-
1
-
-
0022562015
-
Hydrogen: a clean energy source
-
Bicelli, L.P., Hydrogen: a clean energy source. Int J Hydrogen Energy 11 (1986), 555–562.
-
(1986)
Int J Hydrogen Energy
, vol.11
, pp. 555-562
-
-
Bicelli, L.P.1
-
2
-
-
0036466610
-
Research and development of international clean energy network using hydrogen energy (WE-NET)
-
Hijikata, T., Research and development of international clean energy network using hydrogen energy (WE-NET). Int J Hydrogen Energy 27 (2002), 115–129.
-
(2002)
Int J Hydrogen Energy
, vol.27
, pp. 115-129
-
-
Hijikata, T.1
-
3
-
-
33750458683
-
Powering the planet: chemical challenges in solar energy utilization
-
Lewis, N.S., Nocera, D.G., Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103 (2006), 15729–15735.
-
(2006)
Proc Natl Acad Sci
, vol.103
, pp. 15729-15735
-
-
Lewis, N.S.1
Nocera, D.G.2
-
4
-
-
67849128456
-
Powering the planet with solar fuel
-
Gray, H.B., Powering the planet with solar fuel. Nat Chem, 1, 2009, 7.
-
(2009)
Nat Chem
, vol.1
, pp. 7
-
-
Gray, H.B.1
-
5
-
-
84956465230
-
Progress in clean energy volume 2: novel systems and applications
-
Springer
-
Dincer, I., Colpan, C.O., Akif Ezan, M., Progress in clean energy volume 2: novel systems and applications. 2015, Springer.
-
(2015)
-
-
Dincer, I.1
Colpan, C.O.2
Akif Ezan, M.3
-
6
-
-
0036778705
-
Photo-electrochemical hydrogen generation from water using solar energy
-
Bak, T., Nowotny, J., Rekas, M., et al. Photo-electrochemical hydrogen generation from water using solar energy. Int J Hydrogen Energy 27 (2002), 991–1022.
-
(2002)
Int J Hydrogen Energy
, vol.27
, pp. 991-1022
-
-
Bak, T.1
Nowotny, J.2
Rekas, M.3
-
7
-
-
33645027408
-
Photocatalyst releasing hydrogen from water
-
Maeda, K., Teramura, K., Lu, D., et al. Photocatalyst releasing hydrogen from water. Nature, 440, 2006, 295.
-
(2006)
Nature
, vol.440
, pp. 295
-
-
Maeda, K.1
Teramura, K.2
Lu, D.3
-
9
-
-
57849130247
-
A metal-free polymeric photocatalyst for hydrogen production from water under visible light
-
Wang, X., Maeda, K., Thomas, A., et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8 (2009), 76–80.
-
(2009)
Nat Mater
, vol.8
, pp. 76-80
-
-
Wang, X.1
Maeda, K.2
Thomas, A.3
-
10
-
-
78449288259
-
Semiconductor-based photocatalytic hydrogen generation
-
Chen, X., Shen, S., Guo, L., et al. Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110 (2010), 6503–6570.
-
(2010)
Chem Rev
, vol.110
, pp. 6503-6570
-
-
Chen, X.1
Shen, S.2
Guo, L.3
-
11
-
-
84901923735
-
Photochemical splitting of water for hydrogen production by photocatalysis: a review
-
Ismail, A.A., Bahnemann, D.W., Photochemical splitting of water for hydrogen production by photocatalysis: a review. Sol Energy Mater Sol Cells 128 (2014), 85–101.
-
(2014)
Sol Energy Mater Sol Cells
, vol.128
, pp. 85-101
-
-
Ismail, A.A.1
Bahnemann, D.W.2
-
12
-
-
84924666899
-
Tunable organic photocatalysts for visible-light-driven hydrogen evolution
-
Sprick, R.S., Jiang, J.X., Bonillo, B., et al. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J Am Chem Soc 137 (2015), 3265–3270.
-
(2015)
J Am Chem Soc
, vol.137
, pp. 3265-3270
-
-
Sprick, R.S.1
Jiang, J.X.2
Bonillo, B.3
-
13
-
-
84960153588
-
Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%
-
Wang, Q., Hisatomi, T., Jia, Q., et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat Mater 15 (2016), 1–3.
