메뉴 건너뛰기




Volumn 45, Issue 6, 2016, Pages 2184-2193

Using group data to treat individuals: Understanding heterogeneous treatment effects in the age of precision medicine and patient-centred evidence

Author keywords

Effect measure modification; Heterogeneity of treatment effects; Statistical interaction; Subgroup analysis

Indexed keywords

ANALYTICAL METHOD; DISEASE TREATMENT; EPIDEMIOLOGY; HEALTH CARE; HEALTH RISK; HETEROGENEITY; MEDICINE; PRECISION;

EID: 85017107370     PISSN: 03005771     EISSN: 14643685     Source Type: Journal    
DOI: 10.1093/ije/dyw125     Document Type: Article
Times cited : (123)

References (78)
  • 1
    • 84858997084 scopus 로고    scopus 로고
    • More research is needed -but what type?
    • Abraham I. More research is needed -but what type? BMJ 2010;342:c4662.
    • (2010) BMJ , vol.342
    • Abraham, I.1
  • 2
    • 84923762812 scopus 로고    scopus 로고
    • A new initiative on precision medicine
    • Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015;372:793-95.
    • (2015) N Engl J Med , vol.372 , pp. 793-795
    • Collins, F.S.1    Varmus, H.2
  • 4
    • 0023917179 scopus 로고
    • Confidence intervals for causal parameters
    • Robins JM. Confidence intervals for causal parameters. Stat Med 1988;7:773-85.
    • (1988) Stat Med , vol.7 , pp. 773-785
    • Robins, J.M.1
  • 5
    • 0015723044 scopus 로고
    • Randomization models for the Matched and Unmatched 2 × 2 Tables
    • Copas JB. Randomization models for the Matched and Unmatched 2 × 2 Tables. Biometrika 1973;60:467-76.
    • (1973) Biometrika , vol.60 , pp. 467-476
    • Copas, J.B.1
  • 6
    • 84920420698 scopus 로고
    • Statistics and causal inference
    • Holland PW. Statistics and causal inference. J Am Stat Assoc 1986;81:945-60.
    • (1986) J Am Stat Assoc , vol.81 , pp. 945-960
    • Holland, P.W.1
  • 7
    • 0025221769 scopus 로고
    • Randomization, statistics, and causal inference
    • Greenland S. Randomization, statistics, and causal inference. Epidemiology 1990;1:421-29.
    • (1990) Epidemiology , vol.1 , pp. 421-429
    • Greenland, S.1
  • 8
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin D. Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol 1974;66:688-701.
    • (1974) J Educ Psychol , vol.66 , pp. 688-701
    • Rubin, D.1
  • 9
    • 0002531157 scopus 로고
    • Bayesian inference for causal effects:The role of randomization
    • Rubin DB. Bayesian inference for causal effects:The role of randomization. Ann Stat 1978;6:34-58.
    • (1978) Ann Stat , vol.6 , pp. 34-58
    • Rubin, D.B.1
  • 10
    • 0036131276 scopus 로고    scopus 로고
    • Choosing effect measures for epidemiologic data
    • Greenland S. Choosing effect measures for epidemiologic data. J Clin Epidemiol 2002;55:423-24.
    • (2002) J Clin Epidemiol , vol.55 , pp. 423-424
    • Greenland, S.1
  • 11
    • 0023203943 scopus 로고
    • Interpretation and choice of effect measures in epidemiologic analyses
    • Greenland S. Interpretation and choice of effect measures in epidemiologic analyses. Am J Epidemiol 1987;125:761-68.
    • (1987) Am J Epidemiol , vol.125 , pp. 761-768
    • Greenland, S.1
  • 12
    • 3843072366 scopus 로고    scopus 로고
    • Model-based estimation of relative risks and other epidemiologic measures in studies of common outcomes and in case-control studies
    • Greenland S. Model-based estimation of relative risks and other epidemiologic measures in studies of common outcomes and in case-control studies. Am J Epidemiol 2004;160:301-05.
    • (2004) Am J Epidemiol , vol.160 , pp. 301-305
    • Greenland, S.1
  • 13
    • 85062375539 scopus 로고    scopus 로고
    • Confounding and effect modification:distribution and measure
    • VanderWeele TY. Confounding and effect modification:distribution and measure. Epidemiol Methods 2012;1:55-82.
    • (2012) Epidemiol Methods , vol.1 , pp. 55-82
    • VanderWeele, T.Y.1
  • 15
    • 84880898821 scopus 로고    scopus 로고
    • A counterfactual approach to bias and effect modification in terms of response types
