메뉴 건너뛰기




Volumn 18, Issue 2, 2017, Pages 275-294

False discovery rates: A new deal

Author keywords

Empirical Bayes; False discovery rates; Multiple testing; Shrinkage; Unimodal

Indexed keywords

EFFECT SIZE; MEASUREMENT PRECISION; PROBABILITY; BAYES THEOREM; HUMAN; STATISTICAL ANALYSIS; STATISTICAL MODEL;

EID: 85020202461     PISSN: 14654644     EISSN: 14684357     Source Type: Journal    
DOI: 10.1093/biostatistics/kxw041     Document Type: Article
Times cited : (634)

References (47)
  • 2
    • 14944365889 scopus 로고    scopus 로고
    • False discovery rate-adjusted multiple confidence intervals for selected parameters
    • Benjamini, Y. and Yekutieli, D. (2005). False discovery rate-adjusted multiple confidence intervals for selected parameters. Journal of the American Statistical Association 100, 71-81.
    • (2005) Journal of the American Statistical Association , vol.100 , pp. 71-81
    • Benjamini, Y.1    Yekutieli, D.2
  • 4
    • 77952811536 scopus 로고    scopus 로고
    • The horseshoe estimator for sparse signals
    • Carvalho, C. M., Polson, N. G. and Scott, J. G. (2010). The horseshoe estimator for sparse signals. Biometrika 97, asq017.
    • (2010) Biometrika , vol.97 , pp. asq017
    • Carvalho, C.M.1    Polson, N.G.2    Scott, J.G.3
  • 6
    • 18744378860 scopus 로고    scopus 로고
    • Empirical Bayes screening of many p-values with applications to microarray studies
    • Datta, S. and Datta, S. (2005). Empirical Bayes screening of many p-values with applications to microarray studies. Bioinformatics 21, 1987-1994.
    • (2005) Bioinformatics , vol.21 , pp. 1987-1994
    • Datta, S.1    Datta, S.2
  • 7
    • 0032714352 scopus 로고    scopus 로고
    • Genomic control for association studies
    • Devlin, B. and Roeder, K. (1999). Genomic control for association studies. Biometrics 55, 997-1004.
    • (1999) Biometrics , vol.55 , pp. 997-1004
    • Devlin, B.1    Roeder, K.2
  • 9
    • 0001777054 scopus 로고
    • Bayes and likelihood calculations from confidence intervals
    • Efron, B. (1993). Bayes and likelihood calculations from confidence intervals. Biometrika 80, 3-26.
    • (1993) Biometrika , vol.80 , pp. 3-26
    • Efron, B.1
  • 10
    • 2142732441 scopus 로고    scopus 로고
    • Large-scale simultaneous hypothesis testing: The choice of a null hypothesis
    • Efron, B. (2004). Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. Journal of the American Statistical Association 99, 96-104.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 96-104
    • Efron, B.1
  • 11
    • 33947216221 scopus 로고    scopus 로고
    • Correlation and large-scale simultaneous significance testing
    • Efron, B. (2007). Correlation and large-scale simultaneous significance testing. Journal of the American Statistical Association 102, 93-107.
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 93-107
    • Efron, B.1
  • 12
    • 47749152434 scopus 로고    scopus 로고
    • Microarrays, empirical Bayes and the two-groups model
    • Efron, B. (2008). Microarrays, empirical Bayes and the two-groups model. Statistical Science 23, 1-22.
    • (2008) Statistical Science , vol.23 , pp. 1-22
    • Efron, B.1
  • 14
    • 84960130123 scopus 로고    scopus 로고
    • Empirical Bayes deconvolution estimates
    • Efron, B. (2016). Empirical Bayes deconvolution estimates. Biometrika 103, 1-20.
    • (2016) Biometrika , vol.103 , pp. 1-20
    • Efron, B.1
  • 15
    • 0038364283 scopus 로고    scopus 로고
    • Robbins, empirical Bayes and microarrays
    • Efron, B. (2003). Robbins, empirical Bayes and microarrays. The Annals of Statistics 31, 366-378.
    • (2003) The Annals of Statistics , vol.31 , pp. 366-378
    • Efron, B.1
  • 16
