메뉴 건너뛰기




Volumn 0, Issue , 2017, Pages

From social media to public health surveillance: Word embedding based clustering method for twitter classification

Author keywords

Big data; Clustering Process; Machine learning; Natural Language Processing; Public Health; Similarity Measure; Social Network; Surveillance; Twitter; Unsupervised Classification; Word Embeddings; Word2Vec

Indexed keywords

CLASSIFICATION (OF INFORMATION); CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; EMBEDDINGS; INFORMATION RETRIEVAL; MONITORING; NATURAL LANGUAGE PROCESSING SYSTEMS; PUBLIC HEALTH; SEMANTICS; SOCIAL NETWORKING (ONLINE);

EID: 85019673559     PISSN: 10910050     EISSN: 1558058X     Source Type: Conference Proceeding    
DOI: 10.1109/SECON.2017.7925400     Document Type: Conference Paper
Times cited : (64)

References (56)
  • 6
    • 85192016655 scopus 로고    scopus 로고
    • Pandemics in the age of twitter: Content analysis of tweets during the 2009 h1n1 outbreak
    • C. Chew and G. Eysenbach, "Pandemics in the age of twitter: Content analysis of tweets during the 2009 h1n1 outbreak, " PLoS ONE, 2013
    • (2013) PLoS ONE
    • Chew, C.1    Eysenbach, G.2
  • 7
  • 9
    • 85192003019 scopus 로고    scopus 로고
    • Examine smoking behavior and perceptions of emerging tobacco products
    • ter to Examine Smoking Behavior and Perceptions of Emerging Tobacco Products, " Journal of Medical Internet Research, 2013
    • (2013) Journal of Medical Internet Research
  • 12
    • 84938151997 scopus 로고    scopus 로고
    • Hybrid classification for tweets related to infection with influenza
    • April 9-12, 2015, Fort Lauderdale, Florida
    • X. Dai and M. Bikdash, "Hybrid Classification for Tweets Related to Infection with Influenza, " Proceedings of the IEEE SoutheastCon 2015, April 9-12, 2015, Fort Lauderdale, Florida, 2015
    • (2015) Proceedings of the IEEE SoutheastCon 2015
    • Dai, X.1    Bikdash, M.2
  • 13
    • 85019660526 scopus 로고    scopus 로고
    • Trend analysis of fragmented time series for mhealth apps: Hypothesis testing based adaptive spline filtering method with importance weighting
    • X. Dai and M. Bikdash, "Trend Analysis of Fragmented Time Series for mHealth Apps: Hypothesis Testing Based Adaptive Spline Filtering Method with Importance Weighting", IEEE Access, 2017
    • (2017) IEEE Access
    • Dai, X.1    Bikdash, M.2
  • 14
    • 84980018971 scopus 로고    scopus 로고
    • Distance-based outliers method for detecting disease outbreaks using social media
    • Norfolk, VA
    • X. Dai and M. Bikdash, "Distance-based Outliers Method for Detecting Disease Outbreaks using Social Media", Proceedings of the IEEE SoutheastCon 2016, Norfolk, VA, 2016
    • (2016) Proceedings of the IEEE SoutheastCon 2016
    • Dai, X.1    Bikdash, M.2
  • 15
    • 84883346581 scopus 로고    scopus 로고
    • An analysis of Twitter messages in the 2011 Tohoku Earthquake
    • Spain
    • S. Doan, B. Vo, and N. Collier, "An analysis of Twitter messages in the 2011 Tohoku Earthquake", eHealth 2011 Conference, Spain, 2011
    • (2011) EHealth 2011 Conference
    • Doan, S.1    Vo, B.2    Collier, N.3
  • 21
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • J. Ginsberg, M. Mohebbi, R. Patel, L. Brammer, M. Smolinski, and L. Brilliant, "Detecting influenza epidemics using search engine query data", Nature, 457(7232):1012-1014, 2008.
    • (2008) Nature , vol.457 , Issue.7232 , pp. 1012-1014
    • Ginsberg, J.1    Mohebbi, M.2    Patel, R.3    Brammer, L.4    Smolinski, M.5    Brilliant, L.6
  • 25
    • 85191984590 scopus 로고    scopus 로고
    • Google word2vec (Accessed: 25 Oct. 2016)
    • Google word2vec. https://code. google. com/archive/p/word2vec/ (Accessed: 25 Oct. 2016)
  • 27
    • 80051712818 scopus 로고    scopus 로고
    • Public health surveillance of dental pain via Twitter
    • Sep, Epub 2011
    • N. Heaivilin, Gerbert B, Page JE and Gibbs JL., "Public health surveillance of dental pain via Twitter", J Dent Res. 2011 Sep;90(9):1047-51. doi: 10. 1177/0022034511415273. Epub, 2011
    • (2011) J Dent Res. , vol.90 , Issue.9 , pp. 1047-1051
    • Heaivilin, N.1    Gerbert, B.2    Page, J.E.3    Gibbs, J.L.4
  • 28
    • 84924262289 scopus 로고    scopus 로고
    • A cross-sectional examination of marketing of electronic cigarettes on Twitter
    • J. Huang, R. Kornfield, G. Szczypka and S. Emery, "A cross-sectional examination of marketing of electronic cigarettes on Twitter, " Tobacco Control, 2014
    • (2014) Tobacco Control
    • Huang, J.1    Kornfield, R.2    Szczypka, G.3    Emery, S.4
  • 30
    • 84893154676 scopus 로고    scopus 로고
