-
2
-
-
84920020630
-
Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts
-
Wu, W., Jiang, C., Roy, V.A.L., Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts. Nanoscale 7 (2015), 38–58.
-
(2015)
Nanoscale
, vol.7
, pp. 38-58
-
-
Wu, W.1
Jiang, C.2
Roy, V.A.L.3
-
4
-
-
84960108453
-
3 /Ag/AgX (X = Cl, Br, I) heterostructures with enhanced photocatalytic properties
-
3 /Ag/AgX (X = Cl, Br, I) heterostructures with enhanced photocatalytic properties. ACS Sustain. Chem. Eng. 4 (2016), 1521–1530.
-
(2016)
ACS Sustain. Chem. Eng.
, vol.4
, pp. 1521-1530
-
-
Sun, L.1
Wu, W.2
Tian, Q.3
Lei, M.4
Liu, J.5
Xiao, X.6
Zheng, X.7
Ren, F.8
Jiang, C.9
-
5
-
-
84984921004
-
Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics
-
Shen, S., Lindley, S.A., Chen, X., Zhang, J.Z., Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics. Energy Environ. Sci. 9 (2016), 2744–2775.
-
(2016)
Energy Environ. Sci.
, vol.9
, pp. 2744-2775
-
-
Shen, S.1
Lindley, S.A.2
Chen, X.3
Zhang, J.Z.4
-
8
-
-
84959289627
-
3 under visible light irradiation
-
3 under visible light irradiation. J. Hazard. Mater. 311 (2016), 11–19.
-
(2016)
J. Hazard. Mater.
, vol.311
, pp. 11-19
-
-
Wang, J.-C.1
Ren, J.2
Yao, H.-C.3
Zhang, L.4
Wang, J.-S.5
Zang, S.-Q.6
Han, L.-F.7
Li, Z.-J.8
-
9
-
-
77649148242
-
3 semiconductor nanoheterostructures
-
3 semiconductor nanoheterostructures. ACS Nano 4 (2010), 681–688.
-
(2010)
ACS Nano
, vol.4
, pp. 681-688
-
-
Niu, M.1
Huang, F.2
Cui, L.3
Huang, P.4
Yu, Y.5
Wang, Y.6
Synthesis, H.7
-
11
-
-
84975167067
-
Ag nanoparticles/hematite mesocrystals superstructure composite: a facile synthesis and enhanced heterogeneous photo-Fenton activity
-
Chen, X., Chen, F., Liu, F., Yan, X., Hu, W., Zhang, G., Tian, L., Xia, Q., Chen, X., Ag nanoparticles/hematite mesocrystals superstructure composite: a facile synthesis and enhanced heterogeneous photo-Fenton activity. Catal. Sci. Technol. 6 (2016), 4184–4191.
-
(2016)
Catal. Sci. Technol.
, vol.6
, pp. 4184-4191
-
-
Chen, X.1
Chen, F.2
Liu, F.3
Yan, X.4
Hu, W.5
Zhang, G.6
Tian, L.7
Xia, Q.8
Chen, X.9
-
13
-
-
84922876616
-
3 films from electrodeposited Fe films for efficient photoelectrocatalytic water splitting and the degradation of organic pollutants
-
3 films from electrodeposited Fe films for efficient photoelectrocatalytic water splitting and the degradation of organic pollutants. J. Mater. Chem. A 3 (2015), 4345–4353.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 4345-4353
-
-
Zeng, Q.1
Bai, J.2
Li, J.3
Xia, L.4
Huang, K.5
Li, X.6
Zhou, B.7
-
14
-
-
84971378422
-
2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance
-
2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance. Nanoscale 8 (2016), 11284–11290.
-
(2016)
Nanoscale
, vol.8
, pp. 11284-11290
-
-
Li, Y.1
Wei, X.2
Zhu, B.3
Wang, H.4
Tang, Y.5
Sum, T.C.6
Chen, X.7
-
17
-
-
84875966514
-
Photocatalytic water oxidation by hematite/reduced graphene oxide composites
-
Meng, F., Li, J., Cushing, S.K., Bright, J., Zhi, M., Rowley, J.D., Hong, Z., Manivannan, A., Bristow, A.D., Wu, N., Photocatalytic water oxidation by hematite/reduced graphene oxide composites. ACS Catal. 3 (2013), 746–751.
-
(2013)
ACS Catal.
