. https://doi.org/10.1016/S0006-291X(02)00353-4
-
(2002)
Biochem Biophys Res Commun
, vol.293
, pp. 1153-1160
-
-
Del Angel, V.D.1
Dupuis, F.2
Mornon, J.P.3
Callebaut, I.4
-
42
-
-
84865535036
-
Structural investigations of a Podoviridae streptococcus phage C1, implications for the mechanism of viral entry
-
Aksyuk AA, Bowman VD, Kaufmann B, Fields C, Klose T, Holdaway HA, Fischetti VA, Rossmann MG. 2012. Structural investigations of a Podoviridae streptococcus phage C1, implications for the mechanism of viral entry. Proc Natl Acad Sci U S A 109:14001-14006. https://doi.org/10 .1073/pnas.1207730109
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 14001-14006
-
-
Aksyuk, A.A.1
Bowman, V.D.2
Kaufmann, B.3
Fields, C.4
Klose, T.5
Holdaway, H.A.6
Fischetti, V.A.7
Rossmann, M.G.8
|