-
1
-
-
84983550752
-
A Hybrid Vehicle Detection Method Based on Viola-Jones and HOG + SVM from UAV Images
-
Xu, Y.; Yu, G.; Wang, Y.; Wu, X.; Ma, Y. A Hybrid Vehicle Detection Method Based on Viola-Jones and HOG + SVM from UAV Images. Sensors 2016, doi:10.3390/s16081325.
-
(2016)
Sensors
-
-
Xu, Y.1
Yu, G.2
Wang, Y.3
Wu, X.4
Ma, Y.5
-
2
-
-
84890120460
-
Airborne vehicle detection in dense urban areas using HoG features and disparity maps
-
Tuermer, S.; Kurz, F.; Reinartz, P.; Stilla, U. Airborne vehicle detection in dense urban areas using HoG features and disparity maps. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2327-2337.
-
(2013)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens
, vol.6
, pp. 2327-2337
-
-
Tuermer, S.1
Kurz, F.2
Reinartz, P.3
Stilla, U.4
-
3
-
-
54249164808
-
Automatic car detection in high resolution urban scenes based on an adaptive 3D-model
-
Berlin, Germany, 22-23 May
-
Hinz, S.; Schlosser, C.; Reitberger, J. Automatic car detection in high resolution urban scenes based on an adaptive 3D-model. In Proceedings of the 2nd GRSS/ISPRS JointWorkshop on Remote Sensing and Data Fusion over Urban Areas, Berlin, Germany, 22-23 May 2003; pp. 167-171.
-
(2003)
Proceedings of the 2nd GRSS/ISPRS JointWorkshop on Remote Sensing and Data Fusion over Urban Areas
, pp. 167-171
-
-
Hinz, S.1
Schlosser, C.2
Reitberger, J.3
-
4
-
-
84994453376
-
Vehicle detection fromhigh-resolution aerial images using spatial pyramid pooling-based deep convolutional neural networks
-
Qu, T.; Zhang, Q.; Sun, S. Vehicle detection fromhigh-resolution aerial images using spatial pyramid pooling-based deep convolutional neural networks. Multimedia Tools Appl. 2016, doi:10.1007/s11042-016-4043-5.
-
(2016)
Multimedia Tools Appl
-
-
Qu, T.1
Zhang, Q.2
Sun, S.3
-
5
-
-
84901322878
-
Vehicle detection in satellite images by hybrid deep convolutional neural networks
-
Chen, X.; Xiang, S.; Liu, C.L.; Pan, C.H. Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1797-1801.
-
(2014)
IEEE Geosci. Remote Sens. Lett
, vol.11
, pp. 1797-1801
-
-
Chen, X.1
Xiang, S.2
Liu, C.L.3
Pan, C.H.4
-
6
-
-
84978805832
-
Robust vehicle detection by combining deep features with exemplar classification
-
Cao, L.; Jiang, Q.; Cheng, M.; Wang, C. Robust vehicle detection by combining deep features with exemplar classification. Neurocomputing 2016, 215, 225-231.
-
(2016)
Neurocomputing
, vol.215
, pp. 225-231
-
-
Cao, L.1
Jiang, Q.2
Cheng, M.3
Wang, C.4
-
7
-
-
84956610769
-
Orientation robust object detection in aerial images using deep convolutional neural network
-
Quebec City, QC, Canada, 27-30 September
-
Zhu, H.; Chen, X.; Dai, W.; Fu, K.; Ye, Q.; Jiao, J. Orientation robust object detection in aerial images using deep convolutional neural network. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27-30 September 2015; pp. 3735-3739.
-
(2015)
Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP)
, pp. 3735-3739
-
-
Zhu, H.1
Chen, X.2
Dai, W.3
Fu, K.4
Ye, Q.5
Jiao, J.6
-
8
-
-
84979545110
-
Vehicle Detection in Satellite Images by Incorporating Objectness and Convolutional Neural Network
-
Qu, S.;Wang, Y.; Meng, G.; Pan, C. Vehicle Detection in Satellite Images by Incorporating Objectness and Convolutional Neural Network. J. Ind. Intell. Inf. 2016, doi:10.18178/jiii.4.2.158-162.