-
(2016)
Nat Mater
, vol.15
, pp. 1-3
-
-
Wang, Q.1
Hisatomi, T.2
Jia, Q.3
-
14
-
-
84887882523
-
Production of hydrogen peroxide as a sustainable solar fuel from water and dioxygen
-
Kato, S., Jung, J., Suenobu, T., et al. Production of hydrogen peroxide as a sustainable solar fuel from water and dioxygen. Energy Environ Sci, 6, 2013, 3756.
-
(2013)
Energy Environ Sci
, vol.6
, pp. 3756
-
-
Kato, S.1
Jung, J.2
Suenobu, T.3
-
15
-
-
84870528619
-
Hydrogen storage and evolution catalysed by metal hydride complexes
-
Fukuzumi, S., Suenobu, T., Hydrogen storage and evolution catalysed by metal hydride complexes. Dalt Trans 42 (2013), 18–28.
-
(2013)
Dalt Trans
, vol.42
, pp. 18-28
-
-
Fukuzumi, S.1
Suenobu, T.2
-
16
-
-
84863103742
-
Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure
-
Maenaka, Y., Suenobu, T., Fukuzumi, S., Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure. Energy Environ Sci, 5, 2012, 7360.
-
(2012)
Energy Environ Sci
, vol.5
, pp. 7360
-
-
Maenaka, Y.1
Suenobu, T.2
Fukuzumi, S.3
-
17
-
-
0035891289
-
Hydrogen-storage materials for mobile applications
-
Schlapbach, L., Züttel, A., Hydrogen-storage materials for mobile applications. Nature 414 (2001), 353–358.
-
(2001)
Nature
, vol.414
, pp. 353-358
-
-
Schlapbach, L.1
Züttel, A.2
-
18
-
-
23044451308
-
Strategies for hydrogen storage in metal-organic frameworks
-
Rowsell, J.L.C., Yaghi, O.M., Strategies for hydrogen storage in metal-organic frameworks. Angew Chem Int Ed 44 (2015), 4670–4679.
-
(2015)
Angew Chem Int Ed
, vol.44
, pp. 4670-4679
-
-
Rowsell, J.L.C.1
Yaghi, O.M.2
-
19
-
-
65149084322
-
Hydrogen storage in metal-organic frameworks
-
Murray, L.J., Dinca, M., Long, J.R., Hydrogen storage in metal-organic frameworks. Chem Soc Rev 38 (2009), 1294–1314.
-
(2009)
Chem Soc Rev
, vol.38
, pp. 1294-1314
-
-
Murray, L.J.1
Dinca, M.2
Long, J.R.3
-
20
-
-
84959110491
-
Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage
-
Cho, E.S., Ruminski, A.M., Aloni, S., et al. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage. Nat Commun, 7, 2016, 10804.
-
(2016)
Nat Commun
, vol.7
, pp. 10804
-
-
Cho, E.S.1
Ruminski, A.M.2
Aloni, S.3
-
21
-
-
84915745325
-
Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts
-
Shiraishi, Y., Kanazawa, S., Kofuji, Y., et al. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew Chem Int Ed 53 (2014), 13454–13459.
-
(2014)
Angew Chem Int Ed
, vol.53
, pp. 13454-13459
-
-
Shiraishi, Y.1
Kanazawa, S.2
Kofuji, Y.3
-
22
-
-
33750617000
-
Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process
-
Campos-Martin, J.M., Blanco-Brieva, G., Fierro, J.L.G., Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed 45 (2006), 6962–6984.
-
(2006)
Angew Chem Int Ed
, vol.45
, pp. 6962-6984
-
-
Campos-Martin, J.M.1
Blanco-Brieva, G.2
Fierro, J.L.G.3
-
23
-
-
84866404808
-
Hydrogen peroxide as a sustainable energy carrier: electrocatalytic production of hydrogen peroxide and the fuel cell
-
Fukuzumi, S., Yamada, Y., Karlin, K.D., Hydrogen peroxide as a sustainable energy carrier: electrocatalytic production of hydrogen peroxide and the fuel cell. Electrochim Acta 82 (2012), 493–511.
-
(2012)
Electrochim Acta
, vol.82
, pp. 493-511
-
-
Fukuzumi, S.1
Yamada, Y.2
Karlin, K.D.3
-
25
-
-
34848893141
-
Hydrogen peroxide
-
Wiley-VCH Verlag GmbH & Co. KGaA
-
Goor, G., Glenneberg, J., Jacobi, S., Hydrogen peroxide. Ullmann's encyclopedia of industrial chemistry, 2000, Wiley-VCH Verlag GmbH & Co. KGaA.
