-
6
-
-
84965140688
-
Learning both weights and connections for efficient neural network
-
S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient neural network. In Advances in Neural Information Processing Systems, pages 1135. 1143, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 1135-1143
-
-
Han, S.1
Pool, J.2
Tran, J.3
Dally, W.4
-
8
-
-
84973911419
-
Delving deep into recti-ers: Surpassing human-level performance on imagenet classification
-
K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into recti-ers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, pages 1026. 1034, 2015.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
9
-
-
84984824417
-
-
arXiv preprint arXiv: 1603. 09382
-
G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger. Deep networks with stochastic depth. arXiv preprint arXiv: 1603. 09382, 2016.
-
(2016)
Deep Networks with Stochastic Depth
-
-
Huang, G.1
Sun, Y.2
Liu, Z.3
Sedra, D.4
Weinberger, K.5
-
11
-
-
84994596967
-
-
arXiv preprint arXiv: 1511. 06530
-
Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. Compression of deep convolutional neural networks for fast and low power mobile applications. arXiv preprint arXiv: 1511. 06530, 2015.
-
(2015)
Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications
-
-
Kim, Y.-D.1
Park, E.2
Yoo, S.3
Choi, T.4
Yang, L.5
Shin, D.6
-
15
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11): 2278. 2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
16
-
-
84872543023
-
Efficient backprop
-
pringer
-
Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In Neural networks: Tricks of the trade, pages 9. 48. Springer, 2012.
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 9-48
-
-
LeCun, Y.A.1
Bottou, L.2
Orr, G.B.3
Müller, K.-R.4
-
18
-
-
84973643647
-
Conditional deep learning for energyef cient and enhanced pattern recognition
-
IEEE
-
P. Panda, A. Sengupta, and K. Roy. Conditional deep learning for energyef cient and enhanced pattern recognition. In 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 475. 480. IEEE, 2016.
-
(2016)
2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)
, pp. 475-480
-
-
Panda, P.1
Sengupta, A.2
Roy, K.3
-
19
-
-
79959493881
-
Metarecognition: The theory and practice of recognition score analysis
-
W. J. Scheirer, A. Rocha, R. J. Micheals, and T. E. Boult. Metarecognition: The theory and practice of recognition score analysis. IEEE transactions on pattern analysis and machine intelligence, 33(8): 1689. 1695, 2011.
-
(2011)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.33
, Issue.8
, pp. 1689-1695
-
-
Scheirer, W.J.1
Rocha, A.2
Micheals, R.J.3
Boult, T.E.4
-
21
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from over-tting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from over-tting. The Journal of Machine Learning Research, 15(1): 1929. 1958, 2014.
-
(2014)
The Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
23
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1. 9, 2015.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
26
-
-
84911436141
-
Predicting failures of vision systems
-
P. Zhang, J. Wang, A. Farhadi, M. Hebert, and D. Parikh. Predicting failures of vision systems. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3566. 3573, 2014.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3566-3573
-
-
Zhang, P.1
Wang, J.2
Farhadi, A.3
Hebert, M.4
Parikh, D.5
|