-
(2016)
J. Ind. Intell. Inf
-
-
Qu, S.1
Wang, Y.2
Meng, G.3
Pan, C.4
-
9
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Columbus, OH, USA, 23-28 June
-
Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23-28 June 2014; pp. 580-587.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
10
-
-
84964588182
-
Fast r-cnn
-
Los Alamitos, CA, USA, 7-13 December
-
Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Los Alamitos, CA, USA, 7-13 December 2015; pp. 1440-1448.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 1440-1448
-
-
Girshick, R.1
-
11
-
-
84960980241
-
Faster r-cnn: Towards real-time object detection with region proposal networks
-
Montréal, QC, Canada, 7-12 December
-
Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems, Montréal, QC, Canada, 7-12 December 2015.
-
(2015)
Proceedings of the Advances in Neural Information Processing Systems
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
12
-
-
84990068627
-
SSD: Single shot multibox detector
-
Springer: New York, NY, USA
-
Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In European Conference on Computer Vision; Springer: New York, NY, USA, 2016; pp. 21-37.
-
(2016)
European Conference on Computer Vision
, pp. 21-37
-
-
Liu, W.1
Anguelov, D.2
Erhan, D.3
Szegedy, C.4
Reed, S.5
Fu, C.Y.6
Berg, A.C.7
-
13
-
-
84986308404
-
You only look once: Unified, real-time object detection
-
Stanford, CA, USA, 27-30 June
-
Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Stanford, CA, USA, 27-30 June 2016; pp. 779-788.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 779-788
-
-
Redmon, J.1
Divvala, S.2
Girshick, R.3
Farhadi, A.4
-
14
-
-
84906508687
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
Springer: New York, NY, USA
-
He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. In European Conference on Computer Vision; Springer: New York, NY, USA, 2014, pp. 346-361.
-
(2014)
European Conference on Computer Vision
, pp. 346-361
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
15
-
-
85012254070
-
Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining
-
Tang, T.; Zhou, S.; Deng, Z.; Zou, H.; Lei, L. Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining. Sensors 2017, doi:10.3390/s17020336.
-
(2017)
Sensors
-
-
Tang, T.1
Zhou, S.2
Deng, Z.3
Zou, H.4
Lei, L.5
-
16
-
-
84977998287
-
Salient band selection for hyperspectral image classification via manifold ranking
-
Wang, Q.; Lin, J.; Yuan, Y. Salient band selection for hyperspectral image classification via manifold ranking. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1279-1289.
-
(2016)
IEEE Trans. Neural Netw. Learn. Syst
, vol.27
, pp. 1279-1289
-
-
Wang, Q.1
Lin, J.2
Yuan, Y.3
-
17
-
-
84908032942
-
Saliency-guided unsupervised feature learning for scene classification
-
Zhang, F.; Du, B.; Zhang, L. Saliency-guided unsupervised feature learning for scene classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2175-2184.
-
(2015)
IEEE Trans. Geosci. Remote Sens
, vol.53
, pp. 2175-2184
-
-
Zhang, F.1
Du, B.2
Zhang, L.3
-
18
-
-
68649090261
-
Object-based detection and classification of vehicles from high-resolution aerial photography
-
Holt, A.C.; Seto, E.Y.; Rivard, T.; Gong, P. Object-based detection and classification of vehicles from high-resolution aerial photography. Photogramm. Eng. Remote Sens. 2009, 75, 871-880.
-
(2009)
Photogramm. Eng. Remote Sens
, vol.75
, pp. 871-880
-
-
Holt, A.C.1
Seto, E.Y.2
Rivard, T.3
Gong, P.4
-
19
-
-
84973887007
-
Fast multiclass vehicle detection on aerial images
-
Liu, K.; Mattyus, G. Fast multiclass vehicle detection on aerial images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1938-1942.
