-
1
-
-
84901325741
-
Hollow-Structured Mesoporous Materials: Chemical Synthesis, Functionalization and Applications
-
Li, Y. S.; Shi, J. L. Hollow-Structured Mesoporous Materials: Chemical Synthesis, Functionalization and Applications Adv. Mater. 2014, 26, 3176-3205 10.1002/adma.201305319
-
(2014)
Adv. Mater.
, vol.26
, pp. 3176-3205
-
-
Li, Y.S.1
Shi, J.L.2
-
2
-
-
84940836616
-
Recent Advances in the Development of Sunlight-Driven Hollow Structure Photocatalysts and Their Applications
-
Nguyen, C. C.; Vu, N. N.; Do, T.-O. Recent Advances in the Development of Sunlight-Driven Hollow Structure Photocatalysts and Their Applications J. Mater. Chem. A 2015, 3, 18345-18359 10.1039/C5TA04326C
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 18345-18359
-
-
Nguyen, C.C.1
Vu, N.N.2
Do, T.-O.3
-
3
-
-
84956824702
-
Nanostructured Materials for Room-Temperature Gas Sensors
-
Zhang, J.; Liu, X. H.; Neri, G.; Pinna, N. Nanostructured Materials for Room-Temperature Gas Sensors Adv. Mater. 2016, 28, 795-831 10.1002/adma.201503825
-
(2016)
Adv. Mater.
, vol.28
, pp. 795-831
-
-
Zhang, J.1
Liu, X.H.2
Neri, G.3
Pinna, N.4
-
4
-
-
84956853311
-
Design, Synthesis and Applications of Core-Shell, Hollow Core, and Nanorattle Multifunctional Nanostructures
-
El-Toni, A. M.; Habila, M. A.; Labis, J. P.; ALOthman, Z. A.; Alhoshan, M.; Elzatahry, A. A.; Zhang, F. Design, Synthesis and Applications of Core-Shell, Hollow Core, and Nanorattle Multifunctional Nanostructures Nanoscale 2016, 8, 2510-2531 10.1039/C5NR07004J
-
(2016)
Nanoscale
, vol.8
, pp. 2510-2531
-
-
El-Toni, A.M.1
Habila, M.A.2
Labis, J.P.3
Alothman, Z.A.4
Alhoshan, M.5
Elzatahry, A.A.6
Zhang, F.7
-
5
-
-
84859560154
-
Metal Oxide Hollow Nanostructures for Lithium-Ion Batteries
-
Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal Oxide Hollow Nanostructures for Lithium-Ion Batteries Adv. Mater. 2012, 24, 1903-1911 10.1002/adma.201200469
-
(2012)
Adv. Mater.
, vol.24
, pp. 1903-1911
-
-
Wang, Z.Y.1
Zhou, L.2
Lou, X.W.3
-
6
-
-
84899452519
-
Micelle Templated NiO Hollow Nanospheres as Anode Materials in Lithium Ion Batteries
-
Sasidharan, M.; Gunawardhana, N.; Senthil, C.; Yoshio, M. Micelle Templated NiO Hollow Nanospheres as Anode Materials in Lithium Ion Batteries J. Mater. Chem. A 2014, 2, 7337-7344 10.1039/c3ta14937d
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 7337-7344
-
-
Sasidharan, M.1
Gunawardhana, N.2
Senthil, C.3
Yoshio, M.4
-
7
-
-
84944395288
-
Hollow Silicon Nanostructures via the Kirkendall Effect
-
Son, Y.; Son, Y.; Choi, M.; Ko, M.; Chae, S.; Park, N.; Cho, J. Hollow Silicon Nanostructures via the Kirkendall Effect Nano Lett. 2015, 15, 6914-6918 10.1021/acs.nanolett.5b02842
-
(2015)
Nano Lett.