    • Suzuki E, Mitsuhashi T, Tsuda T, Yamamoto E. A counterfactual approach to bias and effect modification in terms of response types. BMC Med Res Methodol 2013;13:101.
    • (2013) BMC Med Res Methodol , vol.13 , pp. 101
    • Suzuki, E.1    Mitsuhashi, T.2    Tsuda, T.3    Yamamoto, E.4
  • 19
    • 84859817083 scopus 로고    scopus 로고
    • Risk models and patient-centred evidence: should physicians expect one right answer?
    • Kent DM, Shah ND. Risk models and patient-centred evidence: should physicians expect one right answer? JAMA 2012;307:1585-86.
    • (2012) JAMA , vol.307 , pp. 1585-1586
    • Kent, D.M.1    Shah, N.D.2
  • 20
    • 21444445554 scopus 로고    scopus 로고
    • Assessing subgroup effects with binary data: can the use of different effect measures lead to different conclusions?
    • White IR, Elbourne D. Assessing subgroup effects with binary data: can the use of different effect measures lead to different conclusions? BMC Med Res Methodol 2005;5:15.
    • (2005) BMC Med Res Methodol , vol.5 , pp. 15
    • White, I.R.1    Elbourne, D.2
  • 21
    • 84896722704 scopus 로고    scopus 로고
    • Subgroup analysis in randomized controlled trials appeared to be dependent on whether relative or absolute effect measures were used
    • Venekamp RP, Rovers MM, Hoes AW, Knol MJ. Subgroup analysis in randomized controlled trials appeared to be dependent on whether relative or absolute effect measures were used. J Clin Epidemiol 2014;67:410-15.
    • (2014) J Clin Epidemiol , vol.67 , pp. 410-415
    • Venekamp, R.P.1    Rovers, M.M.2    Hoes, A.W.3    Knol, M.J.4
  • 22
    • 44949229980 scopus 로고    scopus 로고
    • On effect-measure modification: Relationships among changes in the relative risk, odds ratio, and risk difference
    • Brumback B, Berg A. On effect-measure modification: Relationships among changes in the relative risk, odds ratio, and risk difference. Stat Med 2008;27:3453-65.
    • (2008) Stat Med , vol.27 , pp. 3453-3465
    • Brumback, B.1    Berg, A.2
  • 23
    • 85017107560 scopus 로고    scopus 로고
    • Assumption of constant relative risk reductions across different baseline rates is unsound
    • Responding to Barratt A, Wyer PC, McGinn T, et al.). Tips for learners of evidence-based medicine:
    • Scanlan JP. Assumption of constant relative risk reductions across different baseline rates is unsound (responding to Barratt A, Wyer PC, McGinn T, et al.). Tips for learners of evidence-based medicine:
    • Scanlan, J.P.1
  • 24
    • 85133626989 scopus 로고    scopus 로고
    • Relative risk reduction, absolute risk reduction and number needed to treat
    • Relative risk reduction, absolute risk reduction and number needed to treat. CMAJ 2004;171:353-58.
    • (2004) CMAJ , vol.171 , pp. 353-358
  • 25
    • 0036431372 scopus 로고    scopus 로고
    • Issues related to subgroup analysis in clinical trials
    • Cui L, Hung HM, Wang SJ, Tsong Y. Issues related to subgroup analysis in clinical trials. J Biopharm Stat 2002;12:347-58.
    • (2002) J Biopharm Stat , vol.12 , pp. 347-358
    • Cui, L.1    Hung, H.M.2    Wang, S.J.3    Tsong, Y.4
  • 27
    • 0003155858 scopus 로고
    • Interaction
    • Cox DR. Interaction. Int Rev Stat 1984;52:1-24.
    • (1984) Int Rev Stat , vol.52 , pp. 1-24
    • Cox, D.R.1
  • 28
    • 84879843112 scopus 로고    scopus 로고
    • A framework for the analysis of heterogeneity of treatment effect in patient-centred outcomes research
    • Varadhan R, Segal JB, Boyd CM, Wu AW, Weiss CO. A framework for the analysis of heterogeneity of treatment effect in patient-centred outcomes research. J Clin Epidemiol 2013;66: 818-25.
    • (2013) J Clin Epidemiol , vol.66 , pp. 818-825
    • Varadhan, R.1    Segal, J.B.2    Boyd, C.M.3    Wu, A.W.4    Weiss, C.O.5
  • 29
    • 84945445147 scopus 로고    scopus 로고
    • Estimates of absolute treatment benefit for individual patients required careful modeling of statistical interactions
    • van Klaveren D, Vergouwe Y, Farooq V, Serruys PW, Steyerberg EW. Estimates of absolute treatment benefit for individual patients required careful modeling of statistical interactions. J Clin Epidemiol 2015;68:1366-74.
