메뉴 건너뛰기




Volumn 9, Issue 5, 2017, Pages

Cost-effective class-imbalance aware CNN for vehicle localization and categorization in high resolution aerial images

Author keywords

Aerial image; Class imbalance; Convolutional neural network (CNN); High resolution; Vehicle classification; Vehicle localization

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVOLUTION; COSTS; FEATURE EXTRACTION; NEURAL NETWORKS; VEHICLES;

EID: 85019911687     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs9050494     Document Type: Article
Times cited : (23)

References (79)
  • 1
    • 84983550752 scopus 로고    scopus 로고
    • A Hybrid Vehicle Detection Method Based on Viola-Jones and HOG + SVM from UAV Images
    • Xu, Y.; Yu, G.; Wang, Y.; Wu, X.; Ma, Y. A Hybrid Vehicle Detection Method Based on Viola-Jones and HOG + SVM from UAV Images. Sensors 2016, doi:10.3390/s16081325.
    • (2016) Sensors
    • Xu, Y.1    Yu, G.2    Wang, Y.3    Wu, X.4    Ma, Y.5
  • 4
    • 84994453376 scopus 로고    scopus 로고
    • Vehicle detection fromhigh-resolution aerial images using spatial pyramid pooling-based deep convolutional neural networks
    • Qu, T.; Zhang, Q.; Sun, S. Vehicle detection fromhigh-resolution aerial images using spatial pyramid pooling-based deep convolutional neural networks. Multimedia Tools Appl. 2016, doi:10.1007/s11042-016-4043-5.
    • (2016) Multimedia Tools Appl
    • Qu, T.1    Zhang, Q.2    Sun, S.3
  • 5
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle detection in satellite images by hybrid deep convolutional neural networks
    • Chen, X.; Xiang, S.; Liu, C.L.; Pan, C.H. Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1797-1801.
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.L.3    Pan, C.H.4
  • 6
    • 84978805832 scopus 로고    scopus 로고
    • Robust vehicle detection by combining deep features with exemplar classification
    • Cao, L.; Jiang, Q.; Cheng, M.; Wang, C. Robust vehicle detection by combining deep features with exemplar classification. Neurocomputing 2016, 215, 225-231.
    • (2016) Neurocomputing , vol.215 , pp. 225-231
    • Cao, L.1    Jiang, Q.2    Cheng, M.3    Wang, C.4
  • 8
    • 84979545110 scopus 로고    scopus 로고
    • Vehicle Detection in Satellite Images by Incorporating Objectness and Convolutional Neural Network
    • Qu, S.;Wang, Y.; Meng, G.; Pan, C. Vehicle Detection in Satellite Images by Incorporating Objectness and Convolutional Neural Network. J. Ind. Intell. Inf. 2016, doi:10.18178/jiii.4.2.158-162.
    • (2016) J. Ind. Intell. Inf
    • Qu, S.1    Wang, Y.2    Meng, G.3    Pan, C.4
  • 14
    • 84906508687 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • Springer: New York, NY, USA
    • He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. In European Conference on Computer Vision; Springer: New York, NY, USA, 2014, pp. 346-361.
    • (2014) European Conference on Computer Vision , pp. 346-361
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 15
    • 85012254070 scopus 로고    scopus 로고
    • Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining
    • Tang, T.; Zhou, S.; Deng, Z.; Zou, H.; Lei, L. Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining. Sensors 2017, doi:10.3390/s17020336.
    • (2017) Sensors
    • Tang, T.1    Zhou, S.2    Deng, Z.3    Zou, H.4    Lei, L.5
  • 16
    • 84977998287 scopus 로고    scopus 로고
    • Salient band selection for hyperspectral image classification via manifold ranking
    • Wang, Q.; Lin, J.; Yuan, Y. Salient band selection for hyperspectral image classification via manifold ranking. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1279-1289.
    • (2016) IEEE Trans. Neural Netw. Learn. Syst , vol.27 , pp. 1279-1289
    • Wang, Q.1    Lin, J.2    Yuan, Y.3
  • 17
    • 84908032942 scopus 로고    scopus 로고
    • Saliency-guided unsupervised feature learning for scene classification
    • Zhang, F.; Du, B.; Zhang, L. Saliency-guided unsupervised feature learning for scene classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2175-2184.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 2175-2184
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 18
    • 68649090261 scopus 로고    scopus 로고