-
(2015)
IEEE Geosci. Remote Sens. Lett
, vol.12
, pp. 1938-1942
-
-
Liu, K.1
Mattyus, G.2
-
20
-
-
84948957848
-
Vehicle detection in aerial imagery: A small target detection benchmark
-
Razakarivony, S.; Jurie, F. Vehicle detection in aerial imagery: A small target detection benchmark. J. Vis. Commun. Image Represent. 2016, 34, 187-203.
-
(2016)
J. Vis. Commun. Image Represent
, vol.34
, pp. 187-203
-
-
Razakarivony, S.1
Jurie, F.2
-
21
-
-
84986259967
-
Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks
-
Stanford, CA, USA, 27-30 June
-
Bell, S.; Lawrence Zitnick, C.; Bala, K.; Girshick, R. Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Stanford, CA, USA, 27-30 June 2016; pp. 2874-2883.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2874-2883
-
-
Bell, S.1
Lawrence Zitnick, C.2
Bala, K.3
Girshick, R.4
-
22
-
-
84959199778
-
Small instance detection by integer programming on object density maps
-
Boston, MA, USA, 7-12 June
-
Ma, Z.; Yu, L.; Chan, A.B. Small instance detection by integer programming on object density maps. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 3689-3697.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3689-3697
-
-
Ma, Z.1
Yu, L.2
Chan, A.B.3
-
23
-
-
84906489209
-
Interactive object counting
-
Springer: New York, NY, USA
-
Arteta, C.; Lempitsky, V.; Noble, J.A.; Zisserman, A. Interactive object counting. In European Conference on Computer Vision; Springer: New York, NY, USA, 2014, pp. 504-518.
-
(2014)
European Conference on Computer Vision
, pp. 504-518
-
-
Arteta, C.1
Lempitsky, V.2
Noble, J.A.3
Zisserman, A.4
-
24
-
-
84977491055
-
Congested scene classification via efficient unsupervised feature learning and density estimation
-
Yuan, Y.;Wan, J.;Wang, Q. Congested scene classification via efficient unsupervised feature learning and density estimation. Pattern Recognit. 2016, 56, 159-169.
-
(2016)
Pattern Recognit
, vol.56
, pp. 159-169
-
-
Yuan, Y.1
Wan, J.2
Wang, Q.3
-
27
-
-
85084100875
-
-
JohnWiley & Sons: New York, NY, USA
-
He, H.; Ma, Y. Imbalanced Learning: Foundations, Algorithms, and Applications; JohnWiley & Sons: New York, NY, USA, 2013.
-
(2013)
Imbalanced Learning: Foundations, Algorithms, and Applications
-
-
He, H.1
Ma, Y.2
-
28
-
-
85043605198
-
Learning from imbalanced data: Open challenges and future directions
-
Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221-232.
-
(2016)
Prog. Artif. Intell
, vol.5
, pp. 221-232
-
-
Krawczyk, B.1
-
29
-
-
0346586663
-
SMOTE: synthetic minority over-sampling technique
-
Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321-357.
-
(2002)
J. Artif. Intell. Res
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
30
-
-
56349089205
-
ADASYN: Adaptive synthetic sampling approach for imbalanced learning
-
Hong Kong, China, 1-8 June
-
He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of the IEEE International Joint Conference on Neural Networks, Hong Kong, China, 1-8 June 2008; pp. 1322-1328.
-
(2008)
Proceedings of the IEEE International Joint Conference on Neural Networks
, pp. 1322-1328
-
-
He, H.1
Bai, Y.2
Garcia, E.A.3
Li, S.4
-
31
-
-
27144540575
-
Class imbalances versus small disjuncts
-
Jo, T.; Japkowicz, N. Class imbalances versus small disjuncts. ACM Sigkdd Explor. Newsl. 2004, 6, 40-49.
