메뉴 건너뛰기




Volumn 83, Issue , 2017, Pages 405-417

Machine learning models and bankruptcy prediction

Author keywords

Bagging; Bankruptcy prediction; Boosting; Machine learning; Random forest; Support vector machines

Indexed keywords


EID: 85019113920     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2017.04.006     Document Type: Article
Times cited : (553)

References (59)
  • 1
    • 77953618887 scopus 로고    scopus 로고
    • Macroeconomic determinants of credit risk: Recent evidence from a cross country study
    • Ali, A., Daly, K., Macroeconomic determinants of credit risk: Recent evidence from a cross country study. International Review of Financial Analysis 19:3 (2010), 165–171.
    • (2010) International Review of Financial Analysis , vol.19 , Issue.3 , pp. 165-171
    • Ali, A.1    Daly, K.2
  • 2
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
    • Altman, E.I., Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance 23:4 (1968), 589–609.
    • (1968) The Journal of Finance , vol.23 , Issue.4 , pp. 589-609
    • Altman, E.I.1
  • 3
    • 53349152341 scopus 로고    scopus 로고
    • Bankruptcy classification errors in the 1980s: An empirical analysis of Altman's and Ohlson's models
    • Begley, J., Ming, J., Watts, S., Bankruptcy classification errors in the 1980s: An empirical analysis of Altman's and Ohlson's models. Review of Accounting Studies 1:4 (1996), 267–284.
    • (1996) Review of Accounting Studies , vol.1 , Issue.4 , pp. 267-284
    • Begley, J.1    Ming, J.2    Watts, S.3
  • 4
    • 85011006819 scopus 로고    scopus 로고
    • Learning style identifier: Improving the precision of learning style identification through computational intelligence algorithms
    • Bernard, J., Chang, T.-W., Popescu, E., Graf, S., Learning style identifier: Improving the precision of learning style identification through computational intelligence algorithms. Expert Systems with Applications 75 (2017), 94–108.
    • (2017) Expert Systems with Applications , vol.75 , pp. 94-108
    • Bernard, J.1    Chang, T.-W.2    Popescu, E.3    Graf, S.4
  • 5
    • 56749154409 scopus 로고    scopus 로고
    • Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics
    • Bonfim, D., Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics. Journal of Banking & Finance 33:2 (2009), 281–299.
    • (2009) Journal of Banking & Finance , vol.33 , Issue.2 , pp. 281-299
    • Bonfim, D.1
  • 6
    • 84891714796 scopus 로고    scopus 로고
    • Automated trading with performance weighted random forests and seasonality
    • Booth, A., Gerding, E., McGroarty, F., Automated trading with performance weighted random forests and seasonality. Expert Systems with Applications 41:8 (2014), 3651–3661.
    • (2014) Expert Systems with Applications , vol.41 , Issue.8 , pp. 3651-3661
    • Booth, A.1    Gerding, E.2    McGroarty, F.3
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., Bagging predictors. Machine Learning 24:2 (1996), 123–140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Machine Learning 45:1 (2001), 5–32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 9
    • 84906569541 scopus 로고    scopus 로고
    • Indoor localization in a hospital environment using random forest classifiers
    • Calderoni, L., Ferrara, M., Franco, A., Maio, D., Indoor localization in a hospital environment using random forest classifiers. Expert Systems with Applications 42:1 (2015), 125–134.
    • (2015) Expert Systems with Applications , vol.42 , Issue.1 , pp. 125-134
    • Calderoni, L.1    Ferrara, M.2    Franco, A.3    Maio, D.4
  • 11
    • 34548626771 scopus 로고    scopus 로고
    • Measuring organizational performance
    • Edward Elgar Publishing
    • Carton, R., Hofer, C., Measuring organizational performance. 2006, Edward Elgar Publishing.
    • (2006)
    • Carton, R.1    Hofer, C.2
  • 12
    • 77952099174 scopus 로고    scopus 로고
    • Financial distress and idiosyncratic volatility: An empirical investigation
    • Chen, J., Chollete, L., Ray, R., Financial distress and idiosyncratic volatility: An empirical investigation. Journal of Financial Markets 13:2 (2010), 249–267.