, vol.3
, pp. 746-751
-
-
Meng, F.1
Li, J.2
Cushing, S.K.3
Bright, J.4
Zhi, M.5
Rowley, J.D.6
Hong, Z.7
Manivannan, A.8
Bristow, A.D.9
Wu, N.10
-
18
-
-
84915748070
-
3 nanorods and N-dopants with high activity based on improved metal/support interactions
-
3 nanorods and N-dopants with high activity based on improved metal/support interactions. J. Mater. Chem. A 3 (2015), 125–130.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 125-130
-
-
Dai, Y.1
Chai, Y.2
Sun, Y.3
Fu, W.4
Wang, X.5
Gu, Q.6
Zeng, T.H.7
Sun, Y.8
-
20
-
-
84996849483
-
Graphene in photocatalysis: a review
-
Li, X., Yu, J., Wageh, S., Al-Ghamdi, A.A., Xie, J., Graphene in photocatalysis: a review. Small 12 (2016), 6640–6696.
-
(2016)
Small
, vol.12
, pp. 6640-6696
-
-
Li, X.1
Yu, J.2
Wageh, S.3
Al-Ghamdi, A.A.4
Xie, J.5
-
21
-
-
84994297172
-
2 @RGO core-shell structures on their photocatalytic performance
-
2 @RGO core-shell structures on their photocatalytic performance. Appl. Surf. Sci. 391 (2017), 627–634.
-
(2017)
Appl. Surf. Sci.
, vol.391
, pp. 627-634
-
-
Shen, H.1
Zhao, X.2
Duan, L.3
Liu, R.4
Wu, H.5
Hou, T.6
Jiang, X.7
Gao, H.8
-
22
-
-
84994410024
-
2 photocatalysts: spatially separated adsorption sites and tunable photocatalytic selectivity
-
2 photocatalysts: spatially separated adsorption sites and tunable photocatalytic selectivity. ACS Appl. Mater. Interfaces 8 (2016), 29470–29477.
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 29470-29477
-
-
Yu, H.1
Xiao, P.2
Tian, J.3
Wang, F.4
Yu, J.5
-
23
-
-
84944691171
-
2 /graphene hollow spheres as high-efficiency photocatalysts for hydrogen evolution without noble metals
-
2 /graphene hollow spheres as high-efficiency photocatalysts for hydrogen evolution without noble metals. Appl. Catal. B: Environ. 182 (2016), 504–512.
-
(2016)
Appl. Catal. B: Environ.
, vol.182
, pp. 504-512
-
-
Yu, X.1
Du, R.2
Li, B.3
Zhang, Y.4
Liu, H.5
Qu, J.6
An, X.7
-
24
-
-
84893502195
-
Toward improving the graphene-Semiconductor composite photoactivity via the addition of metal ions as generic interfacial mediator
-
Zhang, N., Yang, M.-Q., Tang, Z.-R., Xu, Y.-J., Toward improving the graphene-Semiconductor composite photoactivity via the addition of metal ions as generic interfacial mediator. ACS Nano 8 (2014), 623–633.
-
(2014)
ACS Nano
, vol.8
, pp. 623-633
-
-
Zhang, N.1
Yang, M.-Q.2
Tang, Z.-R.3
Xu, Y.-J.4
-
25
-
-
84940851428
-
2 nanocomposites for enhanced visible-light photocatalytic applications
-
2 nanocomposites for enhanced visible-light photocatalytic applications. Dalton Trans. 44 (2015), 16024–16035.
-
(2015)
Dalton Trans.
, vol.44
, pp. 16024-16035
-
-
Jo, W.-K.1
Selvam, N.C.S.2
-
27
-
-
84979780178
-
3 nanorod arrays on reduced graphene oxide: a superior anode for high-performance Li-ion and Na-ion batteries
-
3 nanorod arrays on reduced graphene oxide: a superior anode for high-performance Li-ion and Na-ion batteries. J. Mater. Chem. A 4 (2016), 11800–11811.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 11800-11811
-
-
Kong, D.1
Cheng, C.2
Wang, Y.3
Liu, B.4
Huang, Z.5
Yang, H.Y.6
-
28
-
-
84946605989
-
3 /graphene nanocomposites with ultrahigh capacitance and excellent rate capability for supercapacitors
-
3 /graphene nanocomposites with ultrahigh capacitance and excellent rate capability for supercapacitors. J. Mater. Chem. A 3 (2015), 22005–22011.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 22005-22011
-
-
Zhang, H.1
Gao, Q.2
Yang, K.3
Tan, Y.4
Tian, W.5
Zhu, L.6
Li, Z.7
Yang, C.8
-
29
-
-
84962332120
-
3 /reduced graphene oxide composites: rapid detection and effective removal of organic pollutants, ACS appl
-
3 /reduced graphene oxide composites: rapid detection and effective removal of organic pollutants, ACS appl. Mater. Interfaces 8 (2016), 6431–6438.
