메뉴 건너뛰기




Volumn 9, Issue 3, 2017, Pages

Monitoring of wheat growth status and mapping of wheat yield's within-field spatial variations using color images acquired from UAV-camera System

Author keywords

Agriculture remote sensing; Color vegetation index; Image processing; Precision agriculture; Unmanned aerial vehicle (UAV); Wheat yield; Winter wheat

Indexed keywords

AGRICULTURE; CAMERAS; COLOR; CROPS; FORESTRY; HARVESTING; IMAGE PROCESSING; MEAN SQUARE ERROR; REGRESSION ANALYSIS; REMOTE SENSING; STATISTICAL METHODS; UNMANNED AERIAL VEHICLES (UAV); VEGETATION; VEHICLES;

EID: 85019945266     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs9030289     Document Type: Article
Times cited : (181)

References (28)
  • 1
    • 0002872223 scopus 로고
    • Monitoring Vegetation Systems in the Great Plains with ERT
    • In Proceedings of the Third ERTS Symposium, NASA, Greenbelt, MD, USA, 10-14 December, (accessed on 10 December 2015)
    • Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, NASA, Greenbelt, MD, USA, 10-14 December 1973; pp. 309-317. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022614.pdf (accessed on 10 December 2015).
    • (1973) , pp. 309-317
    • Rouse, J.W.1    Haas, R.H.2    Schell, J.A.3    Deering, D.W.4
  • 2
    • 0027787177 scopus 로고
    • On the use of NDVI profiles as a tool for agricultural statistics: The case study of wheat yield estimate and forecast in Emilia Romagna
    • Roberto, B., Paolo, R. On the use of NDVI profiles as a tool for agricultural statistics: The case study of wheat yield estimate and forecast in Emilia Romagna. Remote Sens. Environ. 1993, 45, 311-326.
    • (1993) Remote Sens. Environ. , vol.45 , pp. 311-326
    • Roberto, B.1    Paolo, R.2
  • 3
    • 2342460363 scopus 로고    scopus 로고
    • Optimal time for remote sensing to relate to crop grain yield on the Canadian prairies
    • Basnyat, P., McConkey, B., Lafond, G.P., Moulin, A., Pelcat, Y. Optimal time for remote sensing to relate to crop grain yield on the Canadian prairies. Can. J. Plant Sci. 2004, 84, 97-103.
    • (2004) Can. J. Plant Sci. , vol.84 , pp. 97-103
    • Basnyat, P.1    McConkey, B.2    Lafond, G.P.3    Moulin, A.4    Pelcat, Y.5
  • 4
    • 84887105216 scopus 로고    scopus 로고
    • Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps
    • David, J.M. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358-371.
    • (2013) Biosyst. Eng. , vol.114 , pp. 358-371
    • David, J.M.1
  • 5
    • 0000192279 scopus 로고
    • Determining the prevalence of certain cereal crop diseases by means of aerial photography
    • Robert, N.C. Determining the prevalence of certain cereal crop diseases by means of aerial photography. Hilgardia 1956, 26, 223-286.
    • (1956) Hilgardia , vol.26 , pp. 223-286
    • Robert, N.C.1
  • 6
    • 41149119465 scopus 로고    scopus 로고
    • Remote Sensing of Canopy Cover in Horticultural Crops
    • Thomas, J., Trout, L., Johnson, F., Jim, G. Remote Sensing of Canopy Cover in Horticultural Crops. Hortscience 2008, 43, 333-337.
    • (2008) Hortscience , vol.43 , pp. 333-337
    • Thomas, J.1    Trout, L.2    Johnson, F.3    Jim, G.4
  • 7
    • 84994779365 scopus 로고    scopus 로고
    • Multi-temporal Monitoring of Wheat Growth through Correlation Analysis of Satellite Images, Unmanned Aerial Vehicle Images with Ground Variable
    • In Proceedings of the 5th IFAC Conference on Sensing, Control and Automation Technologies for Agriculture AGRICONTROL, Seattle, WA, USA, 14-17 August
    • Du, M.M., Noboru, N. Multi-temporal Monitoring of Wheat Growth through Correlation Analysis of Satellite Images, Unmanned Aerial Vehicle Images with Ground Variable. In Proceedings of the 5th IFAC Conference on Sensing, Control and Automation Technologies for Agriculture AGRICONTROL, Seattle, WA, USA, 14-17 August 2016.
    • (2016)
    • Du, M.M.1    Noboru, N.2
  • 8
    • 70350193809 scopus 로고    scopus 로고
    • A Mini Unmanned Aerial Vehicle (UAV): System Overview and Image Acquisition