    • Understanding the diversity of tweets in the time of outbreaks
    • N. Kanhabua and W. Nejd, "Understanding the diversity of tweets in the time of outbreaks, " WWW '13, pp. 1335-1342, 2013
    • (2013) WWW '13 , pp. 1335-1342
    • Kanhabua, N.1    Nejd, W.2
  • 33
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing high-dimensional data using T-SNE
    • Nov
    • L. Maaten and G. Hinton, "Visualizing High-Dimensional Data Using t-SNE", Journal of Machine Learning Research, 9(Nov):2579-2605, 2008
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2579-2605
    • Maaten, L.1    Hinton, G.2
  • 34
    • 85083951332 scopus 로고    scopus 로고
    • Efficient estimation of word representations in vector space
    • T. Mikolov, K. Chen, G. Corrado and J. Dean, "Efficient Estimation of Word Representations in Vector Space", ICLRWorkshop, 2013
    • (2013) ICLRWorkshop
    • Mikolov, T.1    Chen, K.2    Corrado, G.3    Dean, J.4
  • 43
    • 80055065085 scopus 로고    scopus 로고
    • Assessing vaccination sentiments with online social media: Implications for infectious disease dynamics and control
    • A. Vo and C. Ock, "Assessing Vaccination Sentiments with Online Social Media: Implications for Infectious Disease Dynamics and Control, " PLoS Comput Biol. 2011
    • (2011) PLoS Comput Biol.
    • Vo, A.1    Ock, C.2
  • 45
    • 60549110717 scopus 로고    scopus 로고
    • World Health Organization, March (Accessed: 1 Jan 2016)
    • World Health Organization, "Influenza fact sheet, " [online] March 2014, http://www. who. int/mediacentre/factsheets/fs211/en/ (Accessed: 1 Jan 2016)
    • (2014) Influenza Fact Sheet
  • 46
    • 77949891085 scopus 로고    scopus 로고
    • Dissemination of health information through social networks: Twitter and antibiotics
    • D. Scanfeld, Scanfeld V and Larson EL., "Dissemination of health information through social networks: twitter and antibiotics", Am J Infect Control. 2010
    • (2010) Am J Infect Control.
    • Scanfeld, D.1    Scanfeld, V.2    Larson, E.L.3
  • 49
    • 79955757514 scopus 로고    scopus 로고
    • The use of twitter to track levels of disease activity and public concern in the U. S. during the influenza a h1n1 pandemic
    • A. Signorini, A. Segre1 and P. Polgreen, "The Use of Twitter to Track Levels of Disease Activity and Public Concern in the U. S. during the Influenza A H1N1 Pandemic, " PLoS ONE, 2011
    • (2011) PLoS ONE
    • Signorini, A.1    Segre, A.2    Polgreen, P.3
  • 50
    • 77949771773 scopus 로고    scopus 로고
    • Modeling and predicting seasonal influenza transmission in warm regions using climatological parameters
    • R. Soebiyanto, F. Adimi and R. Kiang, "Modeling and predicting seasonal influenza transmission in warm regions using climatological parameters", PLoS One, 2010
    • (2010) PLoS One
    • Soebiyanto, R.1    Adimi, F.2    Kiang, R.3
  • 51
    • 84863246262 scopus 로고    scopus 로고
    • Medical case-driven classification of microblogs: Characteristics and annotation
    • Miami, Florida, USA
    • M. Sofean and K. Denecke, "Medical Case-Driven Classification of Microblogs: Characteristics and Annotation, " IHI'12, Miami, Florida, USA, 2012
    • (2012) IHI'12
    • Sofean, M.1    Denecke, K.2
  • 52
    • 84912557332 scopus 로고    scopus 로고
    • Twitter polarity classification with label propagation over lexical links and the follower graph
    • Association for Computational Linguistics
    • M. Speriosu, S. Nikita, S. Upadhyay and J. Baldridge. "Twitter polarity classification with label propagation over lexical links and the follower graph. " In Proceedings of the First workshop on Unsupervised Learning in NLP, pp. 53-63. Association for Computational Linguistics, 2011.
    • (2011) Proceedings of the First Workshop on Unsupervised Learning in NLP , pp. 53-63
    • Speriosu, M.1    Nikita, S.2    Upadhyay, S.3    Baldridge, J.4
  • 53
    • 84938086549 scopus 로고    scopus 로고
    • Twitter, Inc. (Accessed: 1 Jan 2016)
    • Twitter, Inc., "Twitter usage, " [online] 2015, https://about. twitter. com/company (Accessed: 1 Jan 2016)
    • (2015) Twitter Usage
  • 54
    • 84961590039 scopus 로고    scopus 로고
    • Knowledge-based tweet classification for disease sentiment monitoring
    • Springer International Publishing
    • J, Xiang, S. Chun and J. Geller. "Knowledge-Based Tweet Classification for Disease Sentiment Monitoring. " In Sentiment Analysis and Ontology Engineering, pp. 425-454. Springer International Publishing, 2016.
    • (2016) Sentiment Analysis and Ontology Engineering , pp. 425-454
    • Xiang, J.1    Chun, S.2    Geller, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.