    • 0035992248 scopus 로고    scopus 로고
    • Empirical Bayes methods and false discovery rates for microarrays
    • Efron, B. and Tibshirani, R. (2002). Empirical Bayes methods and false discovery rates for microarrays. Genetic Epidemiology 23, 70-86.
    • (2002) Genetic Epidemiology , vol.23 , pp. 70-86
    • Efron, B.1    Tibshirani, R.2
  • 18
    • 84862511727 scopus 로고    scopus 로고
    • Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels
    • Erbe, M., Hayes, B. J., Matukumalli, L. K., Goswami, S., Bowman, P. J., Reich, C. M., Mason, B. A. and Goddard, M. E. (2012). Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. Journal of Dairy Science 95, 4114-29.
    • (2012) Journal of Dairy Science , vol.95 , pp. 4114-4129
    • Erbe, M.1    Hayes, B.J.2    Matukumalli, L.K.3    Goswami, S.4    Bowman, P.J.5    Reich, C.M.6    Mason, B.A.7    Goddard, M.E.8
  • 19
    • 84862250978 scopus 로고    scopus 로고
    • Using control genes to correct for unwanted variation in microarray data
    • Gagnon-Bartsch, J. A. and Speed, T. P. (2012). Using control genes to correct for unwanted variation in microarray data. Biostatistics 13, 539-552.
    • (2012) Biostatistics , vol.13 , pp. 539-552
    • Gagnon-Bartsch, J.A.1    Speed, T.P.2
  • 20
    • 0034408015 scopus 로고    scopus 로고
    • Type s error rates for classical and Bayesian single and multiple comparison procedures
    • Gelman, A. and Tuerlinckx, F. (2000). Type s error rates for classical and Bayesian single and multiple comparison procedures. Computational Statistics 15, 373-390.
    • (2000) Computational Statistics , vol.15 , pp. 373-390
    • Gelman, A.1    Tuerlinckx, F.2
  • 22
    • 0025893282 scopus 로고
    • Empirical-Bayes adjustments for multiple comparisons are sometimes useful
    • Greenland, S. and Robins, J. M. (1991). Empirical-Bayes adjustments for multiple comparisons are sometimes useful. Epidemiolog y 2, 244-251.
    • (1991) Epidemiology , vol.2 , pp. 244-251
    • Greenland, S.1    Robins, J.M.2
  • 23
    • 58149175796 scopus 로고    scopus 로고
    • Practical issues in imputation-based association mapping
    • Guan, Y. and Stephens, M. (2008). Practical issues in imputation-based association mapping. PLoS Genetics 4.
    • (2008) PLoS Genetics , vol.4
    • Guan, Y.1    Stephens, M.2
  • 24
    • 68649100959 scopus 로고    scopus 로고
    • General maximum likelihood empirical Bayes estimation of normal means
    • Jiang, W. and Zhang, C.-H. (2009). General maximum likelihood empirical Bayes estimation of normal means. The Annals of Statistics 37, 1647-1684.
    • (2009) The Annals of Statistics , vol.37 , pp. 1647-1684
    • Jiang, W.1    Zhang, C.-H.2
  • 25
    • 3543030265 scopus 로고    scopus 로고
    • Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences
    • Johnstone, I. M. and Silverman, B. W. (2004). Needles and straw in haystacks: empirical Bayes estimates of possibly sparse sequences. Annals of Statistics 32, 1594-1649.
    • (2004) Annals of Statistics , vol.32 , pp. 1594-1649
    • Johnstone, I.M.1    Silverman, B.W.2
  • 26
    • 0346888587 scopus 로고    scopus 로고
    • On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles
    • Kendziorski, C. M., Newton, M. A., Lan, H. and Gould, M. N. (2003). On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Statistics in Medicine 22, 3899-3914.
    • (2003) Statistics in Medicine , vol.22 , pp. 3899-3914
    • Kendziorski, C.M.1    Newton, M.A.2    Lan, H.3    Gould, M.N.4
  • 28
    • 84907503852 scopus 로고    scopus 로고
    • Convex optimization, shape constraints, compound decisions, and empirical Bayes rules