-
(2004)
ACM Sigkdd Explor. Newsl
, vol.6
, pp. 40-49
-
-
Jo, T.1
Japkowicz, N.2
-
32
-
-
77955034751
-
On Multi-Class Cost-Sensitive Learning
-
Zhou, Z.H.; Liu, X.Y. On Multi-Class Cost-Sensitive Learning. Comput. Intell. 2010, 26, 232-257.
-
(2010)
Comput. Intell
, vol.26
, pp. 232-257
-
-
Zhou, Z.H.1
Liu, X.Y.2
-
34
-
-
84889092504
-
Cost-sensitive decision tree ensembles for effective imbalanced classification
-
Krawczyk, B.; Wózniak, M.; Schaefer, G. Cost-sensitive decision tree ensembles for effective imbalanced classification. Appl. Soft Comput. 2014, 14, 554-562.
-
(2014)
Appl. Soft Comput
, vol.14
, pp. 554-562
-
-
Krawczyk, B.1
Wózniak, M.2
Schaefer, G.3
-
35
-
-
84986295253
-
Learning deep representation for imbalanced classification
-
Stanford, CA, USA, 27-30 June
-
Huang, C.; Li, Y.; Change Loy, C.; Tang, X. Learning deep representation for imbalanced classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Stanford, CA, USA, 27-30 June 2016; pp. 5375-5384.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 5375-5384
-
-
Huang, C.1
Li, Y.2
Change Loy, C.3
Tang, X.4
-
36
-
-
78650207592
-
Classification of imbalanced data by combining the complementary neural network and SMOTE algorithm
-
Springer: New York, NY, USA
-
Jeatrakul, P.;Wong, K.W.; Fung, C.C. Classification of imbalanced data by combining the complementary neural network and SMOTE algorithm. In International Conference on Neural Information Processing; Springer: New York, NY, USA, 2010; pp. 152-159.
-
(2010)
International Conference on Neural Information Processing
, pp. 152-159
-
-
Jeatrakul, P.1
Wong, K.W.2
Fung, C.C.3
-
38
-
-
84937849144
-
Generative adversarial nets
-
Montreal, QC, Canada, 8-13 December
-
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8-13 December 2014; pp. 2672-2680.
-
(2014)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
40
-
-
84986269041
-
Rifd-cnn: Rotation-invariant and fisher discriminative convolutional neural networks for object detection
-
Stanford, CA, USA, 27-30 June
-
Cheng, G.; Zhou, P.; Han, J. Rifd-cnn: Rotation-invariant and fisher discriminative convolutional neural networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Stanford, CA, USA, 27-30 June 2016; pp. 2884-2893.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2884-2893
-
-
Cheng, G.1
Zhou, P.2
Han, J.3
-
41
-
-
84959231756
-
Deepedge: A multi-scale bifurcated deep network for top-down contour detection
-
Boston, MA, USA, 7-12 June
-
Bertasius, G.; Shi, J.; Torresani, L. Deepedge: A multi-scale bifurcated deep network for top-down contour detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 4380-4389.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 4380-4389
-
-
Bertasius, G.1
Shi, J.2
Torresani, L.3
-
42
-
-
84944761614
-
Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection
-
Boston, MA, USA, 7-12 June
-
Shen, W.; Wang, X.; Wang, Y.; Bai, X.; Zhang, Z. Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 3982-3991.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3982-3991
-
-
Shen, W.1
Wang, X.2
Wang, Y.3
Bai, X.4
Zhang, Z.5
-
43
-
-
84994556253
-
Families in the Wild (FIW): Large-Scale Kinship Image Database and Benchmarks
-
Amsterdam, The Netherlands, 15-19 October
-
Robinson, J.P.; Shao, M.; Wu, Y.; Fu, Y. Families in the Wild (FIW): Large-Scale Kinship Image Database and Benchmarks. In Proceedings of the 2016 ACM on Multimedia Conference, Amsterdam, The Netherlands, 15-19 October 2016; pp. 242-246.