, vol.15
, pp. 6914-6918
-
-
Son, Y.1
Son, Y.2
Choi, M.3
Ko, M.4
Chae, S.5
Park, N.6
Cho, J.7
-
8
-
-
84954349290
-
Post-Synthetic Anisotropic Wet-Chemical Etching of Colloidal Sodalite ZIF Crystals
-
Avci, C.; Ariñez-Soriano, J.; Carné-Sánchez, A.; Guillerm, V.; Carbonell, C.; Imaz, I.; Maspoch, D. Post-Synthetic Anisotropic Wet-Chemical Etching of Colloidal Sodalite ZIF Crystals Angew. Chem., Int. Ed. 2015, 54, 14417-14421 10.1002/anie.201507588
-
(2015)
Angew. Chem., Int. Ed.
, vol.54
, pp. 14417-14421
-
-
Avci, C.1
Ariñez-Soriano, J.2
Carné-Sánchez, A.3
Guillerm, V.4
Carbonell, C.5
Imaz, I.6
Maspoch, D.7
-
9
-
-
84964802601
-
Hollow Mesoporous Plasmonic Nanoshells for Enhanced Solar Vapor Generation
-
Zielinski, M. S.; Choi, J.-W.; Grange, T. L.; Modestino, M.; Hashemi, S. M. H.; Pu, Y.; Birkhold, S.; Hubbell, J. A.; Psaltis, D. Hollow Mesoporous Plasmonic Nanoshells for Enhanced Solar Vapor Generation Nano Lett. 2016, 16, 2159-2167 10.1021/acs.nanolett.5b03901
-
(2016)
Nano Lett.
, vol.16
, pp. 2159-2167
-
-
Zielinski, M.S.1
Choi, J.-W.2
Grange, T.L.3
Modestino, M.4
Hashemi, S.M.H.5
Pu, Y.6
Birkhold, S.7
Hubbell, J.A.8
Psaltis, D.9
-
10
-
-
84948157963
-
Synthesis and Electrochemical Properties of Spherical and Hollow-Structured NiO Aggregates Created by Combining the Kirkendall Effect and Ostwald Ripening
-
Cho, J. S.; Won, J. M.; Lee, J.-H.; Kang, Y. C. Synthesis and Electrochemical Properties of Spherical and Hollow-Structured NiO Aggregates Created by Combining the Kirkendall Effect and Ostwald Ripening Nanoscale 2015, 7, 19620-19626 10.1039/C5NR05930E
-
(2015)
Nanoscale
, vol.7
, pp. 19620-19626
-
-
Cho, J.S.1
Won, J.M.2
Lee, J.-H.3
Kang, Y.C.4
-
11
-
-
84886617125
-
MIL-53(Fe): A Metal-Organic Framework with Intrinsic Peroxidase-Like Catalytic Activity for Colorimetric Biosensing
-
Ai, L. H.; Li, L. L.; Zhang, C. H.; Fu, J.; Jiang, J. MIL-53(Fe): a Metal-Organic Framework with Intrinsic Peroxidase-Like Catalytic Activity for Colorimetric Biosensing Chem.-Eur. J. 2013, 19, 15105-15108 10.1002/chem.201303051
-
(2013)
Chem. - Eur. J.
