메뉴 건너뛰기




Volumn , Issue , 2017, Pages 247-258

Where's the bear?- Automating wildlife image processing using IoT and edge cloud systems

Author keywords

Animal surveillance; Cloud computing; Edge computing; Image processing; Internet of things

Indexed keywords

ANIMALS; ARTIFICIAL INTELLIGENCE; BANDWIDTH; CAMERAS; CLOUD COMPUTING; IMAGE ANALYSIS; IMAGE CLASSIFICATION; INTERNET OF THINGS; LEARNING SYSTEMS; NETWORK SECURITY;

EID: 85019011684     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/3054977.3054986     Document Type: Conference Paper
Times cited : (100)

References (39)
  • 4
    • 85019044733 scopus 로고    scopus 로고
    • Aristotle Cloud Federation. ( [Online; accessed 22-Aug-2016]
    • Aristotle Cloud Federation 2017. Aristotle Cloud Federation. (2017). https://federatedcloud.org [Online; accessed 22-Aug-2016].
    • (2017) Aristotle Cloud Federation 2017
  • 5
    • 85019018631 scopus 로고    scopus 로고
    • AWS Edge Locations 2016 [Online; accessed 22-Aug-2016]
    • AWS Edge Locations 2016. AWS Edge Locations. (2016). https://aws.amazon. com/cloudfront/[Online; accessed 22-Aug-2016].
    • (2016) AWS Edge Locations
  • 7
    • 33847773204 scopus 로고    scopus 로고
    • Tracking animals in wildlife videos using face detection
    • Tilo Burghardt, Janko Calic, and Barry T Thomas. 2004. Tracking Animals in Wildlife Videos Using Face Detection.. In EWIMT.
    • (2004) EWIMT
    • Burghardt, T.1    Calic, J.2    Thomas, B.T.3
  • 8
    • 85019014414 scopus 로고    scopus 로고
    • Cisco. 2016 v[Online; accessed 22-Aug-2016]
    • Cisco. 2016. Fog Data Services - Cisco. (2016). http://www.cisco.com/c/en/us/products/cloud-systems-management/fog-data-services/index.html [Online; accessed 22-Aug-2016].
    • (2016) Fog Data Services - Cisco
  • 9
    • 85019029095 scopus 로고    scopus 로고
    • Cloudlet-based Mobile Computing 2016 [Online; accessed 22-Aug-2016]
    • Cloudlet-based Mobile Computing 2016. Cloudlet-based Mobile Computing. (2016). http://elijah.cs.cmu.edu/[Online; accessed 22-Aug-2016].
    • (2016) Cloudlet-Based Mobile Computing
  • 10
    • 85019042097 scopus 로고    scopus 로고
    • Content Distribution Network 2016 [Online; accessed 22-Aug-2016]
    • Content Distribution Network 2016. Content Distribution Network. https://en.wikipedia.org/wiki/Content delivery network. (2016). [Online; accessed 22-Aug-2016].
    • (2016) Content Distribution Network.
  • 12
    • 84919881041 scopus 로고    scopus 로고
    • DeCAF: A deep convolutional activation feature for generic visual recognition
    • Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell. 2014. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition.. In ICML. 647-655.
    • (2014) ICML , pp. 647-655
    • Donahue, J.1    Jia, Y.2    Vinyals, O.3    Hoffman, J.4    Zhang, N.5    Tzeng, E.6    Darrell, T.7
  • 13
    • 85018965601 scopus 로고    scopus 로고
    • ExifTool 2016
    • ExifTool 2016. ExifTool. http://www.sno.phy.queensu.ca/~phil/exiftool/. (2016).
    • (2016) ExifTool.
  • 15
    • 85019047125 scopus 로고    scopus 로고
    • Google. (2016). [Online; accessed 22-Aug-2016]
    • Google. 2016. Google Images API. http://images.google.com. (2016). [Online; accessed 22-Aug-2016].