-
(2016)
Proceedings of the 2016 ACM on Multimedia Conference
, pp. 242-246
-
-
Robinson, J.P.1
Shao, M.2
Wu, Y.3
Fu, Y.4
-
45
-
-
84946751287
-
Facenet: A unified embedding for face recognition and clustering
-
Boston, MA, USA, 7-12 June
-
Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 815-823.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 815-823
-
-
Schroff, F.1
Kalenichenko, D.2
Philbin, J.3
-
46
-
-
84986266755
-
Deep metric learning via lifted structured feature embedding
-
Stanford, CA, USA, 27-30 June
-
Oh Song, H.; Xiang, Y.; Jegelka, S.; Savarese, S. Deep metric learning via lifted structured feature embedding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Stanford, CA, USA, 27-30 June 2016; pp. 4004-4012.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 4004-4012
-
-
Oh Song, H.1
Xiang, Y.2
Jegelka, S.3
Savarese, S.4
-
47
-
-
84990032583
-
-
Springer International Publishing: Cham, The Netherlands
-
Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y., A Discriminative Feature Learning Approach for Deep Face Recognition. In Computer Vision-ECCV 2016; Springer International Publishing: Cham, The Netherlands, 2016; pp. 499-515.
-
(2016)
In Computer Vision-ECCV 2016
, pp. 499-515
-
-
Wen, Y.1
Zhang, K.2
Li, Z.3
Qiao, Y.4
-
48
-
-
85019876562
-
Analysis of feature maps selection in supervised learning using convolutional neural networks
-
Springer: New York, NY, USA
-
Chu, J.L.; Krzyak, A. Analysis of feature maps selection in supervised learning using convolutional neural networks. In Canadian Conference on Artificial Intelligence; Springer: New York, NY, USA, 1994; pp. 59-70.
-
(1994)
Canadian Conference on Artificial Intelligence
, pp. 59-70
-
-
Chu, J.L.1
Krzyak, A.2
-
50
-
-
84973905350
-
HD-CNN: hierarchical deep convolutional neural networks for large scale visual recognition
-
Los Alamitos, CA, USA, 7-13 December
-
Yan, Z.; Zhang, H.; Piramuthu, R.; Jagadeesh, V.; DeCoste, D.; Di, W.; Yu, Y. HD-CNN: hierarchical deep convolutional neural networks for large scale visual recognition. In Proceedings of the IEEE International Conference on Computer Vision, Los Alamitos, CA, USA, 7-13 December 2015; pp. 2740-2748.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 2740-2748
-
-
Yan, Z.1
Zhang, H.2
Piramuthu, R.3
Jagadeesh, V.4
DeCoste, D.5
Di, W.6
Yu, Y.7
-
51
-
-
84965096967
-
Spatial transformer networks
-
Montréal, QC, Canada, 7-12 December
-
Jaderberg, M.; Simonyan, K.; Zisserman, A.; Kavukcuoglu, K. Spatial transformer networks. In Proceedings of the Advances in Neural Information Processing Systems, Montréal, QC, Canada, 7-12 December 2015.
-
(2015)
Proceedings of the Advances in Neural Information Processing Systems
-
-
Jaderberg, M.1
Simonyan, K.2
Zisserman, A.3
Kavukcuoglu, K.4
-
53
-
-
84994895363
-
Dual autoencoders features for imbalance classification problem
-
Ng, W.W.; Zeng, G.; Zhang, J.; Yeung, D.S.; Pedrycz, W. Dual autoencoders features for imbalance classification problem. Pattern Recognit. 2016, 60, 875-889.