-
(2000)
Ullmann's encyclopedia of industrial chemistry
-
-
Goor, G.1
Glenneberg, J.2
Jacobi, S.3
-
26
-
-
56449086968
-
Palladium and gold-palladium catalysts for the direct synthesis of hydrogen peroxide
-
Edwards, J.K., Hutchings, G.J., Palladium and gold-palladium catalysts for the direct synthesis of hydrogen peroxide. Angew Chem Int Ed 47 (2008), 9192–9198.
-
(2008)
Angew Chem Int Ed
, vol.47
, pp. 9192-9198
-
-
Edwards, J.K.1
Hutchings, G.J.2
-
27
-
-
77953296626
-
In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanoparticle-loaded titanium (IV) dioxide photocatalyst
-
Teranishi, M., Naya, S., Tada, H., In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanoparticle-loaded titanium (IV) dioxide photocatalyst. J Am Chem Soc 132 (2016), 7850–7851.
-
(2016)
J Am Chem Soc
, vol.132
, pp. 7850-7851
-
-
Teranishi, M.1
Naya, S.2
Tada, H.3
-
28
-
-
85019222822
-
Carbon nitride−aromatic diimide−graphene nanohybrids: metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency
-
Kofuji, Y., Isobe, Y., Shiraishi, Y., et al. Carbon nitride−aromatic diimide−graphene nanohybrids: metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency. J Am Chem Soc 2 (2016), 2–8.
-
(2016)
J Am Chem Soc
, vol.2
, pp. 2-8
-
-
Kofuji, Y.1
Isobe, Y.2
Shiraishi, Y.3
-
29
-
-
84980369571
-
2 using earth-abundant mixed-metal oxide@carbon nitride photocatalysts
-
2 using earth-abundant mixed-metal oxide@carbon nitride photocatalysts. ChemSusChem. 9 (2016), 2470–2479.
-
(2016)
ChemSusChem.
, vol.9
, pp. 2470-2479
-
-
Wang, R.1
Pan, K.2
Han, D.3
-
30
-
-
84991454148
-
4 photocatalyst to achieve apparent quantum yield of 49% at 420 nm
-
4 photocatalyst to achieve apparent quantum yield of 49% at 420 nm. J Am Chem Soc 138 (2016), 13289–13297.
-
(2016)
J Am Chem Soc
, vol.138
, pp. 13289-13297
-
-
Li, Y.1
Ouyang, S.2
Xu, H.3
-
31
-
-
85027472015
-
Über photolytische bildung von hydroperoxyd
-
Baur, E., Neuweiler, C., Über photolytische bildung von hydroperoxyd. Helv Chim Acta 10 (1927), 901–907.
-
(1927)
Helv Chim Acta
, vol.10
, pp. 901-907
-
-
Baur, E.1
Neuweiler, C.2
-
32
-
-
0024053986
-
Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand
-
Kormann, C., Bahnemann, D.W., Hoffmann, M.R., Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. Environ Sci Technol 22 (1988), 798–806.
-
(1988)
Environ Sci Technol
, vol.22
, pp. 798-806
-
-
Kormann, C.1
Bahnemann, D.W.2
Hoffmann, M.R.3
-
33
-
-
0028431373
-
Photocatalytic production of semiconductor colloids and organic peroxides on quantum-sized
-
Hoffman, A.J., Carraway, E.R., Hoffmann, M.R., Photocatalytic production of semiconductor colloids and organic peroxides on quantum-sized. Environ Sci Technol 28 (1994), 776–785.
-
(1994)
Environ Sci Technol
, vol.28
, pp. 776-785
-
-
Hoffman, A.J.1
Carraway, E.R.2
Hoffmann, M.R.3
-
34
-
-
84885339347
-
Hydrogen peroxide formation by titanium dioxide photocatalysis with benzylic alcohols and molecular oxygen in water
-
Shiraishi, Y., Kanazawa, S., Tsukamoto, D., et al. Hydrogen peroxide formation by titanium dioxide photocatalysis with benzylic alcohols and molecular oxygen in water. ACS Catal 3 (2013), 2222–2227.