    • (2010) Journal of Financial Markets , vol.13 , Issue.2 , pp. 249-267
    • Chen, J.1    Chollete, L.2    Ray, R.3
  • 13
    • 84891424250 scopus 로고    scopus 로고
    • Default prediction with dynamic sectoral and macroeconomic frailties
    • Chen, P., Wu, C., Default prediction with dynamic sectoral and macroeconomic frailties. Journal of Banking & Finance 40 (2014), 211–226.
    • (2014) Journal of Banking & Finance , vol.40 , pp. 211-226
    • Chen, P.1    Wu, C.2
  • 14
    • 84963805125 scopus 로고    scopus 로고
    • Financial distress prediction using the hybrid associative memory with translation
    • Cleofas-Sánchez, L., García, V., Marqués, A., Sénchez, J., Financial distress prediction using the hybrid associative memory with translation. Applied Soft Computing 44 (2016), 144–152.
    • (2016) Applied Soft Computing , vol.44 , pp. 144-152
    • Cleofas-Sánchez, L.1    García, V.2    Marqués, A.3    Sénchez, J.4
  • 15
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., Vapnik, V., Support-vector networks. Machine Learning 20:3 (1995), 273–297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 16
    • 84919935619 scopus 로고    scopus 로고
    • Selection of support vector machines based classifiers for credit risk domain
    • Danenas, P., Garsva, G., Selection of support vector machines based classifiers for credit risk domain. Expert Systems with Applications 42:6 (2015), 3194–3204.
    • (2015) Expert Systems with Applications , vol.42 , Issue.6 , pp. 3194-3204
    • Danenas, P.1    Garsva, G.2
  • 17
    • 85019135927 scopus 로고    scopus 로고
    • Computer Age Statistical Inference.
    • Efron, B., & Hastie, T. (2016). Computer Age Statistical Inference.
    • (2016)
    • Efron, B.1    Hastie, T.2
  • 19
    • 0031211090 scopus 로고    scopus 로고
    • A decision-Theoretic generalization of on-Line learning and an application to boosting
    • Freund, Y., Schapire, R.E., A decision-Theoretic generalization of on-Line learning and an application to boosting. Journal of Computer and System Sciences 55:1 (1997), 119–139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 20
    • 84958756389 scopus 로고    scopus 로고
    • Evaluating machine learning classification for financial trading: An empirical approach
    • Gerlein, E.A., McGinnity, M., Belatreche, A., Coleman, S., Evaluating machine learning classification for financial trading: An empirical approach. Expert Systems with Applications 54 (2016), 193–207.
    • (2016) Expert Systems with Applications , vol.54 , pp. 193-207
    • Gerlein, E.A.1    McGinnity, M.2    Belatreche, A.3    Coleman, S.4
  • 21
    • 0043172419 scopus 로고    scopus 로고
    • Book-to-Market equity, distress risk, and stock returns
    • Griffin, J.M., Lemmon, M.L., Book-to-Market equity, distress risk, and stock returns. The Journal of Finance 57:5 (2002), 2317–2336.
    • (2002) The Journal of Finance , vol.57 , Issue.5 , pp. 2317-2336
    • Griffin, J.M.1    Lemmon, M.L.2
  • 23
    • 84907345291 scopus 로고    scopus 로고
    • AdaBoost based bankruptcy forecasting of Korean construction companies
    • Heo, J., Yang, J.Y., AdaBoost based bankruptcy forecasting of Korean construction companies. Applied Soft Computing 24 (2014), 494–499.
    • (2014) Applied Soft Computing , vol.24 , pp. 494-499
    • Heo, J.1    Yang, J.Y.2
  • 25
    • 84979462408 scopus 로고    scopus 로고
    • A two-stage classification technique for bankruptcy prediction
    • du Jardin, P., A two-stage classification technique for bankruptcy prediction. European Journal of Operational Research 254:1 (2016), 236–252.
    • (2016) European Journal of Operational Research , vol.254 , Issue.1 , pp. 236-252
    • du Jardin, P.1
  • 26
    • 71349086364 scopus 로고    scopus 로고
    • Ensemble with neural networks for bankruptcy prediction
    • Kim, M.-J., Kang, D.-K., Ensemble with neural networks for bankruptcy prediction. Expert Systems with Applications 37:4 (2010), 3373–3379.
