메뉴 건너뛰기




Volumn 9, Issue , 2017, Pages 98-106

Efficient Resource Management System Based on 4Vs of Big Data Streams

Author keywords

Big data streams; Characteristics of Data (CoD); Cloud computing; Self organizing maps

Indexed keywords

CONFORMAL MAPPING; DISTRIBUTED COMPUTER SYSTEMS; INFORMATION MANAGEMENT; NATURAL RESOURCES MANAGEMENT; RESOURCE ALLOCATION; SELF ORGANIZING MAPS;

EID: 85018658777     PISSN: None     EISSN: 22145796     Source Type: Journal    
DOI: 10.1016/j.bdr.2017.02.002     Document Type: Article
Times cited : (38)

References (48)
  • 1
    • 85029433962 scopus 로고    scopus 로고
    • What is big data?
    • [Online]. Available (accessed 12 December 2016)
    • Gartner Inc., What is big data?. Gartner IT Glossary, 2013 [Online]. Available http://www.gartner.com/it-glossary/big-data (accessed 12 December 2016).
    • (2013) Gartner IT Glossary
    • Gartner Inc.1
  • 2
    • 85027045439 scopus 로고    scopus 로고
    • An energy-efficient architecture for the Internet of Things (IoT)
    • Kaur, N., Sood, S.K., An energy-efficient architecture for the Internet of Things (IoT). IEEE Syst. J., 2015, 1–10.
    • (2015) IEEE Syst. J. , pp. 1-10
    • Kaur, N.1    Sood, S.K.2
  • 5
    • 84939980804 scopus 로고    scopus 로고
    • Scheduling of big data applications on distributed cloud based on QoS parameters
    • Sandhu, R., Sood, S.K., Scheduling of big data applications on distributed cloud based on QoS parameters. Clust. Comput. 18:2 (2014), 817–828.
    • (2014) Clust. Comput. , vol.18 , Issue.2 , pp. 817-828
    • Sandhu, R.1    Sood, S.K.2
  • 9
    • 84975728250 scopus 로고    scopus 로고
    • Cloud resource provisioning: survey, status and future research directions
    • Singh, S., Chana, I., Cloud resource provisioning: survey, status and future research directions. Knowl. Inf. Syst. 49:3 (2016), 1005–1069.
    • (2016) Knowl. Inf. Syst. , vol.49 , Issue.3 , pp. 1005-1069
    • Singh, S.1    Chana, I.2
  • 10
    • 84923356835 scopus 로고    scopus 로고
    • Q-aware: quality of service based cloud resource provisioning
    • Singh, S., Chana, I., Q-aware: quality of service based cloud resource provisioning. Comput. Electr. Eng. 47 (2015), 138–160.
    • (2015) Comput. Electr. Eng. , vol.47 , pp. 138-160
    • Singh, S.1    Chana, I.2
  • 11
    • 84960899560 scopus 로고    scopus 로고
    • Resource provision algorithms in cloud computing: a survey
    • Zhang, J., Huang, H., Wang, X., Resource provision algorithms in cloud computing: a survey. J. Netw. Comput. Appl. 64 (2016), 23–42.
    • (2016) J. Netw. Comput. Appl. , vol.64 , pp. 23-42
    • Zhang, J.1    Huang, H.2    Wang, X.3
  • 12
    • 84893307436 scopus 로고    scopus 로고
    • QoS guarantees and service differentiation for dynamic cloud applications
    • Rao, J., Wei, Y., Gong, J., Xu, C.Z., QoS guarantees and service differentiation for dynamic cloud applications. IEEE Trans. Netw. Serv. Manag. 10:1 (2013), 43–55.
    • (2013) IEEE Trans. Netw. Serv. Manag. , vol.10 , Issue.1 , pp. 43-55
    • Rao, J.1    Wei, Y.2    Gong, J.3    Xu, C.Z.4
  • 13
    • 84888003065 scopus 로고    scopus 로고
    • Adaptive scheduling for parallel tasks with QoS satisfaction for hybrid cloud environments
    • Wang, W.-J., Chang, Y.-S., Lo, W.-T., Lee, Y.-K., Adaptive scheduling for parallel tasks with QoS satisfaction for hybrid cloud environments. J. Supercomput. 66:2 (2013), 783–811.