    • Object-based detection and classification of vehicles from high-resolution aerial photography
    • Holt, A.C.; Seto, E.Y.; Rivard, T.; Gong, P. Object-based detection and classification of vehicles from high-resolution aerial photography. Photogramm. Eng. Remote Sens. 2009, 75, 871-880.
    • (2009) Photogramm. Eng. Remote Sens , vol.75 , pp. 871-880
    • Holt, A.C.1    Seto, E.Y.2    Rivard, T.3    Gong, P.4
  • 19
    • 84973887007 scopus 로고    scopus 로고
    • Fast multiclass vehicle detection on aerial images
    • Liu, K.; Mattyus, G. Fast multiclass vehicle detection on aerial images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1938-1942.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , pp. 1938-1942
    • Liu, K.1    Mattyus, G.2
  • 20
    • 84948957848 scopus 로고    scopus 로고
    • Vehicle detection in aerial imagery: A small target detection benchmark
    • Razakarivony, S.; Jurie, F. Vehicle detection in aerial imagery: A small target detection benchmark. J. Vis. Commun. Image Represent. 2016, 34, 187-203.
    • (2016) J. Vis. Commun. Image Represent , vol.34 , pp. 187-203
    • Razakarivony, S.1    Jurie, F.2
  • 24
    • 84977491055 scopus 로고    scopus 로고
    • Congested scene classification via efficient unsupervised feature learning and density estimation
    • Yuan, Y.;Wan, J.;Wang, Q. Congested scene classification via efficient unsupervised feature learning and density estimation. Pattern Recognit. 2016, 56, 159-169.
    • (2016) Pattern Recognit , vol.56 , pp. 159-169
    • Yuan, Y.1    Wan, J.2    Wang, Q.3
  • 28
    • 85043605198 scopus 로고    scopus 로고
    • Learning from imbalanced data: Open challenges and future directions
    • Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221-232.
    • (2016) Prog. Artif. Intell , vol.5 , pp. 221-232
    • Krawczyk, B.1
  • 31
    • 27144540575 scopus 로고    scopus 로고
    • Class imbalances versus small disjuncts
    • Jo, T.; Japkowicz, N. Class imbalances versus small disjuncts. ACM Sigkdd Explor. Newsl. 2004, 6, 40-49.
    • (2004) ACM Sigkdd Explor. Newsl , vol.6 , pp. 40-49
    • Jo, T.1    Japkowicz, N.2
  • 32
    • 77955034751 scopus 로고    scopus 로고
    • On Multi-Class Cost-Sensitive Learning
    • Zhou, Z.H.; Liu, X.Y. On Multi-Class Cost-Sensitive Learning. Comput. Intell. 2010, 26, 232-257.
    • (2010) Comput. Intell , vol.26 , pp. 232-257
    • Zhou, Z.H.1    Liu, X.Y.2
  • 34
    • 84889092504 scopus 로고    scopus 로고
    • Cost-sensitive decision tree ensembles for effective imbalanced classification
    • Krawczyk, B.; Wózniak, M.; Schaefer, G. Cost-sensitive decision tree ensembles for effective imbalanced classification. Appl. Soft Comput. 2014, 14, 554-562.
    • (2014) Appl. Soft Comput , vol.14 , pp. 554-562
    • Krawczyk, B.1    Wózniak, M.2    Schaefer, G.3
  • 36
    • 78650207592 scopus 로고    scopus 로고
    • Classification of imbalanced data by combining the complementary neural network and SMOTE algorithm
    • Springer: New York, NY, USA
    • Jeatrakul, P.;Wong, K.W.; Fung, C.C. Classification of imbalanced data by combining the complementary neural network and SMOTE algorithm. In International Conference on Neural Information Processing; Springer: New York, NY, USA, 2010; pp. 152-159.
    • (2010) International Conference on Neural Information Processing , pp. 152-159
    • Jeatrakul, P.1    Wong, K.W.2    Fung, C.C.3
  • 40
    • 84986269041 scopus 로고    scopus 로고
    • Rifd-cnn: Rotation-invariant and fisher discriminative convolutional neural networks for object detection
    • Stanford, CA, USA, 27-30 June
    • Cheng, G.; Zhou, P.; Han, J. Rifd-cnn: Rotation-invariant and fisher discriminative convolutional neural networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Stanford, CA, USA, 27-30 June 2016; pp. 2884-2893.
    • (2016) Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , pp. 2884-2893
    • Cheng, G.1    Zhou, P.2    Han, J.3
  • 43
    • 84994556253 scopus 로고    scopus 로고
    • Families in the Wild (FIW): Large-Scale Kinship Image Database and Benchmarks
    • Amsterdam, The Netherlands, 15-19 October