    • (2015) J Clin Epidemiol , vol.68 , pp. 1366-1374
    • van Klaveren, D.1    Vergouwe, Y.2    Farooq, V.3    Serruys, P.W.4    Steyerberg, E.W.5
  • 30
    • 84921702413 scopus 로고    scopus 로고
    • Interaction revisited: the difference between two estimates
    • Altman DG, Bland JM. Interaction revisited: the difference between two estimates. BMJ 2003;326:219.
    • (2003) BMJ , vol.326 , pp. 219
    • Altman, D.G.1    Bland, J.M.2
  • 32
    • 0018933395 scopus 로고
    • Interaction and synergism
    • Saracci R. Interaction and synergism. Am J Epidemiol 1980;112:465-66.
    • (1980) Am J Epidemiol , vol.112 , pp. 465-466
    • Saracci, R.1
  • 33
    • 0027858814 scopus 로고
    • Basic problems in interaction assessment
    • Greenland S. Basic problems in interaction assessment. Environ Health Perspect 1993;101(Suppl 4):59-66.
    • (1993) Environ Health Perspect , vol.101 , pp. 59-66
    • Greenland, S.1
  • 34
    • 34547924073 scopus 로고    scopus 로고
    • Four types of effect modification: a classification based on directed acyclic graphs
    • VanderWeele TJ, Robins JM. Four types of effect modification: a classification based on directed acyclic graphs. Epidemiology 2007;18:561-68.
    • (2007) Epidemiology , vol.18 , pp. 561-568
    • VanderWeele, T.J.1    Robins, J.M.2
  • 35
    • 73849140389 scopus 로고    scopus 로고
    • On the distinction between interaction and effect modification
    • VanderWeele TJ. On the distinction between interaction and effect modification. Epidemiology 2009;20:863-71.
    • (2009) Epidemiology , vol.20 , pp. 863-871
    • VanderWeele, T.J.1
  • 36
    • 33845411557 scopus 로고    scopus 로고
    • The stroke-thrombolytic predictive instrument: a predictive instrument for intravenous thrombolysis in acute ischaemic stroke
    • Kent DM, Selker HP, Ruthazer R, Bluhmki E, Hacke W. The stroke-thrombolytic predictive instrument: a predictive instrument for intravenous thrombolysis in acute ischaemic stroke. Stroke 2006;37:2957-62.
    • (2006) Stroke , vol.37 , pp. 2957-2962
    • Kent, D.M.1    Selker, H.P.2    Ruthazer, R.3    Bluhmki, E.4    Hacke, W.5
  • 37
    • 1842453957 scopus 로고    scopus 로고
    • Subgroup analyses in randomized trials: risks of subgroup-specific analyses; power and sample size for the interaction test
    • Brookes ST, Whitely E, Egger M, Davey Smith G, Mulheran PA, Peters TJ. Subgroup analyses in randomized trials: risks of subgroup-specific analyses; power and sample size for the interaction test. J Clin Epidemiol 2004;57:229-36.
    • (2004) J Clin Epidemiol , vol.57 , pp. 229-236
    • Brookes, S.T.1    Whitely, E.2    Egger, M.3    Davey Smith, G.4    Mulheran, P.A.5    Peters, T.J.6
  • 38
    • 84902545752 scopus 로고    scopus 로고
    • Exploring interaction effects in small samples increases rates of false-positive and false-negative findings: results from a systematic review and simulation study
    • Schmidt AF, Groenwold RH, Knol MJ et al. Exploring interaction effects in small samples increases rates of false-positive and false-negative findings: results from a systematic review and simulation study. J Clin Epidemiol 2014;67:821-29.
    • (2014) J Clin Epidemiol , vol.67 , pp. 821-829
    • Schmidt, A.F.1    Groenwold, R.H.2    Knol, M.J.3
  • 39
    • 84859726995 scopus 로고    scopus 로고
    • Credibility of claims of subgroup effects in randomised controlled trials:systematic review
    • Sun X, Briel M, Busse JW et al. Credibility of claims of subgroup effects in randomised controlled trials:systematic review. BMJ 2012;344:e1553.
    • (2012) BMJ , vol.344
    • Sun, X.1    Briel, M.2    Busse, J.W.3
  • 40
    • 36348939350 scopus 로고    scopus 로고
    • Statistics in medicine -reporting of subgroup analyses in clinical trials
    • Wang R, Lagakos SW, Ware JH, Hunter DJ, Drazen JM. Statistics in medicine -reporting of subgroup analyses in clinical trials. N Engl J Med 2007;357:2189-94.
    • (2007) N Engl J Med , vol.357 , pp. 2189-2194