, vol.19
, pp. 15105-15108
-
-
Ai, L.H.1
Li, L.L.2
Zhang, C.H.3
Fu, J.4
Jiang, J.5
-
12
-
-
84922157402
-
Solvothermal Synthesis of MIL-53(Fe) Hybrid Magnetic Composites for Photoelectrochemical Water Oxidation and Organic Pollutant Photodegradation under Visible Light
-
Zhang, C. H.; Ai, L. H.; Jiang, J. Solvothermal Synthesis of MIL-53(Fe) Hybrid Magnetic Composites for Photoelectrochemical Water Oxidation and Organic Pollutant Photodegradation under Visible Light J. Mater. Chem. A 2015, 3, 3074-3081 10.1039/C4TA04622F
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 3074-3081
-
-
Zhang, C.H.1
Ai, L.H.2
Jiang, J.3
-
14
-
-
84929338616
-
Preparation of MIL-53(Fe)-Reduced Graphene Oxide Nanocomposites by a Simple Self-Assembly Strategy for Increasing Interfacial Contact: Efficient Visible-Light Photocatalysts
-
Liang, R. W.; Shen, L. J.; Jing, F. F.; Qin, N.; Wu, L. Preparation of MIL-53(Fe)-Reduced Graphene Oxide Nanocomposites by a Simple Self-Assembly Strategy for Increasing Interfacial Contact: Efficient Visible-Light Photocatalysts ACS Appl. Mater. Interfaces 2015, 7, 9507-9515 10.1021/acsami.5b00682
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 9507-9515
-
-
Liang, R.W.1
Shen, L.J.2
Jing, F.F.3
Qin, N.4
Wu, L.5
-
15
-
-
84952360165
-
2-MIL-53(Fe) for Electrocatalysis of Oxygen Evolution Reaction
-
2-MIL-53(Fe) for Electrocatalysis of Oxygen Evolution Reaction Nanoscale 2016, 8, 1033-1039 10.1039/C5NR06626C
-
(2016)
Nanoscale
, vol.8
, pp. 1033-1039
-
-
Han, Y.J.1
Zhai, J.F.2
Zhang, L.L.3
Dong, S.J.4
-
16
-
-
84877744855
-
Nitric Oxide Adsorption and Delivery in Flexible MIL-88(Fe) Metal-Organic Frameworks
-
McKinlay, A. C.; Eubank, J. F.; Wuttke, S.; Xiao, B.; Wheatley, P. S.; Bazin, P.; Lavalley, J.-C.; Daturi, M.; Vimont, A.; Weireld, G. D. et al. Nitric Oxide Adsorption and Delivery in Flexible MIL-88(Fe) Metal-Organic Frameworks Chem. Mater. 2013, 25, 1592-1599 10.1021/cm304037x
-
(2013)
Chem. Mater.
, vol.25
, pp. 1592-1599
-
-
McKinlay, A.C.1
Eubank, J.F.2
Wuttke, S.3
Xiao, B.4
Wheatley, P.S.5
Bazin, P.6
Lavalley, J.-C.7
Daturi, M.8
Vimont, A.9
Weireld, G.D.10
-
17
-
-
84982245367
-
Prussian Blues as a Cathode Material for Lithium Ion Batteries
-
Shen, L.; Wang, Z. X.; Chen, L. Q. Prussian Blues as a Cathode Material for Lithium Ion Batteries Chem.-Eur. J. 2014, 20, 12559-12562 10.1002/chem.201403061
-
(2014)
Chem. - Eur. J.
, vol.20
, pp. 12559-12562
-
-
Shen, L.1
Wang, Z.X.2
Chen, L.Q.3
-
18
-
-
84922792274
-
MIL-101(Fe) as a Lithium-Ion Battery Electrode Material: A Relaxation and Intercalation Mechanism during Lithium Insertion
-
Shin, J.; Kim, M.; Cirera, J.; Chen, S.; Halder, G. J.; Yersak, T. A.; Paesani, F.; Cohen, S. M.; Meng, Y. S. MIL-101(Fe) as a Lithium-Ion Battery Electrode Material: a Relaxation and Intercalation Mechanism during Lithium Insertion J. Mater. Chem. A 2015, 3, 4738-4744 10.1039/C4TA06694D
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 4738-4744
-
-
Shin, J.1
Kim, M.2
Cirera, J.3
Chen, S.4
Halder, G.J.5
Yersak, T.A.6
Paesani, F.7
Cohen, S.M.8
Meng, Y.S.9
-
19
-
-
84885293302
-
3 Nano-Assembled Spindles
-
3 Nano-Assembled Spindles Nano Energy 2013, 2, 890-896 10.1016/j.nanoen.2013.03.006
-
(2013)
Nano Energy
, vol.2
, pp. 890-896
-
-
Banerjee, A.1
Aravindan, V.2
Bhatnagar, S.3
Mhamane, D.4
Madhavi, S.5
Ogale, S.6
-
20
-
-
84866328109
-
3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries
-
3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries Nano Lett. 2012, 12, 4988-4991 10.1021/nl302618s
-
(2012)
Nano Lett.