-
(2013)
ACS Catal
, vol.3
, pp. 2222-2227
-
-
Shiraishi, Y.1
Kanazawa, S.2
Tsukamoto, D.3
-
37
-
-
84990842032
-
Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight
-
Kofuji, Y., Ohkita, S., Shiraishi, Y., Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight. ACS Catal 6 (2016), 7021–7029.
-
(2016)
ACS Catal
, vol.6
, pp. 7021-7029
-
-
Kofuji, Y.1
Ohkita, S.2
Shiraishi, Y.3
-
38
-
-
84947787012
-
2 coordination polymer under visible light
-
2 coordination polymer under visible light. Sci Rep, 5, 2015, 16947.
-
(2015)
Sci Rep
, vol.5
, pp. 16947
-
-
Zhuang, H.1
Yang, L.2
Xu, J.3
-
39
-
-
80051540489
-
Nobel lecture: graphene: materials in the flatland
-
Novoselov, K.S., Nobel lecture: graphene: materials in the flatland. Rev Mod Phys 83 (2011), 837–849.
-
(2011)
Rev Mod Phys
, vol.83
, pp. 837-849
-
-
Novoselov, K.S.1
-
40
-
-
84904762924
-
2 evolution under visible light irradiation
-
2 evolution under visible light irradiation. ACS Nano 8 (2014), 7078–7087.
-
(2014)
ACS Nano
, vol.8
, pp. 7078-7087
-
-
Chang, K.1
Mei, Z.2
Wang, T.3
-
41
-
-
84959565214
-
Facile synthesis of CdS/C core–shell nanospheres with ultrathin carbon layer for enhanced photocatalytic properties and stability
-
Chen, J., Zhang, F., Zhao, Y.L., et al. Facile synthesis of CdS/C core–shell nanospheres with ultrathin carbon layer for enhanced photocatalytic properties and stability. Appl Surf Sci 362 (2016), 126–131.
-
(2016)
Appl Surf Sci
, vol.362
, pp. 126-131
-
-
Chen, J.1
Zhang, F.2
Zhao, Y.L.3
-
42
-
-
85027933230
-
2 production activity of multiarmed CdS nanorods
-
2 production activity of multiarmed CdS nanorods. ChemCatChem 7 (2015), 943–951.
-
(2015)
ChemCatChem
, vol.7
, pp. 943-951
-
-
Lang, D.1
Shen, T.2
Xiang, Q.3
-
43
-
-
84962787036
-
2/graphene-modified CdS nanorods for efficient photocatalytic hydrogen evolution
-
2/graphene-modified CdS nanorods for efficient photocatalytic hydrogen evolution. ChemSusChem 9 (2016), 996–1002.
-
(2016)
ChemSusChem
, vol.9
, pp. 996-1002
-
-
Xiang, Q.1
Cheng, F.2
Lang, D.3
-
45
-
-
84894474845
-
Assembly of evenly distributed Au nanoparticles on thiolated reduced graphene oxide as an active and robust catalyst for hydrogenation of 4-nitroarenes
-
Liu, W., Sun, D., Fu, J., et al. Assembly of evenly distributed Au nanoparticles on thiolated reduced graphene oxide as an active and robust catalyst for hydrogenation of 4-nitroarenes. RSC Adv 4 (2014), 11003–11011.
-
(2014)
RSC Adv
, vol.4
, pp. 11003-11011
-
-
Liu, W.1
Sun, D.2
Fu, J.3
-
46
-
-
78650104190
-
Reduced graphene oxide by chemical graphitization
-
Moon, I.K., Lee, J., Ruoff, R.S., et al. Reduced graphene oxide by chemical graphitization. Nat Commun, 1, 2010, 73.
-
(2010)
Nat Commun
, vol.1
, pp. 73
-
-
Moon, I.K.1
Lee, J.2
Ruoff, R.S.3
-
47
-
-
84948737227
-
Layered metal–organic framework/graphene nanoarchitectures for organic photosynthesis under visible light
-
Xu, J., He, S., Zhang, H., et al. Layered metal–organic framework/graphene nanoarchitectures for organic photosynthesis under visible light. J Mater Chem A 3 (2015), 24261–24271.
-
(2015)
J Mater Chem A
, vol.3
, pp. 24261-24271
-
-
Xu, J.1
He, S.2
Zhang, H.3
-
48
-
-
84942333153
-
Waltzing with the versatile platform of graphene to synthesize composite photocatalysts
-
Zhang, N., Yang, M.Q., Liu, S., et al. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev 115 (2015), 10307–10377.
