메뉴 건너뛰기




Volumn 198, Issue , 2017, Pages 105-114

Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery

Author keywords

Computer vision algorithm; Particle swarm optimization (PSO) support vector machine (SVM); Plant density; Unmanned aerial vehicle; Winter wheat

Indexed keywords

AGRICULTURE; CAMERAS; CROPS; PARTICLE SWARM OPTIMIZATION (PSO); PIXELS; PLANTS (BOTANY); SENSITIVITY ANALYSIS; SUPPORT VECTOR MACHINES; UNMANNED AERIAL VEHICLES (UAV);

EID: 85020307153     PISSN: 00344257     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.rse.2017.06.007     Document Type: Article
Times cited : (368)

References (45)
  • 1
    • 84957894098 scopus 로고    scopus 로고
    • Agisoft Photoscan User Manual Professional Edition, Version 1.2
    • Agisoft LLC St. Petersburg, Russia Available at: (Accessed: 11.03.2016)
    • Agisoft, L.L.C., Agisoft Photoscan User Manual Professional Edition, Version 1.2. 2016, Agisoft LLC, St. Petersburg, Russia Available at: http://www.agisoft.com/pdf/photoscan-pro_1_2_en.pdf (Accessed: 11.03.2016).
    • (2016)
    • Agisoft, L.L.C.1
  • 3
    • 84891372768 scopus 로고    scopus 로고
    • Field high-throughput phenotyping: the new crop breeding frontier
    • Araus, J.L., Cairns, J.E., Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 19 (2014), 52–61.
    • (2014) Trends Plant Sci. , vol.19 , pp. 52-61
    • Araus, J.L.1    Cairns, J.E.2
  • 4
    • 84939454114 scopus 로고    scopus 로고
    • Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley
    • Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., Gnyp, M.L., Bareth, G., Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. 39 (2015), 79–87.
    • (2015) Int. J. Appl. Earth Obs. , vol.39 , pp. 79-87
    • Bendig, J.1    Yu, K.2    Aasen, H.3    Bolten, A.4    Bennertz, S.5    Broscheit, J.6    Gnyp, M.L.7    Bareth, G.8
  • 5
    • 84937829673 scopus 로고    scopus 로고
    • High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: application in breeding trials
    • Díaz-Varela, R.A., de la Rosa, R., León, L., Zarco-Tejada, P.J., High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: application in breeding trials. Remote Sens. 7 (2015), 4213–4232.
    • (2015) Remote Sens. , vol.7 , pp. 4213-4232
    • Díaz-Varela, R.A.1    de la Rosa, R.2    León, L.3    Zarco-Tejada, P.J.4
  • 6
    • 84880025356 scopus 로고    scopus 로고
    • The rise of small UAVs in precision agriculture
    • Ehsani, R., Maja, J.M., The rise of small UAVs in precision agriculture. Resour. Mag. 20 (2013), 18–19.
    • (2013) Resour. Mag. , vol.20 , pp. 18-19
    • Ehsani, R.1    Maja, J.M.2
  • 7
    • 83055180602 scopus 로고    scopus 로고
    • Phenomics - technologies to relieve the phenotyping bottleneck
    • Furbank, R., Tester, M., Phenomics - technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16 (2011), 635–644.
    • (2011) Trends Plant Sci. , vol.16 , pp. 635-644
    • Furbank, R.1    Tester, M.2
  • 8
    • 84893686898 scopus 로고    scopus 로고
    • Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat
    • Gómez-Candón, D., De Castro, A., López-Granados, F., Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat. Precis. Agric. 15 (2014), 44–56.
    • (2014) Precis. Agric. , vol.15 , pp. 44-56
    • Gómez-Candón, D.1    De Castro, A.2    López-Granados, F.3
  • 9
    • 84863494534 scopus 로고    scopus 로고
    • Mapping radiation interception in row-structured orchards using 3D simulation and high-resolution airborne imagery acquired from a UAV
    • Guillen-Climent, M., Zarco-Tejada, P.J., Berni, J.A., North, P., Villalobos, F., Mapping radiation interception in row-structured orchards using 3D simulation and high-resolution airborne imagery acquired from a UAV. Precis. Agric. 13 (2012), 473–500.