, vol.12
, pp. 4988-4991
-
-
Xu, X.D.1
Cao, R.G.2
Jeong, S.3
Cho, J.4
-
21
-
-
84924294392
-
Lithium Ion Battery Application of Porous Composite Oxide Microcubes Prepared via Metal-Organic Frameworks
-
Yang, X.; Tang, Y.-B.; Huang, X.; Xue, H. T.; Kang, W. P.; Li, W. Y.; Ng, T.-W.; Lee, C.-S. Lithium Ion Battery Application of Porous Composite Oxide Microcubes Prepared via Metal-Organic Frameworks J. Power Sources 2015, 284, 109-114 10.1016/j.jpowsour.2015.02.155
-
(2015)
J. Power Sources
, vol.284
, pp. 109-114
-
-
Yang, X.1
Tang, Y.-B.2
Huang, X.3
Xue, H.T.4
Kang, W.P.5
Li, W.Y.6
Ng, T.-W.7
Lee, C.-S.8
-
22
-
-
84941095768
-
Self-Assembly Formation of Hollow Ni-Fe-O Nanocage Architectures by Metal-Organic Frameworks with High-Performance Lithium Storage
-
Guo, H.; Li, T. T.; Chen, W. W.; Liu, L. X.; Qiao, J. L.; Zhang, J. J. Self-Assembly Formation of Hollow Ni-Fe-O Nanocage Architectures by Metal-Organic Frameworks with High-Performance Lithium Storage Sci. Rep. 2015, 5, 13310 10.1038/srep13310
-
(2015)
Sci. Rep.
, vol.5
, pp. 13310
-
-
Guo, H.1
Li, T.T.2
Chen, W.W.3
Liu, L.X.4
Qiao, J.L.5
Zhang, J.J.6
-
23
-
-
84947739898
-
Metal Organic Frameworks Derived Porous Lithium Iron Phosphate with Continuous Nitrogen-Doped Carbon Networks for Lithium Ion Batteries
-
Liu, Y. Y.; Gu, J. J.; Zhang, J. L.; Yu, F.; Dong, L. T.; Nie, N.; Li, W. Metal Organic Frameworks Derived Porous Lithium Iron Phosphate with Continuous Nitrogen-Doped Carbon Networks for Lithium Ion Batteries J. Power Sources 2016, 304, 42-50 10.1016/j.jpowsour.2015.11.022
-
(2016)
J. Power Sources
, vol.304
, pp. 42-50
-
-
Liu, Y.Y.1
Gu, J.J.2
Zhang, J.L.3
Yu, F.4
Dong, L.T.5
Nie, N.6
Li, W.7
-
24
-
-
84903447771
-
4/Carbon Composite Electrode Material Prepared from Metal-Organic Framework Template and Effect of Temperature on Its Capacitance
-
4/Carbon Composite Electrode Material Prepared from Metal-Organic Framework Template and Effect of Temperature on Its Capacitance Nano Energy 2014, 8, 133-140 10.1016/j.nanoen.2014.06.007
-
(2014)
Nano Energy
, vol.8
, pp. 133-140
-
-
Meng, W.J.1
Chen, W.2
Zhao, L.3
Huang, Y.4
Zhu, M.S.5
Huang, Y.6
Fu, Y.Q.7
Geng, F.X.8
Yu, J.9
Chen, X.F.10
-
25
-
-
84923170603
-
3 Nanoparticles Embedded in Shells of Nitrogen-Doped Hollow Carbon Spheres as High-Performance Anodes for Lithium-Ion Batteries
-
3 Nanoparticles Embedded in Shells of Nitrogen-Doped Hollow Carbon Spheres as High-Performance Anodes for Lithium-Ion Batteries Nanoscale 2015, 7, 3410-3417 10.1039/C4NR06321J
-
(2015)
Nanoscale
, vol.7
, pp. 3410-3417
-
-
Zheng, F.C.1
He, M.N.2
Yang, Y.3
Chen, Q.W.4
-
26
-
-
84926459367
-