    • (2013) J. Supercomput. , vol.66 , Issue.2 , pp. 783-811
    • Wang, W.-J.1    Chang, Y.-S.2    Lo, W.-T.3    Lee, Y.-K.4
  • 14
    • 84877888920 scopus 로고    scopus 로고
    • Design QoS-aware multi-path provisioning strategies for efficient cloud-assisted SVC video streaming to heterogeneous clients
    • Zhu, Z., Li, S., Chen, X., Design QoS-aware multi-path provisioning strategies for efficient cloud-assisted SVC video streaming to heterogeneous clients. IEEE Trans. Multimed. 15:4 (2013), 758–768.
    • (2013) IEEE Trans. Multimed. , vol.15 , Issue.4 , pp. 758-768
    • Zhu, Z.1    Li, S.2    Chen, X.3
  • 15
    • 84897621005 scopus 로고    scopus 로고
    • QoS/QoE mapping and adjustment model in the cloud-based multimedia infrastructure
    • Hsu, W.-H., Lo, C.-H., QoS/QoE mapping and adjustment model in the cloud-based multimedia infrastructure. IEEE Syst. J. 8:1 (2014), 247–255.
    • (2014) IEEE Syst. J. , vol.8 , Issue.1 , pp. 247-255
    • Hsu, W.-H.1    Lo, C.-H.2
  • 16
    • 84919826149 scopus 로고    scopus 로고
    • QoS-aware data replication for data-intensive applications in cloud computing systems
    • Chang, J.M., QoS-aware data replication for data-intensive applications in cloud computing systems. IEEE Trans. Cloud Comput. 1:1 (2013), 101–115.
    • (2013) IEEE Trans. Cloud Comput. , vol.1 , Issue.1 , pp. 101-115
    • Chang, J.M.1
  • 17
    • 85144245483 scopus 로고    scopus 로고
    • QoS-guaranteed bandwidth shifting and redistribution in mobile cloud environment
    • Misra, S., Das, S., Khatua, M., Obaidat, M.S., QoS-guaranteed bandwidth shifting and redistribution in mobile cloud environment. IEEE Trans. Cloud Comput. 2:2 (2014), 181–193.
    • (2014) IEEE Trans. Cloud Comput. , vol.2 , Issue.2 , pp. 181-193
    • Misra, S.1    Das, S.2    Khatua, M.3    Obaidat, M.S.4
  • 19
    • 84975037780 scopus 로고    scopus 로고
    • Function points-based resource prediction in cloud computing
    • Sood, S.K., Function points-based resource prediction in cloud computing. Concurr. Comput. Pract. Exp. 28 (2016), 2781–2794.
    • (2016) Concurr. Comput. Pract. Exp. , vol.28 , pp. 2781-2794
    • Sood, S.K.1
  • 20
    • 84952043369 scopus 로고    scopus 로고
    • Matrix based proactive resource provisioning in mobile cloud environment
    • Sood, S.K., Sandhu, R., Matrix based proactive resource provisioning in mobile cloud environment. Simul. Model. Pract. Theory 50 (2015), 83–95.
    • (2015) Simul. Model. Pract. Theory , vol.50 , pp. 83-95
    • Sood, S.K.1    Sandhu, R.2
  • 22
    • 84939803867 scopus 로고    scopus 로고
    • Cloud computing resource scheduling and a survey of its evolutionary approaches
    • Zhan, Z.-H., Liu, X.-F., Gong, Y.-J., Zhang, J., Chung, H.S.-H., Li, Y., Cloud computing resource scheduling and a survey of its evolutionary approaches. ACM Comput. Surv. 47:4 (2015), 1–33.
    • (2015) ACM Comput. Surv. , vol.47 , Issue.4 , pp. 1-33
    • Zhan, Z.-H.1    Liu, X.-F.2    Gong, Y.-J.3    Zhang, J.4    Chung, H.S.-H.5    Li, Y.6
  • 23
    • 84930869928 scopus 로고    scopus 로고
    • Asymptotic scheduling for many task computing in Big Data platforms
    • Sfrent, A., Pop, F., Asymptotic scheduling for many task computing in Big Data platforms. Inf. Sci. (Ny) 319 (2015), 71–91.