    • (2016) Google Images API.
  • 16
    • 85019032389 scopus 로고    scopus 로고
    • Google (2016). [Online; accessed 22-Aug-2016]
    • Google 2016. TensorFlow Image Classification for Image Classification. https://www.tensorflow.org/versions/r0.10/tutorials/image recognition/index.html. (2016). [Online; accessed 22-Aug-2016].
    • (2016) TensorFlow Image Classification for Image Classification.
  • 17
    • 85002316560 scopus 로고    scopus 로고
    • Google Cloud CDN 2016[Online; accessed 22-Aug-2016]
    • Google Cloud CDN 2016. Google Cloud CDN. https://cloud.google.com/cdn/docs/. (2016). [Online; accessed 22-Aug-2016].
    • (2016) Google Cloud CDN.
  • 20
    • 85019026704 scopus 로고    scopus 로고
    • Intel NUC. ( [Online; accessed 14-Feb-2016]
    • Intel NUC 2016. Intel NUC. (2016). http://www.intel.com/content/www/us/en/nuc/overview.html [Online; accessed 14-Feb-2016].
    • (2016) Intel NUC 2016
  • 22
    • 0036949534 scopus 로고    scopus 로고
    • Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with ZebraNet
    • (2002)
    • Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan Peh, and Daniel Rubenstein. 2002. Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with ZebraNet. ACM Sigplan Notices 37, 10 (2002), 96-107.
    • (2002) ACM Sigplan Notices , vol.37 , Issue.10 , pp. 96-107
    • Juang, P.1    Oki, H.2    Wang, Y.3    Martonosi, M.4    Li Shiuan Peh5    Rubenstein, D.6
  • 23
    • 85019034870 scopus 로고    scopus 로고
    • K-Nearest Neighbor 2017. [Online; accessed 22-Feb-2017]
    • K-Nearest Neighbor 2017. K-Nearest Neighbor Algorithm. https://en.wikipedia. org/wiki/K-nearest neighbors algorithm. (2017). [Online; accessed 22-Feb-2017].
    • (2017) K-Nearest Neighbor Algorithm.
  • 27
  • 28
    • 85019046859 scopus 로고    scopus 로고
    • PyExifInfo 2016
    • PyExifInfo 2016. PyExifInfo. https://github.com/guinslym/pyexifinfo. (2016).
    • (2016) PyExifInfo
  • 34
    • 77956005774 scopus 로고    scopus 로고
    • E. Soria, J. Martin, R. Magdalena, M. Martinez and A. Serrano, eds
    • L. Torrey and J. Shavlik. 2009. Transfer Learning. IGI Global, E. Soria, J. Martin, R. Magdalena, M. Martinez and A. Serrano, eds. http://ftp.cs.wisc.edu/machine-learning/shavlik-group/torrey.handbook09.pdf.
    • (2009) Transfer Learning. IGI Global
    • Torrey, L.1    Shavlik, J.2
  • 35
    • 85019016991 scopus 로고    scopus 로고
    • UCSB Sedgwick Reserve 2013 [Online; accessed 14-Feb-2016]
    • UCSB Sedgwick Reserve 2013. (2013). http://sedgwick.nrs.ucsb.edu [Online; accessed 14-Feb-2016].
    • (2013)
  • 37
    • 84944735469 scopus 로고    scopus 로고
    • Wikipedia.(2016). [Online; accessed 22-Aug-2016]
    • Wikipedia. 2016. Deep Learning. https://en.wikipedia.org/wiki/Deep learning. (2016). [Online; accessed 22-Aug-2016].
    • (2016) Deep Learning.
  • 39
    • 84938641231 scopus 로고    scopus 로고
    • Automated detection of elephants in wildlife video
    • (2013)
    • Matthias Zeppelzauer. 2013. Automated detection of elephants in wildlife video. EURASIP journal on image and video processing 2013, 1 (2013), 1.
    • (2013) EURASIP Journal on Image and Video Processing , vol.2013 , Issue.1 , pp. 1
    • Zeppelzauer, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.