4/C@NCNT Nanocomposites as Anodes for Lithium-Ion Batteries
-
4/C@NCNT Nanocomposites as Anodes for Lithium-Ion Batteries J. Mater. Chem. A 2015, 3, 7793-7798 10.1039/C5TA00805K
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 7793-7798
-
-
Wu, J.F.1
Song, Y.H.2
Zhou, R.H.3
Chen, S.H.4
Zuo, L.5
Hou, H.Q.6
Wang, L.7
-
27
-
-
84979653102
-
Metal-Organic-Frameworks Derivation of Mesoporous NiO Nanorod for High-Performance Lithium Ion Batteries
-
Pang, H. C.; Guan, B. Q.; Sun, W. W.; Wang, Y. Metal-Organic-Frameworks Derivation of Mesoporous NiO Nanorod for High-Performance Lithium Ion Batteries Electrochim. Acta 2016, 213, 351-357 10.1016/j.electacta.2016.06.163
-
(2016)
Electrochim. Acta
, vol.213
, pp. 351-357
-
-
Pang, H.C.1
Guan, B.Q.2
Sun, W.W.3
Wang, Y.4
-
28
-
-
84988420181
-
Ultrasmall Tin Nanodots Embedded in Nitrogen-Doped Mesoporous Carbon: Metal-Organic-Framework Derivation and Electrochemical Application as Highly Stable Anode for Lithium Ion Batteries
-
Dai, R. L.; Sun, W. W.; Wang, Y. Ultrasmall Tin Nanodots Embedded in Nitrogen-Doped Mesoporous Carbon: Metal-Organic-Framework Derivation and Electrochemical Application as Highly Stable Anode for Lithium Ion Batteries Electrochim. Acta 2016, 217, 123-131 10.1016/j.electacta.2016.08.051
-
(2016)
Electrochim. Acta
, vol.217
, pp. 123-131
-
-
Dai, R.L.1
Sun, W.W.2
Wang, Y.3
-
29
-
-
84964370055
-
Conversion Reaction-based Oxide Nanomaterials for Lithium Ion Battery Anodes
-
Yu, S.-H.; Lee, S. H.; Lee, D. J.; Sung, Y.-E.; Hyeon, T. Conversion Reaction-based Oxide Nanomaterials for Lithium Ion Battery Anodes Small 2016, 12, 2146-2172 10.1002/smll.201502299
-
(2016)
Small
, vol.12
, pp. 2146-2172
-
-
Yu, S.-H.1
Lee, S.H.2
Lee, D.J.3
Sung, Y.-E.4
Hyeon, T.5
-
30
-
-
84859304135
-
Nanostructured Metal Oxide-based Materials as Advanced Anodes for Lithium-Ion Batteries
-
Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. Nanostructured Metal Oxide-based Materials as Advanced Anodes for Lithium-Ion Batteries Nanoscale 2012, 4, 2526-2542 10.1039/c2nr11966h
-
(2012)
Nanoscale
, vol.4
, pp. 2526-2542
-
-
Wu, H.B.1
Chen, J.S.2
Hng, H.H.3
Lou, X.W.4
-
31
-
-
84938389794
-
Microwave Hydrothermal Synthesis of Ni-based Metal-Organic Frameworks and Their Derived Yolk-Shell NiO for Li-Ion Storage and Supported Ammonia Borane for Hydrogen Desorption
-
Kong, S. F.; Dai, R. L.; Li, H.; Sun, W. W.; Wang, Y. Microwave Hydrothermal Synthesis of Ni-based Metal-Organic Frameworks and Their Derived Yolk-Shell NiO for Li-Ion Storage and Supported Ammonia Borane for Hydrogen Desorption ACS Sustainable Chem. Eng. 2015, 3, 1830-1838 10.1021/acssuschemeng.5b00556
-
(2015)
ACS Sustainable Chem. Eng.