    • (2010) Expert Systems with Applications , vol.37 , Issue.4 , pp. 3373-3379
    • Kim, M.-J.1    Kang, D.-K.2
  • 27
    • 84908053289 scopus 로고    scopus 로고
    • Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction
    • Kim, M.-J., Kang, D.-K., Kim, H.B., Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction. Expert Systems with Applications 42:3 (2015), 1074–1082.
    • (2015) Expert Systems with Applications , vol.42 , Issue.3 , pp. 1074-1082
    • Kim, M.-J.1    Kang, D.-K.2    Kim, H.B.3
  • 28
    • 84886437226 scopus 로고    scopus 로고
    • Predicting restaurant financial distress using decision tree and adaboosted decision tree models
    • Kim, S.Y., Upneja, A., Predicting restaurant financial distress using decision tree and adaboosted decision tree models. Economic Modelling 36 (2014), 354–362.
    • (2014) Economic Modelling , vol.36 , pp. 354-362
    • Kim, S.Y.1    Upneja, A.2
  • 29
    • 84878300417 scopus 로고    scopus 로고
    • Consumer credit risk: Individual probability estimates using machine learning
    • Kruppa, J., Schwarz, A., Arminger, G., Ziegler, A., Consumer credit risk: Individual probability estimates using machine learning. Expert Systems with Applications 40:13 (2013), 5125–5131.
    • (2013) Expert Systems with Applications , vol.40 , Issue.13 , pp. 5125-5131
    • Kruppa, J.1    Schwarz, A.2    Arminger, G.3    Ziegler, A.4
  • 30
    • 84923831927 scopus 로고    scopus 로고
    • Modeling of steelmaking process with effective machine learning techniques
    • Laha, D., Ren, Y., Suganthan, P., Modeling of steelmaking process with effective machine learning techniques. Expert Systems with Applications 42:10 (2015), 4687–4696.
    • (2015) Expert Systems with Applications , vol.42 , Issue.10 , pp. 4687-4696
    • Laha, D.1    Ren, Y.2    Suganthan, P.3
  • 31
    • 55249100209 scopus 로고    scopus 로고
    • Gaussian case-based reasoning for business failure prediction with empirical data in china
    • Li, H., Sun, J., Gaussian case-based reasoning for business failure prediction with empirical data in china. Information Sciences 179:1–2 (2009), 89–108.
    • (2009) Information Sciences , vol.179 , Issue.1-2 , pp. 89-108
    • Li, H.1    Sun, J.2
  • 32
    • 84878649257 scopus 로고    scopus 로고
    • Prediction of banking systemic risk based on support vector machine
    • Li, S., Wang, M., He, J., Prediction of banking systemic risk based on support vector machine. Mathematical Problems in Engineering 2013 (2013), 1–5.
    • (2013) Mathematical Problems in Engineering , vol.2013 , pp. 1-5
    • Li, S.1    Wang, M.2    He, J.3
  • 33
    • 84959863825 scopus 로고    scopus 로고
    • Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study
    • Liang, D., Lu, C.-C., Tsai, C.-F., Shih, G.-A., Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study. European Journal of Operational Research 252:2 (2016), 561–572.
    • (2016) European Journal of Operational Research , vol.252 , Issue.2 , pp. 561-572
    • Liang, D.1    Lu, C.-C.2    Tsai, C.-F.3    Shih, G.-A.4
  • 34
    • 84949114958 scopus 로고    scopus 로고
    • Bankruptcy visualization and prediction using neural networks: A study of u.s. commercial banks
    • López Iturriaga, F.J., Sanz, I.P., Bankruptcy visualization and prediction using neural networks: A study of u.s. commercial banks. Expert Systems with Applications 42:6 (2015), 2857–2869.
    • (2015) Expert Systems with Applications , vol.42 , Issue.6 , pp. 2857-2869
    • López Iturriaga, F.J.1    Sanz, I.P.2
  • 35
    • 84912535379 scopus 로고    scopus 로고
    • Detecting credit card fraud by modified fisher discriminant analysis
    • Mahmoudi, N., Duman, E., Detecting credit card fraud by modified fisher discriminant analysis. Expert Systems with Applications 42:5 (2015), 2510–2516.