    • In Image Acquisition. In Proceedings of the International Workshop on Processing and Visualization Using High-Resolution Imagery, Pitsanulok, Thailand, 18-20 November
    • Eisenbeiss, H. A Mini Unmanned Aerial Vehicle (UAV): System Overview and Image Acquisition. In Image Acquisition. In Proceedings of the International Workshop on Processing and Visualization Using High-Resolution Imagery, Pitsanulok, Thailand, 18-20 November 2004.
    • (2004)
    • Eisenbeiss, H.1
  • 9
    • 85019883541 scopus 로고    scopus 로고
    • (accessed on 25 October 2016).
    • The Third National Agricultural Census Using UAV Remote Sensing. Available online: http://www.uavwrj. com/gne/427.html (accessed on 25 October 2016).
  • 10
    • 0038131257 scopus 로고    scopus 로고
    • Introduction to Remote Sensing
    • 5th ed., The Guilford Press: New York, NY, USA
    • James, B.C., Randolph, H.W. Introduction to Remote Sensing, 5th ed., The Guilford Press: New York, NY, USA, 2011; pp. 72-102.
    • (2011) , pp. 72-102
    • James, B.C.1    Randolph, H.W.2
  • 11
    • 84925852758 scopus 로고    scopus 로고
    • Extraction of vegetation information from visible unmanned aerial vehicle images
    • Wang, X.Q., Wang, M.M., Wang, S.Q., Wu, Y.D. Extraction of vegetation information from visible unmanned aerial vehicle images. Trans. Chin. Soc. Agric. Eng. 2015, 31, 152-159.
    • (2015) Trans. Chin. Soc. Agric. Eng. , vol.31 , pp. 152-159
    • Wang, X.Q.1    Wang, M.M.2    Wang, S.Q.3    Wu, Y.D.4
  • 12
    • 84963897565 scopus 로고    scopus 로고
    • Application of unmanned aerial vehicles to mangrove resources monitoring
    • Feng, J.L., Liu, K., Zhu, Y.H., Li, Y., Liu, L., Meng, L. Application of unmanned aerial vehicles to mangrove resources monitoring. Trop. Geogr. 2015, 35, 35-42.
    • (2015) Trop. Geogr. , vol.35 , pp. 35-42
    • Feng, J.L.1    Liu, K.2    Zhu, Y.H.3    Li, Y.4    Liu, L.5    Meng, L.6
  • 13
    • 77956640482 scopus 로고    scopus 로고
    • Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring
    • Raymond Hunt, E., Jr., Dean Hively,W., Fujikawa, S.J., McCarty, G.W. Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring. Remote Sens. 2010, 2, 290-305.
    • (2010) Remote Sens. , vol.2 , pp. 290-305
    • Raymond Hunt, E.1    Dean Hively, W.2    Fujikawa, S.J.3    McCarty, G.W.4
  • 14
    • 84951143320 scopus 로고    scopus 로고
    • Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots?
    • Rasmussen, J., Ntakos, G., Nielsen, J., Svensgaard, J., Poulsen, R.N., Christensen, S. Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? Eur. J. Agron. 2016, 74, 75-92.
    • (2016) Eur.J. Agron. , vol.74 , pp. 75-92
    • Rasmussen, J.1    Ntakos, G.2    Nielsen, J.3    Svensgaard, J.4    Poulsen, R.N.5    Christensen, S.6
  • 15
    • 84896137428 scopus 로고    scopus 로고
    • Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV
    • Torres-Sánchez, J., Peña, J.M., de Castro, A.I., López-Granados, F. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 103, 104-113.
    • (2014) Comput. Electron. Agric. , vol.103 , pp. 104-113
    • Torres-Sánchez, J.1    Peña, J.M.2    de Castro, A.I.3    López-Granados, F.4
  • 16
    • 0029110322 scopus 로고
    • Color Indices for Weed Identification under Various Soil, Residue and Lighting Conditions
    • Woebbecke, D.M., Meyer, G.E., Von Bargen, K., Mortensen, D.A. Color Indices for Weed Identification under Various Soil, Residue and Lighting Conditions. Trans. ASAE 1995, 38, 259-269.
    • (1995) Trans. ASAE , vol.38 , pp. 259-269
    • Woebbecke, D.M.1    Meyer, G.E.2    Von Bargen, K.3    Mortensen, D.A.4
  • 17
    • 84952780376 scopus 로고    scopus 로고
    • Estimation of winter wheat biomass using visible spectral and BP based artificial neural networks
    • Cui, R.X., Liu, Y.D., Fu, J.D. Estimation of winter wheat biomass using visible spectral and BP based artificial neural networks. Spectrosc. Spectr. Anal. 2015, 35, 2596-2601.
    • (2015) Spectrosc. Spectr. Anal. , vol.35 , pp. 2596-2601
    • Cui, R.X.1    Liu, Y.D.2    Fu, J.D.3
  • 18