-
(2016)
Mater. Interfaces
, vol.8
, pp. 6431-6438
-
-
Zhang, L.1
Bao, Z.2
Yu, X.3
Dai, P.4
Zhu, J.5
Wu, M.6
Li, G.7
Liu, X.8
Sun, Z.9
Chen, C.10
-
31
-
-
84910109203
-
Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion
-
Yuan, Y.-P., Ruan, L.-W., Barber, J., Loo, S.C.J., Xue, C., Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy Environ. Sci. 7 (2014), 3934–3951.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 3934-3951
-
-
Yuan, Y.-P.1
Ruan, L.-W.2
Barber, J.3
Loo, S.C.J.4
Xue, C.5
-
32
-
-
84864200490
-
Photoelectrochemical performance enhanced by a nickel oxide-hematite p-n junction photoanode
-
Li, J., Meng, F., Suri, S., Ding, W., Huang, F., Wu, N., Photoelectrochemical performance enhanced by a nickel oxide-hematite p-n junction photoanode. Chem. Commun. 48 (2012), 8213–8215.
-
(2012)
Chem. Commun.
, vol.48
, pp. 8213-8215
-
-
Li, J.1
Meng, F.2
Suri, S.3
Ding, W.4
Huang, F.5
Wu, N.6
-
33
-
-
84980385945
-
In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production
-
Liu, G., Zhao, G., Zhou, W., Liu, Y., Pang, H., Zhang, H., Hao, D., Meng, X., Li, P., Kako, T., Ye, J., In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production. Adv. Funct. Mater. 26 (2016), 6822–6829.
-
(2016)
Adv. Funct. Mater.
, vol.26
, pp. 6822-6829
-
-
Liu, G.1
Zhao, G.2
Zhou, W.3
Liu, Y.4
Pang, H.5
Zhang, H.6
Hao, D.7
Meng, X.8
Li, P.9
Kako, T.10
Ye, J.11
-
34
-
-
84966280406
-
Hierarchical photocatalysts
-
Li, X., Yu, J., Jaroniec, M., Hierarchical photocatalysts. Chem. Soc. Rev. 45 (2016), 2603–2636.
-
(2016)
Chem. Soc. Rev.
, vol.45
, pp. 2603-2636
-
-
Li, X.1
Yu, J.2
Jaroniec, M.3
-
35
-
-
84979626636
-
2 generation
-
2 generation. Appl. Surf. Sci. 391 (2017), 580–591.
-
(2017)
Appl. Surf. Sci.
, vol.391
, pp. 580-591
-
-
Ma, S.1
Xie, J.2
Wen, J.3
He, K.4
Li, X.5
Liu, W.6
Zhang, X.7
-
36
-
-
84958170808
-
2 /reduced graphene oxide hybrid with CdS nanoparticles as a visible light-driven photocatalyst for the reduction of 4-nitrophenol
-
2 /reduced graphene oxide hybrid with CdS nanoparticles as a visible light-driven photocatalyst for the reduction of 4-nitrophenol. J. Hazard. Mater. 309 (2016), 173–179.
-
(2016)
J. Hazard. Mater.
, vol.309
, pp. 173-179
-
-
Peng, W.1
Chen, Y.2
Li, X.3
-
37
-
-
84979300098
-
4 magnetic nanocomposites: enhanced and stable photocatalytic performance for water purification under visible light irradiation
-
4 magnetic nanocomposites: enhanced and stable photocatalytic performance for water purification under visible light irradiation. Appl. Surf. Sci. 389 (2016), 227–239.
-
(2016)
Appl. Surf. Sci.
, vol.389
, pp. 227-239
-
-
Guo, N.1
Li, H.2
Xu, X.3
Yu, H.4
-
38
-
-
84954479669
-
2 -GO nanocomposites synthesized via a hydrothermal hydrogel method for solar light photocatalytic degradation of methylene blue
-
2 -GO nanocomposites synthesized via a hydrothermal hydrogel method for solar light photocatalytic degradation of methylene blue. Appl. Surf. Sci. 357 (2015), 1606–1612.
-
(2015)
Appl. Surf. Sci.
