메뉴 건너뛰기




Volumn 409-410, Issue , 2017, Pages 68-86

Maximum relevance minimum common redundancy feature selection for nonlinear data

Author keywords

Feature selection; Maximal relevance; Minimal common redundancy; Mutual information; Normalization

Indexed keywords

ECONOMIC AND SOCIAL EFFECTS; FORESTRY; LEARNING SYSTEMS; NEAREST NEIGHBOR SEARCH; NONLINEAR PROGRAMMING; OPTIMIZATION; REDUNDANCY; TREES (MATHEMATICS);

EID: 85019245357     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2017.05.013     Document Type: Article
Times cited : (122)

References (54)
  • 1
    • 84894418233 scopus 로고    scopus 로고
    • Feature selection with SVD entropy: some modification and extension
    • Banerjee, M., Pal, N.R., Feature selection with SVD entropy: some modification and extension. Inf. Sci. 264 (2014), 118–134.
    • (2014) Inf. Sci. , vol.264 , pp. 118-134
    • Banerjee, M.1    Pal, N.R.2
  • 2
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti, R., Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Netw. 5:4 (1994), 537–550.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 3
    • 84940462014 scopus 로고    scopus 로고
    • Feature selection using joint mutual information maximisation
    • Bennasar, M., Hicks, Y., Setchi, R., Feature selection using joint mutual information maximisation. Expert Syst. Appl. 42 (2015), 8520–8532.
    • (2015) Expert Syst. Appl. , vol.42 , pp. 8520-8532
    • Bennasar, M.1    Hicks, Y.2    Setchi, R.3
  • 4
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation: a unifying framework for information theoretic feature selection
    • Brown, G., Pocock, A., et al. Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J. Mach. Learn. Res. 13 (2012), 27–66.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 27-66
    • Brown, G.1    Pocock, A.2
  • 5
    • 84901935441 scopus 로고    scopus 로고
    • A comparison of simulated annealing algorithms for variable selection in principal component analysis and discriminant analysis
    • Brusco, M.J., A comparison of simulated annealing algorithms for variable selection in principal component analysis and discriminant analysis. Comput. Stat. Data Anal. 77 (2014), 38–53.
    • (2014) Comput. Stat. Data Anal. , vol.77 , pp. 38-53
    • Brusco, M.J.1
  • 6
    • 40949142799 scopus 로고    scopus 로고
    • Selecting useful groups of features in a connectionist framework
    • Chakraborty, D., Pal, N.R., Selecting useful groups of features in a connectionist framework. IEEE Trans. Neural Netw. 19:3 (2008), 381–396.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.3 , pp. 381-396
    • Chakraborty, D.1    Pal, N.R.2
  • 7
    • 84919630495 scopus 로고    scopus 로고
    • Feature selection using a neural framework with controlled redundancy
    • Chakraborty, R., Pal, N.R., Feature selection using a neural framework with controlled redundancy. IEEE Trans. Neural Netw. Learn.Syst. 26:1 (2015), 35–50.
    • (2015) IEEE Trans. Neural Netw. Learn.Syst. , vol.26 , Issue.1 , pp. 35-50
    • Chakraborty, R.1    Pal, N.R.2
  • 8
    • 84921600811 scopus 로고    scopus 로고
    • Variable selection via a multi-stage strategy
    • Chang, J., Lee, H.K.H., Variable selection via a multi-stage strategy. J. Appl. Stat. 42:4 (2015), 762–774.
    • (2015) J. Appl. Stat. , vol.42 , Issue.4 , pp. 762-774
    • Chang, J.1    Lee, H.K.H.2
  • 9
    • 84982162233 scopus 로고    scopus 로고
    • Stochastic correlation coefficient ensembles for variable selection
    • Che, J.X., Yang, Y.L., Stochastic correlation coefficient ensembles for variable selection. J. Appl. Stat., 2016, 10.1080/02664763.2016.1221913.
    • (2016) J. Appl. Stat.