    • (2015) Inf. Sci. (Ny) , vol.319 , pp. 71-91
    • Sfrent, A.1    Pop, F.2
  • 24
    • 85029436839 scopus 로고    scopus 로고
    • Agile data integration platforms – cloud-based (iPaaS) and on-premise software |Scribe software
    • [Online]. Available (accessed 9 December 2016)
    • Agile data integration platforms – cloud-based (iPaaS) and on-premise software |Scribe software. [Online]. Available http://www.scribesoft.com/ (accessed 9 December 2016).
  • 28
    • 84904332358 scopus 로고    scopus 로고
    • Apache storm
    • [Online]. Available (accessed 9 December 2016)
    • Apache storm. [Online]. Available http://storm.apache.org/ (accessed 9 December 2016).
  • 29
    • 85029447935 scopus 로고    scopus 로고
    • Welcome to apache flume — apache flume
    • [Online]. Available (accessed 9 December 2016)
    • Welcome to apache flume — apache flume. [Online]. Available http://flume.apache.org/index.html (accessed 9 December 2016).
  • 30
    • 84930870603 scopus 로고    scopus 로고
    • Re-stream: real-time and energy-efficient resource scheduling in big data stream computing environments
    • Sun, D., Zhang, G., Yang, S., Zheng, W., Khan, S.U., Li, K., Re-stream: real-time and energy-efficient resource scheduling in big data stream computing environments. Inf. Sci. (Ny) 319 (2015), 95–112.
    • (2015) Inf. Sci. (Ny) , vol.319 , pp. 95-112
    • Sun, D.1    Zhang, G.2    Yang, S.3    Zheng, W.4    Khan, S.U.5    Li, K.6
  • 32
    • 84965003979 scopus 로고    scopus 로고
    • Responsive and efficient provisioning for multimedia applications
    • Rahman, M., Graham, P., Responsive and efficient provisioning for multimedia applications. Comput. Electr. Eng. 53 (2016), 458–468.
    • (2016) Comput. Electr. Eng. , vol.53 , pp. 458-468
    • Rahman, M.1    Graham, P.2
  • 33
    • 84927967071 scopus 로고    scopus 로고
    • A nodes scheduling model based on Markov chain prediction for big streaming data analysis
    • Zhang, Q., Chen, Z., Yang, L.T., A nodes scheduling model based on Markov chain prediction for big streaming data analysis. Int. J. Commun. Syst. 28:9 (2015), 1610–1619.
    • (2015) Int. J. Commun. Syst. , vol.28 , Issue.9 , pp. 1610-1619
    • Zhang, Q.1    Chen, Z.2    Yang, L.T.3
  • 35
    • 84990852162 scopus 로고    scopus 로고
    • Application type based resource allocation strategy in cloud environment
    • Peng, J., Zhi, X., Xie, X., Application type based resource allocation strategy in cloud environment. Microprocess. Microsyst., 2016, 10.1016/j.micpro.2016.09.014.
    • (2016) Microprocess. Microsyst.
    • Peng, J.1    Zhi, X.2    Xie, X.3
  • 36
    • 84937776204 scopus 로고    scopus 로고
    • Predictive cloud computing with big data: professional golf and tennis forecasting [application notes]
    • Baughman, A.K., Bogdany, R.J., McAvoy, C., Locke, R., O'Connell, B., Upton, C., Predictive cloud computing with big data: professional golf and tennis forecasting [application notes]. IEEE Comput. Intell. Mag. 10:3 (2015), 62–76.
    • (2015) IEEE Comput. Intell. Mag. , vol.10 , Issue.3 , pp. 62-76
    • Baughman, A.K.1    Bogdany, R.J.2    McAvoy, C.3    Locke, R.4    O'Connell, B.5    Upton, C.6
  • 39
    • 84919389514 scopus 로고    scopus 로고
    • Beyond the hype: big data concepts, methods, and analytics