, vol.3
, pp. 1830-1838
-
-
Kong, S.F.1
Dai, R.L.2
Li, H.3
Sun, W.W.4
Wang, Y.5
-
32
-
-
84976243081
-
2 Anode for Lithium-Ion Batteries with Much Improved Cyclic Stability
-
2 Anode for Lithium-Ion Batteries with Much Improved Cyclic Stability Small 2016, 12, 1945-1955 10.1002/smll.201503419
-
(2016)
Small
, vol.12
, pp. 1945-1955
-
-
Huang, B.1
Li, X.H.2
Pei, Y.3
Li, S.4
Cao, X.5
Massé, R.C.6
Cao, G.Z.7
-
33
-
-
84981240974
-
Bimetal-Organic Framework: One-Step Homogenous Formation and Its Derived Mesoporous Ternary Metal Oxide Nanorod for High-Capacity, High-Rate, and Long-Cycle-Life Lithium Storage
-
Li, H.; Liang, M.; Sun, W. W.; Wang, Y. Bimetal-Organic Framework: One-Step Homogenous Formation and Its Derived Mesoporous Ternary Metal Oxide Nanorod for High-Capacity, High-Rate, and Long-Cycle-Life Lithium Storage Adv. Funct. Mater. 2016, 26, 1098-1103 10.1002/adfm.201504312
-
(2016)
Adv. Funct. Mater.
, vol.26
, pp. 1098-1103
-
-
Li, H.1
Liang, M.2
Sun, W.W.3
Wang, Y.4
-
34
-
-
84890703792
-
3-Graphene Sheet-on-Sheet Sandwich-Like Nanocomposites
-
3-Graphene Sheet-on-Sheet Sandwich-Like Nanocomposites Sci. Rep. 2013, 3, 3502 10.1038/srep03502
-
(2013)
Sci. Rep.
, vol.3
, pp. 3502
-
-
Kan, J.1
Wang, Y.2
-
35
-
-
84948420411
-
Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted Metal-Organic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage
-
Guo, W. X.; Sun, W. W.; Wang, Y. Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted Metal-Organic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage ACS Nano 2015, 9, 11462-11471 10.1021/acsnano.5b05610
-
(2015)
ACS Nano
, vol.9
, pp. 11462-11471
-
-
Guo, W.X.1
Sun, W.W.2
Wang, Y.3
-
36
-
-
84953852259
-
12-based Anodes: Morphology Tuning and Li-Storage Properties
-
12-based Anodes: Morphology Tuning and Li-Storage Properties J. Mater. Chem. A 2015, 3, 15030-15038 10.1039/C5TA03256C
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 15030-15038
-
-
Lei, G.1
Wang, Y.2
-
37
-
-
84923336506
-
3 Nanosheets for High-Performance Lithium-Ion Batteries
-
3 Nanosheets for High-Performance Lithium-Ion Batteries Adv. Energy Mater. 2015, 5, 1401421 10.1002/aenm.201401421
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1401421
-
-
Cao, K.Z.1
Jiao, L.F.2
Liu, H.Q.3
Liu, Y.C.4
Wang, Y.J.5
Guo, Z.P.6
Yuan, H.T.7
-
38
-
-
77957130451
-
3 Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties
-
3 Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties J. Am. Chem. Soc. 2010, 132, 13162-13164 10.1021/ja1060438
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 13162-13164
-
-
Chen, J.S.1
Zhu, T.2
Yang, X.H.3
Yang, H.G.4
Lou, X.W.5
-
39
-
-
84886800138
-
3 Microdisks Prepared from CSS Template for Potential Anode Materials of Lithium Ion Batteries
-
3 Microdisks Prepared from CSS Template for Potential Anode Materials of Lithium Ion Batteries Nano Energy 2013, 2, 1010-1018 10.1016/j.nanoen.2013.03.023
-
(2013)
Nano Energy
, vol.2
, pp. 1010-1018
-
-
Gao, G.1
Zhang, Q.2
Wang, K.3
Song, H.4
Qiu, P.Y.5
Cui, D.X.6
-
40
-
-
84863644771
-
3 Xerogel Used as the Anode Material for Lithium Ion Batteries with Excellent Electrochemical Performance
-
3 Xerogel Used as the Anode Material for Lithium Ion Batteries with Excellent Electrochemical Performance Chem. Commun. 2012, 48, 7410-7412 10.1039/c2cc33469k
-
(2012)
Chem. Commun.