    • Che, J.X.1    Yang, Y.L.2
  • 10
    • 84907558877 scopus 로고    scopus 로고
    • Maximum relevancy maximum complementary feature selection for multi-sensor activity recognition
    • Chernbumroong, S., Cang, S., Yu, H., Maximum relevancy maximum complementary feature selection for multi-sensor activity recognition. Expert Syst. Appl. 42 (2015), 573–583.
    • (2015) Expert Syst. Appl. , vol.42 , pp. 573-583
    • Chernbumroong, S.1    Cang, S.2    Yu, H.3
  • 12
    • 85019212060 scopus 로고    scopus 로고
    • Bayestree: Bayesian methods for tree based models, R Package Version 0.3-1.1. Available at.
    • H. Chipman, R. McCulloch, Bayestree: Bayesian methods for tree based models, 2010, R Package Version 0.3-1.1. Available at http://www.cran.r-project.org/web/packages/BayesTree/index.html.
    • (2010)
    • Chipman, H.1    McCulloch, R.2
  • 13
    • 84889281816 scopus 로고
    • Elements of Information Theory
    • John Wiley and Sons, Inc. New York, NY, USA
    • Cover, T.M., Thomas, J.A., Elements of Information Theory. 1991, John Wiley and Sons, Inc., New York, NY, USA.
    • (1991)
    • Cover, T.M.1    Thomas, J.A.2
  • 15
    • 84901814060 scopus 로고    scopus 로고
    • Hierarchical estimation algorithms for multivariable systems using measurement information
    • Ding, F., Hierarchical estimation algorithms for multivariable systems using measurement information. Inf. Sci. 277:2 (2014), 396–405.
    • (2014) Inf. Sci. , vol.277 , Issue.2 , pp. 396-405
    • Ding, F.1
  • 16
    • 85009810565 scopus 로고    scopus 로고
    • Parameter estimation for pseudo-linear systems using the auxiliary model and the decomposition technique
    • Ding, F., Wang, F., Xu, L., Hayat, T., Alsaedi, A., Parameter estimation for pseudo-linear systems using the auxiliary model and the decomposition technique. IET Control Theory Appl. 11 (2017), 390–400.
    • (2017) IET Control Theory Appl. , vol.11 , pp. 390-400
    • Ding, F.1    Wang, F.2    Xu, L.3    Hayat, T.4    Alsaedi, A.5
  • 17
    • 85008186357 scopus 로고    scopus 로고
    • Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering
    • Ding, F., Wang, F., Xu, L., Wu, M., Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering. J. Franklin Inst. 354 (2017), 1321–1339.
    • (2017) J. Franklin Inst. , vol.354 , pp. 1321-1339
    • Ding, F.1    Wang, F.2    Xu, L.3    Wu, M.4
  • 18
    • 85006797844 scopus 로고    scopus 로고
    • Performance analysis of the generalised projection identification for time-varying systems
    • Ding, F., Xu, L., Zhu, Q., Performance analysis of the generalised projection identification for time-varying systems. IET Control Theory Appl. 10 (2016), 2506–2514.
    • (2016) IET Control Theory Appl. , vol.10 , pp. 2506-2514
    • Ding, F.1    Xu, L.2    Zhu, Q.3
  • 19
    • 84946490956 scopus 로고    scopus 로고
    • Binary grey wolf optimization approaches for feature selection
    • Emary, E., Zawbaa, H.M., Hassanien, A.E., Binary grey wolf optimization approaches for feature selection. Neurocomputing 172 (2016), 371–381.
    • (2016) Neurocomputing , vol.172 , pp. 371-381
    • Emary, E.1    Zawbaa, H.M.2    Hassanien, A.E.3
  • 20
    • 60849097547 scopus 로고    scopus 로고
    • Normalized mutual information feature selection
    • Estévez, P.A., Normalized mutual information feature selection. IEEE Trans. Neural Netw. 20:2 (2009), 189–201.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.2 , pp. 189-201
    • Estévez, P.A.1
  • 21
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • Fleuret, F., Fast binary feature selection with conditional mutual information. J. Mach. Learn. Res. 5 (2004), 1531–1555.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 22
    • 84921784324 scopus 로고    scopus 로고
    • An evaluation of classifier-specific filter measure performance for feature selection
    • Freeman, C., Kulić, D., Basir, O., An evaluation of classifier-specific filter measure performance for feature selection. Pattern Recognit. 48 (2015), 1812–1826.