    • Gandomi, A., Haider, M., Beyond the hype: big data concepts, methods, and analytics. Int. J. Inf. Manag. 35 (2015), 137–144.
    • (2015) Int. J. Inf. Manag. , vol.35 , pp. 137-144
    • Gandomi, A.1    Haider, M.2
  • 40
    • 84885737911 scopus 로고    scopus 로고
    • ‘You're as sick as you sound’: using computational approaches for modeling speaker state to gauge illness and recovery
    • Springer US Boston, MA
    • Hirschberg, J., Hjalmarsson, A., Elhadad, N., ‘You're as sick as you sound’: using computational approaches for modeling speaker state to gauge illness and recovery. Advances in Speech Recognition, 2010, Springer US, Boston, MA, 305–322.
    • (2010) Advances in Speech Recognition , pp. 305-322
    • Hirschberg, J.1    Hjalmarsson, A.2    Elhadad, N.3
  • 41
    • 84885730979 scopus 로고    scopus 로고
    • ‘Cry Baby’: using spectrographic analysis to assess neonatal health status from an infant's Cry
    • Springer US Boston, MA
    • Patil, H.A., ‘Cry Baby’: using spectrographic analysis to assess neonatal health status from an infant's Cry. Advances in Speech Recognition, 2010, Springer US, Boston, MA, 323–348.
    • (2010) Advances in Speech Recognition , pp. 323-348
    • Patil, H.A.1
  • 42
    • 85024396386 scopus 로고    scopus 로고
    • Bloom filter
    • first edit Cambridge University Press
    • Rajaraman, A., Ullman, J.D., Bloom filter. Mining of Massive Datasets, first edit, 2014, Cambridge University Press, 116–118.
    • (2014) Mining of Massive Datasets , pp. 116-118
    • Rajaraman, A.1    Ullman, J.D.2
  • 43
    • 0001515951 scopus 로고
    • Auto-regressive model for nonstationary stochastic processes
    • Deodatis, G., Shinozuka, M., Auto-regressive model for nonstationary stochastic processes. J. Eng. Mech. 114:11 (1988), 1995–2012.
    • (1988) J. Eng. Mech. , vol.114 , Issue.11 , pp. 1995-2012
    • Deodatis, G.1    Shinozuka, M.2
  • 44
    • 84964976083 scopus 로고    scopus 로고
    • UCI machine learning repository: corel image features data set
    • [Online]. Available (accessed 13 December 2016)
    • UCI machine learning repository: corel image features data set. [Online]. Available https://archive.ics.uci.edu/ml/datasets/Corel+Image+Features (accessed 13 December 2016).
  • 45
    • 84964976083 scopus 로고    scopus 로고
    • UCI machine learning repository: geographical original of music data set
    • [Online]. Available (accessed 13 December 2016)
    • UCI machine learning repository: geographical original of music data set. [Online]. Available https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music (accessed 13 December 2016).
  • 47
    • 84964976083 scopus 로고    scopus 로고
    • UCI machine learning repository: bag of words data set
    • [Online]. Available (accessed 13 December 2016)
    • UCI machine learning repository: bag of words data set. [Online]. Available https://archive.ics.uci.edu/ml/datasets/Bag+of+Words (accessed 13 December 2016).
  • 48
    • 85029428589 scopus 로고    scopus 로고
    • Estimating moments
    • first edit Cambridge University Press
    • Rajaraman, A., Ullman, J.D., Estimating moments. Mining of Massive Datasets, first edit, 2014, Cambridge University Press, 122–127.
    • (2014) Mining of Massive Datasets , pp. 122-127
    • Rajaraman, A.1    Ullman, J.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.