, vol.357
, pp. 1606-1612
-
-
Ding, Y.1
Zhou, Y.2
Nie, W.3
Chen, P.4
-
39
-
-
84960869416
-
2 nanobelts with enhanced photocatalytic property
-
2 nanobelts with enhanced photocatalytic property. Nanoscale 8 (2016), 6101–6109.
-
(2016)
Nanoscale
, vol.8
, pp. 6101-6109
-
-
Li, H.1
Wang, Y.2
Chen, G.3
Sang, Y.4
Jiang, H.5
He, J.6
Li, X.7
Liu, H.8
-
42
-
-
84939824896
-
2 @zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light
-
2 @zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light. Appl. Surf. Sci. 358 (2015), 468–478.
-
(2015)
Appl. Surf. Sci.
, vol.358
, pp. 468-478
-
-
Zhang, W.1
Xiao, X.2
Zheng, L.3
Wan, C.4
-
43
-
-
84962476310
-
2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation
-
2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Appl. Surf. Sci. 377 (2016), 99–108.
-
(2016)
Appl. Surf. Sci.
, vol.377
, pp. 99-108
-
-
Zhu, C.1
Zhang, L.2
Jiang, B.3
Zheng, J.4
Hu, P.5
Li, S.6
Wu, M.7
Wu, W.8
-
44
-
-
79955891162
-
2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction
-
2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133 (2011), 7296–7299.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 7296-7299
-
-
Li, Y.1
Wang, H.2
Xie, L.3
Liang, Y.4
Hong, G.5
Dai, H.6
-
45
-
-
84864042203
-
3 nanoparticles anchored on graphene with 3D quasi-laminated architecture: insitu wet chemistry synthesis and enhanced electrochemical performance for lithium ion batteries
-
3 nanoparticles anchored on graphene with 3D quasi-laminated architecture: insitu wet chemistry synthesis and enhanced electrochemical performance for lithium ion batteries. New J. Chem. 36 (2012), 1589–1595.
-
(2012)
New J. Chem.
, vol.36
, pp. 1589-1595
-
-
Chen, D.1
Wei, W.2
Wang, R.3
Zhu, J.4
Guo, L.5
-
46
-
-
84937828571
-
2 nanosheet core-shell nanostructures for stable and high-performance lithium-ion batteries
-
2 nanosheet core-shell nanostructures for stable and high-performance lithium-ion batteries. Nanoscale 7 (2015), 12895–12905.
-
(2015)
Nanoscale
, vol.7
, pp. 12895-12905
-
-
Chen, B.1
Zhao, N.2
Guo, L.3
He, F.4
Shi, C.5
He, C.6
Li, J.7
Liu, E.8
-
47
-
-
84928884397
-
3 @graphene hybrid prepared through the Kirkendall process as a high performance anode material for lithium ion batteries
-
3 @graphene hybrid prepared through the Kirkendall process as a high performance anode material for lithium ion batteries. Chem. Commun. 51 (2015), 7855–7858.
-
(2015)
Chem. Commun.
, vol.51
, pp. 7855-7858
-
-
Hu, J.1
Zheng, J.2
Tian, L.3
Duan, Y.4
Lin, L.5
Cui, S.6
Peng, H.7
Liu, T.8
Guo, H.9
Wang, X.10
Pan, F.11
-
48
-
-
84930506240
-
3 /reduced graphene oxide nanocomposite for high-performance lithium-ion batteries
-
3 /reduced graphene oxide nanocomposite for high-performance lithium-ion batteries. J. Mater. Chem. A 3 (2015), 11566–11574.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 11566-11574
-
-
Xiao, L.1
Schroeder, M.2
Kluge, S.3
Balducci, A.4
Hagemann, U.5
Schulz, C.6
Wiggers, H.7
-
49
-
-
34249742469
-
Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
-
Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45 (2007), 1558–1565.
-
(2007)
Carbon
, vol.45
, pp. 1558-1565
-
-
Stankovich, S.1
Dikin, D.A.2
Piner, R.D.3
Kohlhaas, K.A.4
Kleinhammes, A.5
Jia, Y.6
Wu, Y.7
Nguyen, S.T.8
Ruoff, R.S.9
-
50
-
-
77955520123
-
Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal
-
Chandra, V., Park, J., Chun, Y., Lee, J.W., Hwang, I.-C., Kim, K.S., Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4 (2010), 3979–3986.