, vol.48
, pp. 7410-7412
-
-
Jia, X.1
Chen, J.-J.2
Xu, J.-H.3
Shi, Y.-N.4
Fan, Y.-Z.5
Zheng, M.-S.6
Dong, Q.-F.7
-
41
-
-
84997831666
-
3 Nanoparticles in Lithium-Ion Batteries
-
3 Nanoparticles in Lithium-Ion Batteries J. Mater. Chem. A 2016, 4, 18107-18115 10.1039/C6TA08139H
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 18107-18115
-
-
Tang, J.L.1
Lugo, C.E.Z.2
Guzmán, S.F.A.3
Daniel, G.4
Kessler, V.G.5
Seisenbaeva, G.A.6
Pol, V.G.7
-
42
-
-
84993945103
-
3 Microsphere Based Anodes for Lithium Ion Batteries during High Rate Cycling
-
3 Microsphere Based Anodes for Lithium Ion Batteries during High Rate Cycling J. Mater. Chem. A 2016, 4, 16569-16575 10.1039/C6TA07131G
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 16569-16575
-
-
Hao, S.J.1
Zhang, B.W.2
Ball, S.3
Wu, J.S.4
Srinivasan, M.5
Huang, Y.Z.6
-
45
-
-
84893044348
-
3 Multi-Shelled Hollow Microspheres for Lithium Ion Battery Anodes with Superior Capacity and Charge Retention
-
3 Multi-Shelled Hollow Microspheres for Lithium Ion Battery Anodes with Superior Capacity and Charge Retention Energy Environ. Sci. 2014, 7, 632-637 10.1039/C3EE43319F
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 632-637
-
-
Xu, S.M.1
Hessel, C.M.2
Ren, H.3
Yu, R.B.4
Jin, Q.5
Yang, M.6
Zhao, H.J.7
Wang, D.8
-
46
-
-
84929493336
-
3 Multi-Shelled Core-Shell Microspheres and Their Effects on Lithium/Sodium Ion Battery Performances
-
3 Multi-Shelled Core-Shell Microspheres and Their Effects on Lithium/Sodium Ion Battery Performances J. Mater. Chem. A 2015, 3, 10092-10099 10.1039/C5TA01334H
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 10092-10099
-
-
Wu, Z.-G.1
Zhong, Y.-J.2
Liu, J.3
Wu, J.-H.4
Guo, X.-D.5
Zhong, B.-H.6
Zhang, Z.-Y.7
-
47
-
-
84904415525
-
3 Porous Multi-Shelled Hollow Spheres with Enhanced Lithium Storage Properties
-
3 Porous Multi-Shelled Hollow Spheres with Enhanced Lithium Storage Properties J. Mater. Chem. A 2014, 2, 12361-12367 10.1039/C4TA01253D
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 12361-12367
-
-
Wu, Z.-G.1
Zhong, Y.-J.2
Li, J.-T.3
Guo, X.-D.4
Huang, L.5
Zhong, B.-H.6
Sun, S.-G.7
-
48
-
-
84887424260
-
3 Yolk-Shell Particles with Two, Three, and Four Shells for Application as an Anode Material in Lithium-Ion Batteries
-
3 Yolk-Shell Particles with Two, Three, and Four Shells for Application as an Anode Material in Lithium-Ion Batteries Nanoscale 2013, 5, 11592-11597 10.1039/c3nr03978a
-
(2013)
Nanoscale
, vol.5
, pp. 11592-11597
-
-
Son, M.Y.1
Hong, Y.J.2
Lee, J.-K.3
Kang, Y.C.4
-
49
-
-
84876526483
-
3 Microcubes for Advanced Lithium-Ion Batteries
-
3 Microcubes for Advanced Lithium-Ion Batteries J. Mater. Chem. A 2013, 1, 2307-2312 10.1039/C2TA00855F
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 2307-2312
-
-
Xiao, H.1
Xia, Y.2
Zhang, W.K.3
Huang, H.4
Gan, Y.P.5
Tao, X.Y.6
-
50
-
-
84867549460
-
3 Electrospun Nanofibers as High Performance Anode Material for Lithium Ion Batteries
-
3 Electrospun Nanofibers as High Performance Anode Material for Lithium Ion Batteries J. Mater. Chem. 2012, 22, 23049-23056 10.1039/c2jm32989a
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 23049-23056
-
-
Chaudharia, S.1
Srinivasan, M.2
|