-
1
-
-
84976871561
-
Initialization of homoclinic solutions near Bogdanov--Takens points: Lindstedt--Poincaré compared with regular perturbation method
-
B., Al-Hdaibat, W., Govaerts, Yu.A., Kuznetsov, and H.G.E., Meijer, Initialization of homoclinic solutions near Bogdanov--Takens points: Lindstedt--Poincaré compared with regular perturbation method, SIAM J. Appl. Dyn. Syst. 15 (2016), pp. 952–980.
-
(2016)
SIAM J. Appl. Dyn. Syst.
, vol.15
, pp. 952-980
-
-
Al-Hdaibat, B.1
Govaerts, W.2
Kuznetsov, Y.A.3
Meijer, H.G.E.4
-
3
-
-
21344480476
-
The Bogdanov map: Bifurcations, mode locking, and chaos in a dissipative system
-
D.K., Arrowsmith, J.H.E., Cartwright, A.N., Lansbury, and C.M., Place, The Bogdanov map: Bifurcations, mode locking, and chaos in a dissipative system, Int. J. Bifurcation Chaos 03 (1993), pp. 803–842.
-
(1993)
Int. J. Bifurcation Chaos
, vol.3
, pp. 803-842
-
-
Arrowsmith, D.K.1
Cartwright, J.H.E.2
Lansbury, A.N.3
Place, C.M.4
-
4
-
-
21844504535
-
Numerical analysis of homoclinic orbits emanating from a Takens-Bogdanov point
-
W.-J., Beyn, Numerical analysis of homoclinic orbits emanating from a Takens-Bogdanov point, IMA J. Numer. Anal. 14 (1994), pp. 381–410.
-
(1994)
IMA J. Numer. Anal.
, vol.14
, pp. 381-410
-
-
Beyn, W.-J.1
-
5
-
-
10444250237
-
Numerical analysis of degenerate connecting orbits for maps
-
W.-J., Beyn, T., Hüls, and Y., Zou, Numerical analysis of degenerate connecting orbits for maps, Int. J. Bifurcation Chaos 14 (2004), pp. 3385–3407.
-
(2004)
Int. J. Bifurcation Chaos
, vol.14
, pp. 3385-3407
-
-
Beyn, W.-J.1
Hüls, T.2
Zou, Y.3
-
6
-
-
0000997063
-
The numerical computation of homoclinic orbits for maps
-
W.-J., Beyn and J.-M., Kleinkauf, The numerical computation of homoclinic orbits for maps, SIAM J. Numer. Anal. 34 (1996), pp. 1207–1236.
-
(1996)
SIAM J. Numer. Anal.
, vol.34
, pp. 1207-1236
-
-
Beyn, W.-J.1
Kleinkauf, J.-M.2
-
7
-
-
0030355090
-
Invariant circles in the Bogdanov–Takens bifurcation for diffeomorphisms
-
H., Broer, R., Roussarie, and C., Simó, Invariant circles in the Bogdanov–Takens bifurcation for diffeomorphisms, Ergodic Theor. Dyn. Syst. 16 (1996), pp. 1147–1172.
-
(1996)
Ergodic Theor. Dyn. Syst
, vol.16
, pp. 1147-1172
-
-
Broer, H.1
Roussarie, R.2
Simó, C.3
-
8
-
-
3042531966
-
Computing one-dimensional stable manifolds and stable sets of planar maps without the inverse
-
J., England, B., Krauskopf, and H., Osinga, Computing one-dimensional stable manifolds and stable sets of planar maps without the inverse, SIAM J. Appl. Dyn. Syst. 3 (2004), pp. 161–190.
-
(2004)
SIAM J. Appl. Dyn. Syst.
, vol.3
, pp. 161-190
-
-
England, J.1
Krauskopf, B.2
Osinga, H.3
-
9
-
-
56549109826
-
Chaotic zone in the Bogdanov-Takens bifurcation for diffeomorphisms
-
Begehr H.G.W., Gilbert R.P., Wong M.W., (eds), Springer, New York:, in, eds
-
V., Gelfreich, Chaotic zone in the Bogdanov-Takens bifurcation for diffeomorphisms, in Analysis and Applications - ISAAC 2001, Vol. 10, International Society for Analysis, Applications and Computation, p, H.G.W., Begehr, R.P., Gilbert and M.W., Wong, eds., Springer, New York, 2003, pp. 187–197.
-
(2003)
Analysis and Applications - ISAAC 2001, Vol. 10, International Society for Analysis, Applications and Computation, p
, pp. 187-197
-
-
Gelfreich, V.1
-
11
-
-
73649125521
-
Width of homoclinic zone for quadratic maps
-
V., Gelfreich and V., Naudot, Width of homoclinic zone for quadratic maps, Exp. Math. 18 (2009), pp. 409–427.
-
(2009)
Exp. Math.
, vol.18
, pp. 409-427
-
-
Gelfreich, V.1
Naudot, V.2
-
12
-
-
0001145020
-
Mel’nikov’s function for two-dimensional mappings
-
M.L., Glasser, V.G., Papageorgiou, and T.C., Bountis, Mel’nikov’s function for two-dimensional mappings, SIAM J. Appl. Math. 49 (1989), pp. 692–703.
-
(1989)
SIAM J. Appl. Math.
, vol.49
, pp. 692-703
-
-
Glasser, M.L.1
Papageorgiou, V.G.2
Bountis, T.C.3
-
13
-
-
0003478288
-
-
Springer-Verlag, New York: and
-
J., Guckenheimer and P., Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag, New York, 1983.
-
(1983)
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields
-
-
Guckenheimer, J.1
Holmes, P.2
-
15
-
-
70549111373
-
Numerical continuation of connecting orbits of maps in MATLAB
-
R., Khoshsiar Ghaziani, W., Govaerts, Yu. A., Kuznetsov, and H.G.E., Meijer, Numerical continuation of connecting orbits of maps in MATLAB, J. Differ. Equ. Appl. 15 (2009), pp. 849–875.
-
(2009)
J. Differ. Equ. Appl.
, vol.15
, pp. 849-875
-
-
Khoshsiar Ghaziani, R.1
Govaerts, W.2
Kuznetsov, Y.A.3
Meijer, H.G.E.4
-
17
-
-
84941254473
-
Accurate approximation of homoclinic solutions in Gray-Scott kinetic model
-
10p., and, Article
-
Yu.A., Kuznetsov, H.G.E., Meijer, B., Al-Hdaibat, and W., Govaerts, Accurate approximation of homoclinic solutions in Gray-Scott kinetic model, Int. J. Bifurcation Chaos. 25 (2015), Article No. 1550125, 10p.
-
(2015)
Int. J. Bifurcation Chaos
, vol.25
, pp. 1550125
-
-
Kuznetsov, Y.A.1
Meijer, H.G.E.2
Al-Hdaibat, B.3
Govaerts, W.4
-
19
-
-
78651554072
-
Chávez. Starting homoclinic tangencies near 1:1 resonances
-
J.N., Páez, Chávez. Starting homoclinic tangencies near 1:1 resonances, Int. J. Bifurcation Chaos 20 (2010), pp. 3157–3172.
-
(2010)
Int. J. Bifurcation Chaos
, vol.20
, pp. 3157-3172
-
-
Páez, J.N.1
|