메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Deep learning for urban remote sensing

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); DEEP LEARNING; EDGE DETECTION; HOUGH TRANSFORMS; NETWORK ARCHITECTURE; SEMANTICS;

EID: 85020230588     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/JURSE.2017.7924536     Document Type: Conference Paper
Times cited : (38)

References (22)
  • 2
    • 85007500060 scopus 로고    scopus 로고
    • How useful is region-based classification of remote sensing images in a deep learning framework
    • Beijing, China
    • Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. How Useful is Region-based Classification of Remote Sensing Images in a Deep Learning Framework In Proc. of IGARSS, Beijing, China, 2016.
    • (2016) Proc. of IGARSS
    • Audebert, N.1    Le Saux, B.2    Lefèvre, S.3
  • 4
    • 84879831416 scopus 로고    scopus 로고
    • Fast and robust normal estimation for point clouds with sharp features
    • Alexandre Boulch and Renaud Marlet. Fast and robust normal estimation for point clouds with sharp features. Computer Graphics Forum, 31(5):1765-1774, 2012.
    • (2012) Computer Graphics Forum , vol.31 , Issue.5 , pp. 1765-1774
    • Boulch, A.1    Marlet, R.2
  • 5
    • 84982124657 scopus 로고    scopus 로고
    • Deep learning for robust normal estimation in unstructured point clouds
    • Alexandre Boulch and Renaud Marlet. Deep learning for robust normal estimation in unstructured point clouds. Computer Graphics Forum, 35(5):281-290, 2016.
    • (2016) Computer Graphics Forum , vol.35 , Issue.5 , pp. 281-290
    • Boulch, A.1    Marlet, R.2
  • 6
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return of the Devil in the Details: Delving Deep into Convolutional Nets. In Proc. of BMVC, 2014.
    • (2014) Proc. of BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 7
    • 79958822032 scopus 로고    scopus 로고
    • The dgpf test on digital aerial camera evaluation overview and test design
    • M. Cramer. The dgpf test on digital aerial camera evaluation overview and test design. Photogramm. Fernerkundung Geoinf., 2:73-82, 2010.
    • (2010) Photogramm. Fernerkundung Geoinf. , vol.2 , pp. 73-82
    • Cramer, M.1
  • 9
    • 84962489522 scopus 로고    scopus 로고
    • Benchmarking classification of earth-observation data: From learning explicit features to convolutional networks
    • Milano, Italy
    • Lagrange et al. Benchmarking classification of earth-observation data: from learning explicit features to convolutional networks. In Proc. of IGARSS, Milano, Italy, 2015.
    • (2015) Proc. of IGARSS
    • Lagrange1
  • 13
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. In Adv. in Neural Info. Proc. Sys. 25, pages 1097-1105, 2012.
    • (2012) Adv. in Neural Info. Proc. Sys. , vol.25 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 14
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 15
    • 77949569769 scopus 로고    scopus 로고
    • Robust normal estimation for point clouds with sharp features
    • Bao Li, Ruwen Schnabel, Reinhard Klein, Zhiquan Cheng, Gang Dang, and Shiyao Jin. Robust normal estimation for point clouds with sharp features. Computer & Graphics, 34(2):94-106, 2010.
    • (2010) Computer & Graphics , vol.34 , Issue.2 , pp. 94-106
    • Li, B.1    Schnabel, R.2    Klein, R.3    Cheng, Z.4    Dang, G.5    Jin, S.6
  • 16
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darell. Fully convolutional networks for semantic segmentation. In Proc. of CVPR, 2015.
    • (2015) Proc. of CVPR
    • Long, J.1    Shelhamer, E.2    Darell, T.3
  • 18
    • 84055175817 scopus 로고    scopus 로고
    • Learning to detect roads in high-resolution aerial images
    • Volodymyr Mnih and Geoffrey Hinton. Learning to detect roads in high-resolution aerial images. In Proc. of ECCV, Crete, Greece, 2010.
    • (2010) Proc. of ECCV, Crete, Greece
    • Mnih, V.1    Hinton, G.2
  • 19
    • 79957812632 scopus 로고    scopus 로고
    • Structured learning and prediction in computer vision
    • March
    • Sebastian Nowozin and Christoph Lampert. Structured learning and prediction in computer vision. Found. Trends. Comput. Graph. Vis., 6(3-4):185-365, March 2011.
    • (2011) Found. Trends. Comput. Graph. Vis. , vol.6 , Issue.3-4 , pp. 185-365
    • Nowozin, S.1    Lampert, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.