    • (2015) Pattern Recognit. , vol.48 , pp. 1812-1826
    • Freeman, C.1    Kulić, D.2    Basir, O.3
  • 23
    • 84943748390 scopus 로고    scopus 로고
    • High-dimensional feature selection via feature grouping: a variable neighborhood search approach
    • García-Torres, M., Gómez-Vela, F., Melián-Batista, B., Moreno-Vega, J.M., High-dimensional feature selection via feature grouping: a variable neighborhood search approach. Inf. Sci. 326 (2016), 102–118.
    • (2016) Inf. Sci. , vol.326 , pp. 102-118
    • García-Torres, M.1    Gómez-Vela, F.2    Melián-Batista, B.3    Moreno-Vega, J.M.4
  • 24
    • 49649128701 scopus 로고    scopus 로고
    • tgp: An r package for bayesian nonstationary, semiparametric nonlinear regression and design by treed gaussian process models
    • Gramacy, R.B., tgp: An r package for bayesian nonstationary, semiparametric nonlinear regression and design by treed gaussian process models. J. Stat. Softw. 19 (2007), 1–46.
    • (2007) J. Stat. Softw. , vol.19 , pp. 1-46
    • Gramacy, R.B.1
  • 25
    • 68949161935 scopus 로고    scopus 로고
    • Entropy inference and the james-stein estimator, with application to nonlinear gene association networks
    • See website for package:
    • Hausser, J., Strimmer, K., Entropy inference and the james-stein estimator, with application to nonlinear gene association networks. J. Mach. Learn. Res. 10 (2009), 1469–1484 See website for package: http://www.strimmerlab.org/software/entropy/.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1469-1484
    • Hausser, J.1    Strimmer, K.2
  • 26
    • 12144251725 scopus 로고    scopus 로고
    • Effective feature selection scheme using mutual information
    • Huang, D., Chow, T.W.S., Effective feature selection scheme using mutual information. Neurocomputing 63 (2005), 325–343.
    • (2005) Neurocomputing , vol.63 , pp. 325-343
    • Huang, D.1    Chow, T.W.S.2
  • 27
    • 85099325734 scopus 로고
    • Irrelevant feature and the subset selection problem, Proceedings of the Eleventh International Conference on Machine Learning
    • G.H. John, R. Kohavi, K. Pfleger, Irrelevant feature and the subset selection problem, Proceedings of the Eleventh International Conference on Machine Learning1994, 121–129.
    • (1994) , pp. 121-129
    • John, G.H.1    Kohavi, R.2    Pfleger, K.3
  • 28
    • 85019216595 scopus 로고    scopus 로고
    • Adaptive region boosting method with biased entropy for path planning in changing environment
    • Kang, R., Zhang, T., Tang, H., Zhao, W., Adaptive region boosting method with biased entropy for path planning in changing environment. CAAI Trans. Intell. Technol. 1 (2016), 179–188.
    • (2016) CAAI Trans. Intell. Technol. , vol.1 , pp. 179-188
    • Kang, R.1    Zhang, T.2    Tang, H.3    Zhao, W.4
  • 29
    • 84855888827 scopus 로고    scopus 로고
    • Kernel discriminant analysis for regression problems
    • Kwak, N., Kernel discriminant analysis for regression problems. Pattern Recognit. 45 (2012), 2019–2031.
    • (2012) Pattern Recognit. , vol.45 , pp. 2019-2031
    • Kwak, N.1
  • 30
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak, N., Choi, C.H., Input feature selection for classification problems. IEEE Trans. Neural Netw. 13:1 (2002), 143–159.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.1 , pp. 143-159
    • Kwak, N.1    Choi, C.H.2
  • 32
    • 84994030188 scopus 로고    scopus 로고
    • Distributed filtering for discrete-time linear systems with fading measurements and time-correlated noise
    • Li, W., Jia, Y., Du, J., Distributed filtering for discrete-time linear systems with fading measurements and time-correlated noise. Digital Signal Process. 60 (2017), 211–219.