    • Koenker, R. and Mizera, I. (2014). Convex optimization, shape constraints, compound decisions, and empirical Bayes rules. Journal of the American Statistical Association 109, 674-685.
    • (2014) Journal of the American Statistical Association , vol.109 , pp. 674-685
    • Koenker, R.1    Mizera, I.2
  • 29
    • 34848914038 scopus 로고    scopus 로고
    • Capturing heterogeneity in gene expression studies by surrogate variable analysis
    • Leek, J. T. and Storey, J. D. (2007). Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genetics 3, 1724-35.
    • (2007) PLoS Genetics , vol.3 , pp. 1724-1735
    • Leek, J.T.1    Storey, J.D.2
  • 31
    • 80055046529 scopus 로고    scopus 로고
    • An empirical Bayes mixture method for effect size and false discovery rate estimation
    • Muralidharan, O. (2010). An empirical Bayes mixture method for effect size and false discovery rate estimation. The Annals of Applied Statistics 4, 422-438.
    • (2010) The Annals of Applied Statistics , vol.4 , pp. 422-438
    • Muralidharan, O.1
  • 32
    • 4444235995 scopus 로고    scopus 로고
    • Detecting differential gene expression with a semiparametric hierarchical mixture method
    • Newton, M. A., Noueiry, A., Sarkar, D. and Ahlquist, P. (2004). Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5, 155-176.
    • (2004) Biostatistics , vol.5 , pp. 155-176
    • Newton, M.A.1    Noueiry, A.2    Sarkar, D.3    Ahlquist, P.4
  • 33
    • 33644858587 scopus 로고    scopus 로고
    • Multidimensional local false discovery rate for microarray studies
    • Ploner, A., Calza, S., Gusnanto, A. and Pawitan, Y. (2006). Multidimensional local false discovery rate for microarray studies. Bioinformatics 22, 556-565.
    • (2006) Bioinformatics , vol.22 , pp. 556-565
    • Ploner, A.1    Calza, S.2    Gusnanto, A.3    Pawitan, Y.4
  • 34
    • 33746512512 scopus 로고    scopus 로고
    • Principal components analysis corrects for stratification in genome-wide association studies
    • Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A. and Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics 38, 904-9.
    • (2006) Nature Genetics , vol.38 , pp. 904-909
    • Price, A.L.1    Patterson, N.J.2    Plenge, R.M.3    Weinblatt, M.E.4    Shadick, N.A.5    Reich, D.6
  • 36
    • 84863304598 scopus 로고    scopus 로고
    • R Core Team. R Foundation for Statistical Computing, Vienna, Austria Accessed June 3, 2013
    • R Core Team. (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/, Accessed June 3, 2013.
    • (2012) R: A Language and Environment for Statistical Computing
  • 38
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3, Article3.
    • (2004) Statistical Applications in Genetics and Molecular Biology , vol.3 , pp. Article3
    • Smyth, G.K.1
  • 39
    • 0345822598 scopus 로고    scopus 로고
    • The positive false discovery rate: A Bayesian interpretation and the q-value
    • Storey, J. D. (2003). The positive false discovery rate: a Bayesian interpretation and the q-value. The Annals of Statistics 31, 2013-2035.
    • (2003) The Annals of Statistics , vol.31 , pp. 2013-2035
    • Storey, J.D.1
  • 41
    • 84972526421 scopus 로고
    • The philosophy of multiple comparisons
    • Tukey, J. W. (1991). The philosophy of multiple comparisons. Statistical Science 6, 100-116.
    • (1991) Statistical Science , vol.6 , pp. 100-116
    • Tukey, J.W.1
  • 42
    • 66049114148 scopus 로고    scopus 로고
    • Bayes factors for genome-wide association studies: Comparison with p-values
    • Wakefield, J. (2009). Bayes factors for genome-wide association studies: comparison with p-values. Genetic Epidemiology 33, 79-86.
    • (2009) Genetic Epidemiology , vol.33 , pp. 79-86
    • Wakefield, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.