    • (2015) Expert Systems with Applications , vol.42 , Issue.5 , pp. 2510-2516
    • Mahmoudi, N.1    Duman, E.2
  • 37
    • 84994013671 scopus 로고    scopus 로고
    • Data classification with binary response through the boosting algorithm and logistic regression
    • de Menezes, F.S., Liska, G.R., Cirillo, M.A., Vivanco, M.J., Data classification with binary response through the boosting algorithm and logistic regression. Expert Systems with Applications 69 (2017), 62–73.
    • (2017) Expert Systems with Applications , vol.69 , pp. 62-73
    • de Menezes, F.S.1    Liska, G.R.2    Cirillo, M.A.3    Vivanco, M.J.4
  • 38
    • 17844363481 scopus 로고    scopus 로고
    • Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters
    • Min, J., Lee, Y., Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications 28:4 (2005), 603–614.
    • (2005) Expert Systems with Applications , vol.28 , Issue.4 , pp. 603-614
    • Min, J.1    Lee, Y.2
  • 39
    • 56349112745 scopus 로고    scopus 로고
    • An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring
    • Nanni, L., Lumini, A., An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications 36:2 (2009), 3028–3033.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 3028-3033
    • Nanni, L.1    Lumini, A.2
  • 40
    • 33845703344 scopus 로고    scopus 로고
    • What is a support vector machine?
    • Noble, W.S., What is a support vector machine?. Nature Biotechnology 24:12 (2006), 1565–1567.
    • (2006) Nature Biotechnology , vol.24 , Issue.12 , pp. 1565-1567
    • Noble, W.S.1
  • 41
    • 0000666375 scopus 로고
    • Financial ratios and the probabilistic prediction of bankruptcy
    • Ohlson, J.A., Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research 18:1 (1980), 109–131.
    • (1980) Journal of Accounting Research , vol.18 , Issue.1 , pp. 109-131
    • Ohlson, J.A.1
  • 42
    • 47649094596 scopus 로고    scopus 로고
    • Support vector machine-Based classification scheme for myoelectric control applied to upper limb
    • Oskoei, M., Hu, H., Support vector machine-Based classification scheme for myoelectric control applied to upper limb. IEEE Transactions on Biomedical Engineering 55:8 (2008), 1956–1965.
    • (2008) IEEE Transactions on Biomedical Engineering , vol.55 , Issue.8 , pp. 1956-1965
    • Oskoei, M.1    Hu, H.2
  • 44
    • 84953455524 scopus 로고    scopus 로고
    • Business health characterization: A hybrid regression and support vector machine analysis
    • Pal, R., Kupka, K., Aneja, A.P., Militky, J., Business health characterization: A hybrid regression and support vector machine analysis. Expert Systems with Applications 49 (2016), 48–59.
    • (2016) Expert Systems with Applications , vol.49 , pp. 48-59
    • Pal, R.1    Kupka, K.2    Aneja, A.P.3    Militky, J.4
  • 45
    • 84898418230 scopus 로고    scopus 로고
    • Parametric models and non-parametric machine learning models for predicting option prices: Empirical comparison study over KOSPI 200 index options
    • Park, H., Kim, N., Lee, J., Parametric models and non-parametric machine learning models for predicting option prices: Empirical comparison study over KOSPI 200 index options. Expert Systems with Applications 41:11 (2014), 5227–5237.
    • (2014) Expert Systems with Applications , vol.41 , Issue.11 , pp. 5227-5237
    • Park, H.1    Kim, N.2    Lee, J.3
  • 46
    • 77957830692 scopus 로고    scopus 로고
    • EEG signal classification using PCA, ICA, LDA and support vector machines
    • Subasi, A., Ismail Gursoy, M., EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Systems with Applications 37:12 (2010), 8659–8666.
    • (2010) Expert Systems with Applications , vol.37 , Issue.12 , pp. 8659-8666
    • Subasi, A.1    Ismail Gursoy, M.2
  • 48
    • 79955473236 scopus 로고    scopus 로고
    • Credit risk prediction using support vector machines
    • Trustorff, J.-H., Konrad, P.M., Leker, J., Credit risk prediction using support vector machines. Rev Quant Finan Acc 36:4 (2010), 565–581.