    • Robinson, J.P.; Shao, M.; Wu, Y.; Fu, Y. Families in the Wild (FIW): Large-Scale Kinship Image Database and Benchmarks. In Proceedings of the 2016 ACM on Multimedia Conference, Amsterdam, The Netherlands, 15-19 October 2016; pp. 242-246.
    • (2016) Proceedings of the 2016 ACM on Multimedia Conference , pp. 242-246
    • Robinson, J.P.1    Shao, M.2    Wu, Y.3    Fu, Y.4
  • 47
    • 84990032583 scopus 로고    scopus 로고
    • Springer International Publishing: Cham, The Netherlands
    • Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y., A Discriminative Feature Learning Approach for Deep Face Recognition. In Computer Vision-ECCV 2016; Springer International Publishing: Cham, The Netherlands, 2016; pp. 499-515.
    • (2016) In Computer Vision-ECCV 2016 , pp. 499-515
    • Wen, Y.1    Zhang, K.2    Li, Z.3    Qiao, Y.4
  • 48
    • 85019876562 scopus 로고
    • Analysis of feature maps selection in supervised learning using convolutional neural networks
    • Springer: New York, NY, USA
    • Chu, J.L.; Krzyak, A. Analysis of feature maps selection in supervised learning using convolutional neural networks. In Canadian Conference on Artificial Intelligence; Springer: New York, NY, USA, 1994; pp. 59-70.
    • (1994) Canadian Conference on Artificial Intelligence , pp. 59-70
    • Chu, J.L.1    Krzyak, A.2
  • 53
    • 84994895363 scopus 로고    scopus 로고
    • Dual autoencoders features for imbalance classification problem
    • Ng, W.W.; Zeng, G.; Zhang, J.; Yeung, D.S.; Pedrycz, W. Dual autoencoders features for imbalance classification problem. Pattern Recognit. 2016, 60, 875-889.
    • (2016) Pattern Recognit , vol.60 , pp. 875-889
    • Ng, W.W.1    Zeng, G.2    Zhang, J.3    Yeung, D.S.4    Pedrycz, W.5
  • 56
    • 35048862943 scopus 로고    scopus 로고
    • Unsupervised feature selection for multi-class object detection using convolutional neural networks
    • Springer: New York, NY, USA
    • Matsugu, M.; Cardon, P. Unsupervised feature selection for multi-class object detection using convolutional neural networks. In Advances in Neural Networks-ISNN 2004; Springer: New York, NY, USA, 2004; pp. 864-869.
    • (2004) Advances in Neural Networks-ISNN 2004 , pp. 864-869
    • Matsugu, M.1    Cardon, P.2
  • 57
    • 84947127828 scopus 로고    scopus 로고
    • Deep Learning Based Feature Selection for Remote Sensing Scene Classification
    • Zou, Q.; Ni, L.; Zhang, T.; Wang, Q. Deep Learning Based Feature Selection for Remote Sensing Scene Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2321-2325.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , pp. 2321-2325
    • Zou, Q.1    Ni, L.2    Zhang, T.3    Wang, Q.4
  • 59
    • 84930413474 scopus 로고    scopus 로고
    • Feature selection and feature learning for high-dimensional batch reinforcement learning: A survey
    • Liu, D.R.; Li, H.L.;Wang, D. Feature selection and feature learning for high-dimensional batch reinforcement learning: A survey. Int. J. Autom. Comput. 2015, 12, 229-242.
    • (2015) Int. J. Autom. Comput , vol.12 , pp. 229-242
    • Liu, D.R.1    Li, H.L.2    Wang, D.3
  • 61
    • 84991229042 scopus 로고    scopus 로고
    • Jointly Feature Learning and Selection for Robust Tracking via a Gating Mechanism
    • Zhong, B.; Zhang, J.;Wang, P.; Du, J.; Chen, D. Jointly Feature Learning and Selection for Robust Tracking via a Gating Mechanism. PLoS ONE 2016, 11, e0161808.
    • (2016) PLoS ONE , vol.11
    • Zhong, B.1    Zhang, J.2    Wang, P.3    Du, J.4    Chen, D.5
  • 69
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Springer: New York, NY, USA
    • Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In European Conference on Computer Vision; Springer: New York, NY, USA, 2014; pp. 818-833.
    • (2014) European Conference on Computer Vision , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 70
    • 77949524387 scopus 로고    scopus 로고
    • Visualizing Higher-Layer Features of a Deep Network
    • Erhan, D.; Bengio, Y.; Courville, A.; Vincent, P. Visualizing Higher-Layer Features of a Deep Network. Univ. Montr. 2009, 1341, 3.
    • (2009) Univ. Montr , vol.1341 , pp. 3
    • Erhan, D.1    Bengio, Y.2    Courville, A.3    Vincent, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.