    • (2017) Digital Signal Process. , vol.60 , pp. 211-219
    • Li, W.1    Jia, Y.2    Du, J.3
  • 33
    • 0004272772 scopus 로고    scopus 로고
    • Information Theory, Inference, and Learning Algorithms
    • Cambridge University Press Cambridge
    • MacKay, D.J.C., Information Theory, Inference, and Learning Algorithms. 2003, Cambridge University Press, Cambridge.
    • (2003)
    • MacKay, D.J.C.1
  • 34
    • 84940054522 scopus 로고    scopus 로고
    • Kernel penalized k-means: a feature selection method based on kernel k-means
    • Maldonado, S., Carrizosa, E., Weber, R., Kernel penalized k-means: a feature selection method based on kernel k-means. Inf. Sci. 322 (2015), 150–160.
    • (2015) Inf. Sci. , vol.322 , pp. 150-160
    • Maldonado, S.1    Carrizosa, E.2    Weber, R.3
  • 36
    • 47049102021 scopus 로고    scopus 로고
    • Information-theoretic feature selection in microarray data using variable complementarity
    • Meyer, P.E., Schretter, C., Bontempi, G., Information-theoretic feature selection in microarray data using variable complementarity. IEEE J. Sel. Top. Signal Process. 2 (2008), 261–274.
    • (2008) IEEE J. Sel. Top. Signal Process. , vol.2 , pp. 261-274
    • Meyer, P.E.1    Schretter, C.2    Bontempi, G.3
  • 37
    • 85027938740 scopus 로고    scopus 로고
    • A group VISA algorithm for variable selection
    • Mkhadri, A., Ouhourane, M., A group VISA algorithm for variable selection. Stat. Methods Appl. 24 (2015), 41–60.
    • (2015) Stat. Methods Appl. , vol.24 , pp. 41-60
    • Mkhadri, A.1    Ouhourane, M.2
  • 38
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
    • Peng, H., Long, F., Ding, C., Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach.Intell. 27:8 (2005), 1226–1238.
    • (2005) IEEE Trans. Pattern Anal. Mach.Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 39
    • 84940603932 scopus 로고    scopus 로고
    • Mixed integer second-order cone programming formulations for variable selection in linear regression
    • Ryuhei, M., Yuichi, T., Mixed integer second-order cone programming formulations for variable selection in linear regression. Eur. J. Oper. Res. 247:3 (2015), 721–731.
    • (2015) Eur. J. Oper. Res. , vol.247 , Issue.3 , pp. 721-731
    • Ryuhei, M.1    Yuichi, T.2
  • 40
    • 0031140388 scopus 로고    scopus 로고
    • Neural network feature selector
    • Setiono, R., Liu, H., Neural network feature selector. IEEE Trans. Neural Netw. 8 (1997), 654–662.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , pp. 654-662
    • Setiono, R.1    Liu, H.2
  • 41
    • 77956611003 scopus 로고    scopus 로고
    • mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification
    • Unler, A., Murat, A., Chinnam, R.B., mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification. Inf. Sci. 181:20 (2011), 4625–4641.
    • (2011) Inf. Sci. , vol.181 , Issue.20 , pp. 4625-4641
    • Unler, A.1    Murat, A.2    Chinnam, R.B.3
  • 43
    • 78649238560 scopus 로고    scopus 로고
    • An improved maximum relevance and minimum redundancy feature selection algorithm based on normalized mutual information
    • Vinh, L.T., Thang, N.D., Lee, Y.K., An improved maximum relevance and minimum redundancy feature selection algorithm based on normalized mutual information. Tenth International Symposium on Applications and the Internet, 2010, 395–398.
    • (2010) Tenth International Symposium on Applications and the Internet , pp. 395-398
    • Vinh, L.T.1    Thang, N.D.2    Lee, Y.K.3
  • 44
    • 0033097744 scopus 로고    scopus 로고
    • Axiomatic approach to feature subset selection based on relevance
    • Wang, H., Bell, D., Murtagh, F., Axiomatic approach to feature subset selection based on relevance. IEEE Trans. Pattern Anal. Mach.Intell. 21:3 (1999), 271–277.