-
(2015)
Chem Rev
, vol.115
, pp. 10307-10377
-
-
Zhang, N.1
Yang, M.Q.2
Liu, S.3
-
49
-
-
84888990302
-
Chemical reduction of graphene oxide: a synthetic chemistry viewpoint
-
Chua, C.K., Pumera, M., Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43 (2014), 291–312.
-
(2014)
Chem Soc Rev
, vol.43
, pp. 291-312
-
-
Chua, C.K.1
Pumera, M.2
-
50
-
-
84855393828
-
Graphene-based composites
-
Huang, X., Qi, X., Boey, F., et al. Graphene-based composites. Chem Soc Rev 41 (2012), 666–686.
-
(2012)
Chem Soc Rev
, vol.41
, pp. 666-686
-
-
Huang, X.1
Qi, X.2
Boey, F.3
-
51
-
-
84872704101
-
Toward multifunctional wet chemically functionalized graphene—integration of oligomeric, molecular, and particulate building blocks that reveal photoactivity and redox activity
-
Malig, J., Jux, N., Guldi, D.M., Toward multifunctional wet chemically functionalized graphene—integration of oligomeric, molecular, and particulate building blocks that reveal photoactivity and redox activity. Acc Chem Res 46 (2013), 53–64.
-
(2013)
Acc Chem Res
, vol.46
, pp. 53-64
-
-
Malig, J.1
Jux, N.2
Guldi, D.M.3
-
52
-
-
84886849807
-
Low dimensional nanocarbons – chemistry and energy/electron transfer reactions
-
Dirian, K., Herranz, M.A., Katsukis, G., et al. Low dimensional nanocarbons – chemistry and energy/electron transfer reactions. Chem Sci 4 (2013), 4335–4353.
-
(2013)
Chem Sci
, vol.4
, pp. 4335-4353
-
-
Dirian, K.1
Herranz, M.A.2
Katsukis, G.3
-
53
-
-
79953235403
-
Towards tunable graphene/phthalocyanine-PPV hybrid systems
-
Malig, J., Jux, N., Kiessling, D., et al. Towards tunable graphene/phthalocyanine-PPV hybrid systems. Angew Chem Int Ed 50 (2011), 3561–3565.
-
(2011)
Angew Chem Int Ed
, vol.50
, pp. 3561-3565
-
-
Malig, J.1
Jux, N.2
Kiessling, D.3
-
54
-
-
0034887386
-
Aqueous leaching properties and environmental implications of cadmium, lead and zinc trimercaptotriazine (TMT) compounds
-
Matlock, M.M., Henke, K.R., Atwood, D.A., et al. Aqueous leaching properties and environmental implications of cadmium, lead and zinc trimercaptotriazine (TMT) compounds. Water Res 35 (2001), 3649–3655.
-
(2001)
Water Res
, vol.35
, pp. 3649-3655
-
-
Matlock, M.M.1
Henke, K.R.2
Atwood, D.A.3
-
55
-
-
79957699953
-
2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution
-
2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J Phys Chem C 115 (2011), 10694–10701.
-
(2011)
J Phys Chem C
, vol.115
, pp. 10694-10701
-
-
Fan, W.1
Lai, Q.2
Zhang, Q.3
-
56
-
-
79960262088
-
Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets
-
Li, Q., Guo, B., Yu, J., et al. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133 (2011), 10878–10884.
-
(2011)
J Am Chem Soc
, vol.133
, pp. 10878-10884
-
-
Li, Q.1
Guo, B.2
Yu, J.3
-
58
-
-
84907686409
-
3 polymer/graphene hybrids as metal-free catalysts for selective photocatalytic oxidation of benzylic alcohols under visible light
-
3 polymer/graphene hybrids as metal-free catalysts for selective photocatalytic oxidation of benzylic alcohols under visible light. ACS Catal 4 (2014), 3302–3306.
-
(2014)
ACS Catal
, vol.4
, pp. 3302-3306
-
-
Xu, J.1
Luo, L.2
Xiao, G.3
-
59
-
-
0036533360
-
Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin
-
Raymundo-Piñero, E., Cazorla-Amorós, D., Linares-Solano, A., et al. Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin. Carbon 40 (2002), 597–608.
-
(2002)
Carbon
, vol.40
, pp. 597-608
-
-
Raymundo-Piñero, E.1
Cazorla-Amorós, D.2
Linares-Solano, A.3
|