-
(2016)
Pattern Recognit
, vol.60
, pp. 875-889
-
-
Ng, W.W.1
Zeng, G.2
Zhang, J.3
Yeung, D.S.4
Pedrycz, W.5
-
54
-
-
33745891586
-
-
Springer: New York, NY, USA
-
Guyon, I.; Gunn, S.; Nikravesh, M.; Zadeh, L.A. Feature Extraction: Foundations and Applications; Springer: New York, NY, USA, 2008.
-
(2008)
Feature Extraction: Foundations and Applications
-
-
Guyon, I.1
Gunn, S.2
Nikravesh, M.3
Zadeh, L.A.4
-
55
-
-
85006184186
-
Chest pathology identification using deep feature selection with non-medical training
-
Bar, Y.; Diamant, I.; Wolf, L.; Lieberman, S.; Konen, E.; Greenspan, H. Chest pathology identification using deep feature selection with non-medical training. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2016, doi:10.1080/21681163.2016.1138324.
-
(2016)
Comput. Methods Biomech. Biomed. Eng. Imaging Vis
-
-
Bar, Y.1
Diamant, I.2
Wolf, L.3
Lieberman, S.4
Konen, E.5
Greenspan, H.6
-
56
-
-
35048862943
-
Unsupervised feature selection for multi-class object detection using convolutional neural networks
-
Springer: New York, NY, USA
-
Matsugu, M.; Cardon, P. Unsupervised feature selection for multi-class object detection using convolutional neural networks. In Advances in Neural Networks-ISNN 2004; Springer: New York, NY, USA, 2004; pp. 864-869.
-
(2004)
Advances in Neural Networks-ISNN 2004
, pp. 864-869
-
-
Matsugu, M.1
Cardon, P.2
-
57
-
-
84947127828
-
Deep Learning Based Feature Selection for Remote Sensing Scene Classification
-
Zou, Q.; Ni, L.; Zhang, T.; Wang, Q. Deep Learning Based Feature Selection for Remote Sensing Scene Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2321-2325.
-
(2015)
IEEE Geosci. Remote Sens. Lett
, vol.12
, pp. 2321-2325
-
-
Zou, Q.1
Ni, L.2
Zhang, T.3
Wang, Q.4
-
58
-
-
84973856013
-
Visual tracking with fully convolutional networks
-
Los Alamitos, CA, USA, 7-13 December
-
Wang, L.; Ouyang, W.; Wang, X.; Lu, H. Visual tracking with fully convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Los Alamitos, CA, USA, 7-13 December 2015; pp. 3119-3127.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 3119-3127
-
-
Wang, L.1
Ouyang, W.2
Wang, X.3
Lu, H.4
-
59
-
-
84930413474
-
Feature selection and feature learning for high-dimensional batch reinforcement learning: A survey
-
Liu, D.R.; Li, H.L.;Wang, D. Feature selection and feature learning for high-dimensional batch reinforcement learning: A survey. Int. J. Autom. Comput. 2015, 12, 229-242.
-
(2015)
Int. J. Autom. Comput
, vol.12
, pp. 229-242
-
-
Liu, D.R.1
Li, H.L.2
Wang, D.3
-
60
-
-
84973868183
-
Convolutional channel features
-
Los Alamitos, CA, USA, 7-13 December
-
Yang, B.; Yan, J.; Lei, Z.; Li, S.Z. Convolutional channel features. In Proceedings of the IEEE International Conference on Computer Vision, Los Alamitos, CA, USA, 7-13 December 2015; pp. 82-90.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 82-90
-
-
Yang, B.1
Yan, J.2
Lei, Z.3
Li, S.Z.4
-
61
-
-
84991229042
-
Jointly Feature Learning and Selection for Robust Tracking via a Gating Mechanism
-
Zhong, B.; Zhang, J.;Wang, P.; Du, J.; Chen, D. Jointly Feature Learning and Selection for Robust Tracking via a Gating Mechanism. PLoS ONE 2016, 11, e0161808.