    • 85019942693 scopus 로고    scopus 로고
    • (accessed on 20 October 2016).
    • Global Wheat Production from 1990/1991 to 2016/2017 (in Million Metric Tons). Available online: https://www.statista.com/statistics/267268/production-of-wheat-worldwide-since-1990/ (accessed on 20 October 2016).
  • 19
    • 84996561880 scopus 로고    scopus 로고
    • Field monitoring of wheat seedling stage with hyperspectral imaging
    • Wu, Q.,Wang, C., Fang, J.J., Ji, J.W. Field monitoring of wheat seedling stage with hyperspectral imaging. Int. J. Agric. Biol. Eng. 2016, 9, 143-148.
    • (2016) Int. J. Agric. Biol. Eng. , vol.9 , pp. 143-148
    • Wu, Q.1    Wang, C.2    Fang, J.J.3    Ji, J.W.4
  • 20
    • 71049155557 scopus 로고    scopus 로고
    • Winter wheat yield predicting for America using remote sensing data.
    • Zhang, F.,Wu, B., Luo, Z.Winter wheat yield predicting for America using remote sensing data. J. Remote Sens. 2004, 8, 611-617.
    • (2004) J.Remote Sens. , vol.8 , pp. 611-617
    • Zhang, F.1    Wu, B.2    Luo, Z.3
  • 21
    • 85019950084 scopus 로고    scopus 로고
    • (accessed on 10 November 2016).
    • Ministry of Agriculture, Forestry, and Fisheries. Available online: http://www.maff.go.jp/ (accessed on 10 November 2016).
  • 22
    • 85019914865 scopus 로고    scopus 로고
    • (accessed on 12 November 2015).
    • Trimble SPS855 GNSS Modular Receiver. Available online: http://construction.trimble.com/sites/default/ files/literature-files/2016-07/SPS855-Data-Sheet-EN.pdf (accessed on 12 November 2015).
  • 23
    • 85019867033 scopus 로고    scopus 로고
    • (accessed on 2 December 2016).
    • Weather Time-Memuro. Available online: https://weather.time-j.net/Stations/JP/memuro (accessed on 2 December 2016).
  • 24
    • 84880415571 scopus 로고    scopus 로고
    • Radiometric normalization of temporal images combining automatic detection of pseudo-invariant features from the distance and similarity spectral measures, density scatterplot analysis, and robust regression
    • Júnior, O.A.D.C., Guimarães, R.F., Silva, N.C., Gillespie, A.R., Gomes, R.A.T., Silva, C.R., De Carvalho, A.P.F. Radiometric normalization of temporal images combining automatic detection of pseudo-invariant features from the distance and similarity spectral measures, density scatterplot analysis, and robust regression. Remote Sens. 2013, 5, 2763-2794.
    • (2013) Remote Sens. , vol.5 , pp. 2763-2794
    • Júnior, O.A.D.C.1    Guimarães, R.F.2    Silva, N.C.3    Gillespie, A.R.4    Gomes, R.A.T.5    Silva, C.R.6    De Carvalho, A.P.F.7
  • 25
    • 84874595926 scopus 로고    scopus 로고
    • Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management
    • Torres-Sanchez, J., Lopez-Granados, F., De Castro, A., Pena-Barragan, J.M. Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management. PLoS ONE 2013, 8, e58210.
    • (2013) PLoS ONE , vol.8
    • Torres-Sanchez, J.1    Lopez-Granados, F.2    De Castro, A.3    Pena-Barragan, J.M.4
  • 26
    • 0032815356 scopus 로고    scopus 로고
    • Assessing leaf pigment content and activity with a reflectometer
    • Gamon, J.A., Surfus, J.S. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 2013, 143, 105-117.
    • (2013) New Phytol. , vol.143 , pp. 105-117
    • Gamon, J.A.1    Surfus, J.S.2
  • 27
    • 0033566418 scopus 로고    scopus 로고
    • Algorithmic stability and sanity-check bounds for leave-one-out cross-validation
    • Michael, K., Dana, R. Algorithmic stability and sanity-check bounds for leave-one-out cross-validation. Neural Comput. 1999, 11, 1427-1453.
    • (1999) Neural Comput. , vol.11 , pp. 1427-1453
    • Michael, K.1    Dana, R.2
  • 28
    • 85019866862 scopus 로고    scopus 로고
    • Application of Excel in the Experiment Teaching of Leave-One-Out Cross Validation
    • Feng, Q.S., Gao, X.H. Application of Excel in the Experiment Teaching of Leave-One-Out Cross Validation. Exp. Sci. Technol. 2015, 13, 49-51.
    • (2015) Exp. Sci. Technol , vol.13 , pp. 49-51
    • Feng, Q.S.1    Gao, X.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.