    • (2012) Precis. Agric. , vol.13 , pp. 473-500
    • Guillen-Climent, M.1    Zarco-Tejada, P.J.2    Berni, J.A.3    North, P.4    Villalobos, F.5
  • 10
    • 0004067680 scopus 로고
    • Computer and Robot Vision, 1
    • Addison-Wesley
    • Haralick, R.M., Shapiro, L.G., Computer and Robot Vision, 1. 1992, Addison-Wesley, 28–48.
    • (1992) , pp. 28-48
    • Haralick, R.M.1    Shapiro, L.G.2
  • 11
    • 0000615727 scopus 로고
    • Visual quantification of wheat development
    • Haun, J.R., Visual quantification of wheat development. Agron. J. 65 (1973), 116–119.
    • (1973) Agron. J. , vol.65 , pp. 116-119
    • Haun, J.R.1
  • 12
    • 0003761433 scopus 로고
    • Method and means for recognizing complex patterns
    • U.S. Patent 3069654.
    • Hough, P.V.C., 1962. Method and means for recognizing complex patterns. U.S. Patent 3069654.
    • (1962)
    • Hough, P.V.C.1
  • 13
    • 24044504080 scopus 로고    scopus 로고
    • Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status
    • Hunt, E.R., Cavigelli, M., Daughtry, C.S., Mcmurtrey, J.E. III, Walthall, C.L., Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis. Agric. 6 (2005), 359–378.
    • (2005) Precis. Agric. , vol.6 , pp. 359-378
    • Hunt, E.R.1    Cavigelli, M.2    Daughtry, C.S.3    Mcmurtrey, J.E.4    Walthall, C.L.5
  • 15
    • 77956640482 scopus 로고    scopus 로고
    • Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring
    • Hunt, E.R., Hively, W.D., Fujikawa, S.J., Linden, D.S., Daughtry, C.S.T., McCarty, G.W., Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens. 2 (2010), 290–305.
    • (2010) Remote Sens. , vol.2 , pp. 290-305
    • Hunt, E.R.1    Hively, W.D.2    Fujikawa, S.J.3    Linden, D.S.4    Daughtry, C.S.T.5    McCarty, G.W.6
  • 16
    • 0025747760 scopus 로고
    • Corn plant locating by image processing, Fibers' 91, Boston, MA
    • Jia, J., Krutz, G.W., Gibson, H.W., Corn plant locating by image processing, Fibers' 91, Boston, MA. Int. Soc. Opt. Photon., 1991, 246–253.
    • (1991) Int. Soc. Opt. Photon. , pp. 246-253
    • Jia, J.1    Krutz, G.W.2    Gibson, H.W.3
  • 17
    • 68049093816 scopus 로고    scopus 로고
    • Corn plant sensing using real-time stereo vision
    • Jin, J., Tang, L., Corn plant sensing using real-time stereo vision. J. Field Robot. 26 (2009), 591–608.
    • (2009) J. Field Robot. , vol.26 , pp. 591-608
    • Jin, J.1    Tang, L.2
  • 18
    • 0001155540 scopus 로고
    • Row spacing and seeding rate effects on yield and yield components of soft red winter wheat
    • Joseph, K., Alley, M., Brann, D., Gravelle, W., Row spacing and seeding rate effects on yield and yield components of soft red winter wheat. Agron. J. 77 (1985), 211–214.
    • (1985) Agron. J. , vol.77 , pp. 211-214
    • Joseph, K.1    Alley, M.2    Brann, D.3    Gravelle, W.4
  • 20
    • 85020294903 scopus 로고    scopus 로고
    • Estimation of wheat plant density at early stages using high resolution imagery
    • Liu, S.Y., Baret, F., Andrieu, B., Burger, P., Hemmerlé, M., Estimation of wheat plant density at early stages using high resolution imagery. Front. Plant Sci., 8, 2017, 739, 10.3389/fpls.2017.00739.
    • (2017) Front. Plant Sci. , vol.8 , pp. 739
    • Liu, S.Y.1    Baret, F.2    Andrieu, B.3    Burger, P.4    Hemmerlé, M.5
  • 22
    • 47049087271 scopus 로고    scopus 로고
    • Verification of color vegetation indices for automated crop imaging applications
    • Meyer, G.E., Neto, J.C., Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 63 (2008), 282–293.
    • (2008) Comput. Electron. Agric. , vol.63 , pp. 282-293