-
(2016)
PLoS ONE
, vol.11
-
-
Zhong, B.1
Zhang, J.2
Wang, P.3
Du, J.4
Chen, D.5
-
62
-
-
84944735469
-
-
MIT Press: Cambridge, MA, USA
-
Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; pp. 166-373.
-
(2016)
Deep Learning
, pp. 166-373
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
63
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
Kyoto, Japan, 29 September-2 October
-
Jarrett, K.; Kavukcuoglu, K.; LeCun, Y.; Ranzato, M. What is the best multi-stage architecture for object recognition? In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September-2 October 2009; pp. 2146-2153.
-
(2009)
Proceedings of the 2009 IEEE 12th International Conference on Computer Vision
, pp. 2146-2153
-
-
Jarrett, K.1
Kavukcuoglu, K.2
LeCun, Y.3
Ranzato, M.4
-
64
-
-
77956509090
-
Rectified linear units improve restricted boltzmann machines
-
Haifa, Israel, 21-25 June
-
Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21-25 June 2010; pp. 807-814.
-
(2010)
Proceedings of the 27th International Conference on Machine Learning (ICML-10)
, pp. 807-814
-
-
Nair, V.1
Hinton, G.E.2
-
65
-
-
84959091021
-
-
arXiv arXiv:1506.06579
-
Yosinski, J.; Clune, J.; Nguyen, A.; Fuchs, T.; Lipson, H. Understanding neural networks through deep visualization. arXiv 2015, arXiv:1506.06579.
-
(2015)
Understanding neural networks through deep visualization
-
-
Yosinski, J.1
Clune, J.2
Nguyen, A.3
Fuchs, T.4
Lipson, H.5
-
67
-
-
84946206172
-
Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
-
Boston, MA, USA, 7-12 June
-
Nguyen, A.; Yosinski, J.; Clune, J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 427-436.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 427-436
-
-
Nguyen, A.1
Yosinski, J.2
Clune, J.3
-
68
-
-
84925331214
-
-
arXiv arXiv:1312.6199
-
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. arXiv 2013, arXiv:1312.6199.
-
(2013)
Intriguing properties of neural networks
-
-
Szegedy, C.1
Zaremba, W.2
Sutskever, I.3
Bruna, J.4
Erhan, D.5
Goodfellow, I.6
Fergus, R.7
-
69
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
Springer: New York, NY, USA
-
Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In European Conference on Computer Vision; Springer: New York, NY, USA, 2014; pp. 818-833.
-
(2014)
European Conference on Computer Vision
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
70
-
-
77949524387
-
Visualizing Higher-Layer Features of a Deep Network
-
Erhan, D.; Bengio, Y.; Courville, A.; Vincent, P. Visualizing Higher-Layer Features of a Deep Network. Univ. Montr. 2009, 1341, 3.
-
(2009)
Univ. Montr
, vol.1341
, pp. 3
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Vincent, P.4
-
71
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Lake Tahoe, ND, USA, 3-6 December
-
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, ND, USA, 3-6 December 2012; pp. 1097-1105.
-
(2012)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
72
-
-
0000494466
-
-
NIPs: Tokyo, Japan
-
LeCun, Y.; Denker, J.S.; Solla, S.A.; Howard, R.E.; Jackel, L.D. Optimal Brain Damage; NIPs: Tokyo, Japan, 1989; Volume 2, pp. 598-605.
-
(1989)
Optimal Brain Damage
, vol.2
, pp. 598-605
-
-
LeCun, Y.1
Denker, J.S.2
Solla, S.A.3
Howard, R.E.4
Jackel, L.D.5
-
76
-
-
84986274465
-
Deep residual learning for image recognition
-
Stanford, CA, USA, 27-30 June
-
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Stanford, CA, USA, 27-30 June 2016; pp. 770-778.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
79
-
-
84937522268
-
Going deeper with convolutions
-
Boston, MA, USA, 7-12 June
-
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 1-9.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
|