    • (1999) IEEE Trans. Pattern Anal. Mach.Intell. , vol.21 , Issue.3 , pp. 271-277
    • Wang, H.1    Bell, D.2    Murtagh, F.3
  • 45
    • 84870056674 scopus 로고    scopus 로고
    • Data filtering based recursive least squares algorithm for hammerstein systems using the key-term separation principle
    • Wang, D., Ding, F., Chu, Y., Data filtering based recursive least squares algorithm for hammerstein systems using the key-term separation principle. Inf. Sci. 222:3 (2013), 203–212.
    • (2013) Inf. Sci. , vol.222 , Issue.3 , pp. 203-212
    • Wang, D.1    Ding, F.2    Chu, Y.3
  • 46
    • 84924871671 scopus 로고    scopus 로고
    • A multi-objective evolutionary algorithm for feature selection based on mutual information with a new redundancy measure
    • Wang, Z., Li, M., Li, J., A multi-objective evolutionary algorithm for feature selection based on mutual information with a new redundancy measure. Inf. Sci. 307 (2015), 73–88.
    • (2015) Inf. Sci. , vol.307 , pp. 73-88
    • Wang, Z.1    Li, M.2    Li, J.3
  • 47
    • 84963575004 scopus 로고    scopus 로고
    • Parameter estimation algorithms for multivariable hammerstein CARMA systems
    • Wang, D., Ding, F., Parameter estimation algorithms for multivariable hammerstein CARMA systems. Inf. Sci. 355-356 (2016), 237–248.
    • (2016) Inf. Sci. , vol.355-356 , pp. 237-248
    • Wang, D.1    Ding, F.2
  • 48
    • 84947087879 scopus 로고    scopus 로고
    • The damping iterative parameter identification method for dynamical systems based on the sine signal measurement
    • Xu, L., The damping iterative parameter identification method for dynamical systems based on the sine signal measurement. Signal Process. 120 (2016), 660–667.
    • (2016) Signal Process. , vol.120 , pp. 660-667
    • Xu, L.1
  • 49
    • 84928810630 scopus 로고    scopus 로고
    • Application of the newton iteration algorithm to the parameter estimation for dynamical systems
    • Xu, L., Application of the newton iteration algorithm to the parameter estimation for dynamical systems. J. Comput. Appl. Math. 288 (2015), 33–43.
    • (2015) J. Comput. Appl. Math. , vol.288 , pp. 33-43
    • Xu, L.1
  • 50
    • 84961291920 scopus 로고    scopus 로고
    • Dimensionality reduction by feature clustering for regression problems
    • Xu, R.F., Lee, S.J., Dimensionality reduction by feature clustering for regression problems. Inf. Sci. 299 (2015), 42–57.
    • (2015) Inf. Sci. , vol.299 , pp. 42-57
    • Xu, R.F.1    Lee, S.J.2
  • 52
    • 84922882884 scopus 로고    scopus 로고
    • Improved PLS focused on key performance indictor related fault diagnosis
    • Yin, S., Zhu, X., Kaynak, O., Improved PLS focused on key performance indictor related fault diagnosis. IEEE Trans. Ind. Electron. 62:3 (2015), 1651–1658.
    • (2015) IEEE Trans. Ind. Electron. , vol.62 , Issue.3 , pp. 1651-1658
    • Yin, S.1    Zhu, X.2    Kaynak, O.3
  • 53
    • 84944097156 scopus 로고    scopus 로고
    • Data-driven process monitoring based on modified orthogonal projections to latent structures
    • Yin, S., Wang, G., Gao, H., Data-driven process monitoring based on modified orthogonal projections to latent structures. IEEE Trans. Control Syst. Technol. 24:4 (2016), 1480–1487.
    • (2016) IEEE Trans. Control Syst. Technol. , vol.24 , Issue.4 , pp. 1480-1487
    • Yin, S.1    Wang, G.2    Gao, H.3
  • 54
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu, L., Liu, H., Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5 (2004), 1205–1224.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.