    • Meyer, G.E.1    Neto, J.C.2
  • 23
    • 79951950272 scopus 로고    scopus 로고
    • Support vector machines in remote sensing: a review
    • Mountrakis, G., Im, J., Ogole, C., Support vector machines in remote sensing: a review. ISPRS J. Photogramm. 66 (2011), 247–259.
    • (2011) ISPRS J. Photogramm. , vol.66 , pp. 247-259
    • Mountrakis, G.1    Im, J.2    Ogole, C.3
  • 24
    • 84855865864 scopus 로고    scopus 로고
    • Automatic inter-plant spacing sensing at early growth stages using a 3D vision sensor
    • Nakarmi, A.D., Tang, L., Automatic inter-plant spacing sensing at early growth stages using a 3D vision sensor. Comput. Electron. Agric. 82 (2012), 23–31.
    • (2012) Comput. Electron. Agric. , vol.82 , pp. 23-31
    • Nakarmi, A.D.1    Tang, L.2
  • 25
    • 84904463838 scopus 로고    scopus 로고
    • Within-row spacing sensing of maize plants using 3D computer vision
    • Nakarmi, A.D., Tang, L., Within-row spacing sensing of maize plants using 3D computer vision. Biosyst. Eng. 125 (2014), 54–64.
    • (2014) Biosyst. Eng. , vol.125 , pp. 54-64
    • Nakarmi, A.D.1    Tang, L.2
  • 26
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histogram
    • Otsu, N., A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 9 (1979), 62–66.
    • (1979) IEEE Trans. Syst. Man Cybern. , vol.9 , pp. 62-66
    • Otsu, N.1
  • 27
    • 57449119477 scopus 로고    scopus 로고
    • Estimation of the crop density of small grains using LiDAR sensors
    • Saeys, W., Lenaerts, B., Craessaerts, G., De Baerdemaeker, J., Estimation of the crop density of small grains using LiDAR sensors. Biosyst. Eng. 102 (2009), 22–30.
    • (2009) Biosyst. Eng. , vol.102 , pp. 22-30
    • Saeys, W.1    Lenaerts, B.2    Craessaerts, G.3    De Baerdemaeker, J.4
  • 28
    • 84944074770 scopus 로고    scopus 로고
    • Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand
    • Sankaran, S., Khot, L.R., Carter, A.H., Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand. Comput. Electron. Agric. 118 (2015), 372–379.
    • (2015) Comput. Electron. Agric. , vol.118 , pp. 372-379
    • Sankaran, S.1    Khot, L.R.2    Carter, A.H.3
  • 30
    • 84939988709 scopus 로고    scopus 로고
    • Improvement of a ground-LiDAR-based corn plant population and spacing measurement system
    • Shi, Y., Wang, N., Taylor, R.K., Raun, W.R., Improvement of a ground-LiDAR-based corn plant population and spacing measurement system. Comput. Electron. Agric. 112 (2015), 92–101.
    • (2015) Comput. Electron. Agric. , vol.112 , pp. 92-101
    • Shi, Y.1    Wang, N.2    Taylor, R.K.3    Raun, W.R.4
  • 31
    • 0037594440 scopus 로고    scopus 로고
    • Automatic corn plant population measurement using machine vision
    • Shrestha, D.S., Steward, B.L., Automatic corn plant population measurement using machine vision. Trans. ASAE, 46, 2003, 559.
    • (2003) Trans. ASAE , vol.46 , pp. 559
    • Shrestha, D.S.1    Steward, B.L.2
  • 32
    • 17744368050 scopus 로고    scopus 로고
    • Shape and size analysis of corn plant canopies for plant population and spacing sensing
    • Shrestha, D.S., Steward, B.L., Shape and size analysis of corn plant canopies for plant population and spacing sensing. Appl. Eng. Agric. 21:2 (2005), 295–303.
    • (2005) Appl. Eng. Agric. , vol.21 , Issue.2 , pp. 295-303
    • Shrestha, D.S.1    Steward, B.L.2
  • 33
    • 38549162161 scopus 로고    scopus 로고
    • Evaluating the sensitivity of an unmanned thermal infrared aerial system to detect water stress in a cotton canopy
    • Sullivan, D., Fulton, J., Shaw, J., Bland, G., Evaluating the sensitivity of an unmanned thermal infrared aerial system to detect water stress in a cotton canopy. Trans. ASABE 50 (2007), 1963–1969.