-
(2010)
ACS Nano
, vol.4
, pp. 3979-3986
-
-
Chandra, V.1
Park, J.2
Chun, Y.3
Lee, J.W.4
Hwang, I.-C.5
Kim, K.S.6
-
51
-
-
33947263695
-
Studying disorder in graphite-based systems by Raman spectroscopy
-
Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Cancado, L.G., Jorio, A., Saito, R., Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9 (2007), 1276–1291.
-
(2007)
Phys. Chem. Chem. Phys.
, vol.9
, pp. 1276-1291
-
-
Pimenta, M.A.1
Dresselhaus, G.2
Dresselhaus, M.S.3
Cancado, L.G.4
Jorio, A.5
Saito, R.6
-
52
-
-
84964890715
-
3 nano-dots@Nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte
-
3 nano-dots@Nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte. ACS Appl. Mater. Interfaces 8 (2016), 9335–9344.
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 9335-9344
-
-
Liu, L.1
Lang, J.2
Zhang, P.3
Hu, B.4
Yan, X.5
-
53
-
-
84960172482
-
3 spheres with crystal of transition for enhanced supercapacitors
-
3 spheres with crystal of transition for enhanced supercapacitors. RSC Adv. 6 (2016), 23659–23665.
-
(2016)
RSC Adv.
, vol.6
, pp. 23659-23665
-
-
Liu, Y.1
Liu, F.2
Chen, Y.3
Jiang, J.4
Ai, Y.5
Han, S.6
Lin, H.7
-
54
-
-
84939789985
-
Morphology-tunable ultrafine metal oxide nanostructures uniformly grown on graphene and their applications in the photo-Fenton system
-
Shao, P., Tian, J., Liu, B., Shi, W., Gao, S., Song, Y., Ling, M., Cui, F., Morphology-tunable ultrafine metal oxide nanostructures uniformly grown on graphene and their applications in the photo-Fenton system. Nanoscale 7 (2015), 14254–14263.
-
(2015)
Nanoscale
, vol.7
, pp. 14254-14263
-
-
Shao, P.1
Tian, J.2
Liu, B.3
Shi, W.4
Gao, S.5
Song, Y.6
Ling, M.7
Cui, F.8
-
56
-
-
84906537148
-
2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution
-
2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution. Nanoscale 6 (2014), 10680–10685.
-
(2014)
Nanoscale
, vol.6
, pp. 10680-10685
-
-
Zhao, X.1
Zhu, H.2
Yang, X.3
-
57
-
-
84960153762
-
3 nanoparticles by solid-phase method and its hydrogen peroxide sensing properties
-
3 nanoparticles by solid-phase method and its hydrogen peroxide sensing properties. ACS Sustain. Chem. Eng. 4 (2016), 1069–1077.
-
(2016)
ACS Sustain. Chem. Eng.
, vol.4
, pp. 1069-1077
-
-
Hao, C.1
Shen, Y.2
Wang, Z.3
Wang, X.4
Feng, F.5
Ge, C.6
Zhao, Y.7
Wang, K.8
-
58
-
-
84925127662
-
2 /reduced graphene oxide composites with enhanced electrochemical performance for reversible lithium storage
-
2 /reduced graphene oxide composites with enhanced electrochemical performance for reversible lithium storage. J. Mater. Chem. A 3 (2015), 6884–6893.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 6884-6893
-
-
Ye, J.1
Ma, L.2
Chen, W.3
Ma, Y.4
Huang, F.5
Gao, C.6
Lee, J.Y.7
-
59
-
-
84863148302
-
3 /graphene with significantly enhanced Li-ion storage properties
-
3 /graphene with significantly enhanced Li-ion storage properties. J. Mater. Chem. 22 (2012), 3868–3874.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 3868-3874
-
-
Zhang, M.1
Qu, B.2
Lei, D.3
Chen, Y.4
Yu, X.5
Chen, L.6
Li, Q.7
Wang, Y.8
Wang, T.9
-
64
-
-
79960615659
-
Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light
-
Iwase, A., Ng, Y.H., Ishiguro, Y., Kudo, A., Amal, R., Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J. Am. Chem. Soc. 133 (2011), 11054–11057.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 11054-11057
-
-
Iwase, A.1
Ng, Y.H.2
Ishiguro, Y.3
Kudo, A.4
Amal, R.5
-
66
-
-
84961290672
-
Engineering heterogeneous semiconductors for solar water splitting
-
Li, X., Yu, J., Low, J., Fang, Y., Xiao, J., Chen, X., Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3 (2015), 2485–2534.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 2485-2534
-
-
Li, X.1
Yu, J.2
Low, J.3
Fang, Y.4
Xiao, J.5
Chen, X.6
|