    • (2010) Rev Quant Finan Acc , vol.36 , Issue.4 , pp. 565-581
    • Trustorff, J.-H.1    Konrad, P.M.2    Leker, J.3
  • 49
    • 84908455123 scopus 로고    scopus 로고
    • A comparative study of classifier ensembles for bankruptcy prediction
    • Tsai, C.-F., Hsu, Y.-F., Yen, D.C., A comparative study of classifier ensembles for bankruptcy prediction. Applied Soft Computing 24 (2014), 977–984.
    • (2014) Applied Soft Computing , vol.24 , pp. 977-984
    • Tsai, C.-F.1    Hsu, Y.-F.2    Yen, D.C.3
  • 51
    • 77956619458 scopus 로고    scopus 로고
    • A comparative assessment of ensemble learning for credit scoring
    • Wang, G., Hao, J., Ma, J., Jiang, H., A comparative assessment of ensemble learning for credit scoring. Expert Systems with Applications 38:1 (2011), 223–230.
    • (2011) Expert Systems with Applications , vol.38 , Issue.1 , pp. 223-230
    • Wang, G.1    Hao, J.2    Ma, J.3    Jiang, H.4
  • 52
    • 84155181098 scopus 로고    scopus 로고
    • Two credit scoring models based on dual strategy ensemble trees
    • Wang, G., Ma, J., Huang, L., Xu, K., Two credit scoring models based on dual strategy ensemble trees. Knowledge-Based Systems 26 (2012), 61–68.
    • (2012) Knowledge-Based Systems , vol.26 , pp. 61-68
    • Wang, G.1    Ma, J.2    Huang, L.3    Xu, K.4
  • 53
    • 84890117005 scopus 로고    scopus 로고
    • An improved boosting based on feature selection for corporate bankruptcy prediction
    • Wang, G., Ma, J., Yang, S., An improved boosting based on feature selection for corporate bankruptcy prediction. Expert Systems with Applications 41:5 (2014), 2353–2361.
    • (2014) Expert Systems with Applications , vol.41 , Issue.5 , pp. 2353-2361
    • Wang, G.1    Ma, J.2    Yang, S.3
  • 54
    • 84959467883 scopus 로고    scopus 로고
    • Ensemble classification based on supervised clustering for credit scoring
    • Xiao, H., Xiao, Z., Wang, Y., Ensemble classification based on supervised clustering for credit scoring. Applied Soft Computing 43 (2016), 73–86.
    • (2016) Applied Soft Computing , vol.43 , pp. 73-86
    • Xiao, H.1    Xiao, Z.2    Wang, Y.3
  • 55
    • 84885187385 scopus 로고    scopus 로고
    • Going-concern prediction using hybrid random forests and rough set approach
    • Yeh, C.-C., Chi, D.-J., Lin, Y.-R., Going-concern prediction using hybrid random forests and rough set approach. Information Sciences 254 (2014), 98–110.
    • (2014) Information Sciences , vol.254 , pp. 98-110
    • Yeh, C.-C.1    Chi, D.-J.2    Lin, Y.-R.3
  • 56
    • 71749114830 scopus 로고    scopus 로고
    • Support vector machine based multiagent ensemble learning for credit risk evaluation
    • Yu, L., Yue, W., Wang, S., Lai, K., Support vector machine based multiagent ensemble learning for credit risk evaluation. Expert Systems with Applications 37:2 (2010), 1351–1360.
    • (2010) Expert Systems with Applications , vol.37 , Issue.2 , pp. 1351-1360
    • Yu, L.1    Yue, W.2    Wang, S.3    Lai, K.4
  • 57
    • 84940992213 scopus 로고    scopus 로고
    • Macroeconomic modelling of credit risk for banks
    • Yurdakul, F., Macroeconomic modelling of credit risk for banks. Procedia - Social and Behavioral Sciences 109 (2014), 784–793.
    • (2014) Procedia - Social and Behavioral Sciences , vol.109 , pp. 784-793
    • Yurdakul, F.1
  • 59
    • 84884893168 scopus 로고    scopus 로고
    • Bankruptcy prediction using SVM models with a new approach to combine features selection and parameter optimisation
    • Zhou, L., Lai, K.K., Yen, J., Bankruptcy prediction using SVM models with a new approach to combine features selection and parameter optimisation. International Journal of Systems Science 45:3 (2014), 241–253.
    • (2014) International Journal of Systems Science , vol.45 , Issue.3 , pp. 241-253
    • Zhou, L.1    Lai, K.K.2    Yen, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.