    • (2007) Trans. ASABE , vol.50 , pp. 1963-1969
    • Sullivan, D.1    Fulton, J.2    Shaw, J.3    Bland, G.4
  • 34
    • 58149268169 scopus 로고    scopus 로고
    • Plant identification in mosaicked crop row images for automatic emerged corn plant spacing measurement
    • Tang, L., Tian, L.F., Plant identification in mosaicked crop row images for automatic emerged corn plant spacing measurement. Trans. ASABE 51 (2008), 2181–2191.
    • (2008) Trans. ASABE , vol.51 , pp. 2181-2191
    • Tang, L.1    Tian, L.F.2
  • 35
    • 49549087090 scopus 로고    scopus 로고
    • Real-time crop row image reconstruction for automatic emerged corn plant spacing measurement
    • Tang, L., Tian, L.F., Real-time crop row image reconstruction for automatic emerged corn plant spacing measurement. Trans. ASABE 51 (2008), 1079–1087.
    • (2008) Trans. ASABE , vol.51 , pp. 1079-1087
    • Tang, L.1    Tian, L.F.2
  • 36
    • 0003450542 scopus 로고    scopus 로고
    • The Nature of Statistical Learning Theory
    • Springer Science & Business Media
    • Vapnik, V., The Nature of Statistical Learning Theory. 2013, Springer Science & Business Media.
    • (2013)
    • Vapnik, V.1
  • 37
    • 0003991806 scopus 로고    scopus 로고
    • Statistical Learning Theory, 1
    • Wiley New York
    • Vapnik, V.N., Vapnik, V., Statistical Learning Theory, 1. 1998, Wiley, New York.
    • (1998)
    • Vapnik, V.N.1    Vapnik, V.2
  • 38
    • 84907101982 scopus 로고    scopus 로고
    • Green area index from unmanned aerial system over wheat and rapeseed crops
    • Verger, A., Vigneau, N., Chéron, C., Gilliot, J.M., Baret, F., Green area index from unmanned aerial system over wheat and rapeseed crops. Remote Sens. Environ. 152 (2014), 654–664.
    • (2014) Remote Sens. Environ. , vol.152 , pp. 654-664
    • Verger, A.1    Vigneau, N.2    Chéron, C.3    Gilliot, J.M.4    Baret, F.5
  • 39
    • 84928745882 scopus 로고    scopus 로고
    • Plant phenotyping: from bean weighing to image analysis
    • Walter, A., Liebisch, F., Hund, A., Plant phenotyping: from bean weighing to image analysis. Plant Methods 11 (2015), 1–11.
    • (2015) Plant Methods , vol.11 , pp. 1-11
    • Walter, A.1    Liebisch, F.2    Hund, A.3
  • 41
    • 0020386641 scopus 로고
    • Some comments on the evaluation of model performance
    • Willmott, C.J., Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 11 (1982), 1303–1313.
    • (1982) Bull. Am. Meteorol. Soc. , vol.11 , pp. 1303-1313
    • Willmott, C.J.1
  • 42
    • 0028975744 scopus 로고
    • Spectrophotometry and organic matter on Iapetus: 1. Composition models
    • Wilson, P.D., Sagan, C., Spectrophotometry and organic matter on Iapetus: 1. Composition models. J. Geophys. Res. Planets 100 (1995), 7531–7537.
    • (1995) J. Geophys. Res. Planets , vol.100 , pp. 7531-7537
    • Wilson, P.D.1    Sagan, C.2
  • 43
    • 84855428733 scopus 로고    scopus 로고
    • Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera
    • Zarco-Tejada, P.J., González-Dugo, V., Berni, J.A., Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 117 (2012), 322–337.
    • (2012) Remote Sens. Environ. , vol.117 , pp. 322-337
    • Zarco-Tejada, P.J.1    González-Dugo, V.2    Berni, J.A.3
  • 45
    • 84868629775 scopus 로고    scopus 로고
    • The application of small unmanned aerial systems for precision agriculture: a review
    • Zhang, C., Kovacs, J.M., The application of small unmanned aerial systems for precision agriculture: a review. Precis. Agric. 13 (2012), 693–712.
    • (2012) Precis. Agric. , vol.13 , pp. 693-712
    • Zhang, C.1    Kovacs, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.