    • Wang, R.1    Lagakos, S.W.2    Ware, J.H.3    Hunter, D.J.4    Drazen, J.M.5
  • 41
  • 42
    • 85017126211 scopus 로고    scopus 로고
    • (22March 2016, date last accessed).
    • http://www.pcori.org/assets/2013/11/PCORI-Methodology-Report.pdf (22March 2016, date last accessed).
  • 43
    • 0026501239 scopus 로고
    • A consumer's guide to subgroup analyses
    • Oxman AD, Guyatt GH. A consumer's guide to subgroup analyses. Ann Intern Med 1992;116:78-84.
    • (1992) Ann Intern Med , vol.116 , pp. 78-84
    • Oxman, A.D.1    Guyatt, G.H.2
  • 44
    • 77951082212 scopus 로고    scopus 로고
    • Is a subgroup effect believable? Updating criteria to evaluate the credibility of subgroup analyses
    • Sun X, Briel M, Walter SD, Guyatt GH. Is a subgroup effect believable? Updating criteria to evaluate the credibility of subgroup analyses. BMJ 2010;340:c117.
    • (2010) BMJ , vol.340
    • Sun, X.1    Briel, M.2    Walter, S.D.3    Guyatt, G.H.4
  • 45
    • 12344278985 scopus 로고    scopus 로고
    • Treating individuals 3: from subgroups to individuals: general principles and the example of carotid endarterectomy
    • Rothwell PM, Mehta Z, Howard SC, Gutnikov SA, Warlow CP. Treating individuals 3: from subgroups to individuals: general principles and the example of carotid endarterectomy. Lancet 2005;365:256-65.
    • (2005) Lancet , vol.365 , pp. 256-265
    • Rothwell, P.M.1    Mehta, Z.2    Howard, S.C.3    Gutnikov, S.A.4    Warlow, C.P.5
  • 46
    • 12444289440 scopus 로고    scopus 로고
    • Evidence-based medicine, heterogeneity of treatment effects, and the trouble with averages
    • Kravitz RL, Duan N, Braslow J. Evidence-based medicine, heterogeneity of treatment effects, and the trouble with averages. MilbankQ2004;82:661-87.
    • (2004) MilbankQ , vol.82 , pp. 661-687
    • Kravitz, R.L.1    Duan, N.2    Braslow, J.3
  • 47
    • 33748647946 scopus 로고    scopus 로고
    • Moderators of treatment outcomes: clinical, research, and policy importance
    • Kraemer HC, Frank E, Kupfer DJ. Moderators of treatment outcomes: clinical, research, and policy importance. JAMA 2006;296:1286-89.
    • (2006) JAMA , vol.296 , pp. 1286-1289
    • Kraemer, H.C.1    Frank, E.2    Kupfer, D.J.3
  • 48
    • 72549104482 scopus 로고    scopus 로고
    • Heterogeneity is not always noise:lessons from improvement
    • Davidoff F. Heterogeneity is not always noise:lessons from improvement. JAMA 2009;302:2580-86.
    • (2009) JAMA , vol.302 , pp. 2580-2586
    • Davidoff, F.1
  • 49
    • 0029023726 scopus 로고
    • Can overall results of clinical trials be applied to all patients?
    • Rothwell PM. Can overall results of clinical trials be applied to all patients? Lancet 1995;345:1616-19.
    • (1995) Lancet , vol.345 , pp. 1616-1619
    • Rothwell, P.M.1
  • 51
    • 33947617788 scopus 로고    scopus 로고
    • Heterogeneity of treatment effects: implications for guidelines, payment, and quality assessment
    • Greenfield S, Kravitz R, Duan N, Kaplan SH. Heterogeneity of treatment effects: implications for guidelines, payment, and quality assessment. Am J Med 2007;120:S3-9.
    • (2007) Am J Med , vol.120 , pp. S3-S9
    • Greenfield, S.1    Kravitz, R.2    Duan, N.3    Kaplan, S.H.4
  • 52
    • 77955382172 scopus 로고    scopus 로고
    • Assessing and reporting heterogeneity in treatment effects in clinical trials: a proposal
    • Kent DM, Rothwell PM, Ioannidis JP, Altman DG, Hayward RA. Assessing and reporting heterogeneity in treatment effects in clinical trials: a proposal. Trials 2010;11:85.
    • (2010) Trials , vol.11 , pp. 85
    • Kent, D.M.1    Rothwell, P.M.2    Ioannidis, J.P.3    Altman, D.G.4    Hayward, R.A.5
  • 53
    • 79953133534 scopus 로고    scopus 로고
    • Analysis of randomized comparative clinical trial data for personalized treatment selections
    • Cai T, Tian L, Wong PH, Wei LJ. Analysis of randomized comparative clinical trial data for personalized treatment selections. Biostatistics 2011;12:270-82.
    • (2011) Biostatistics , vol.12 , pp. 270-282
    • Cai, T.1    Tian, L.2    Wong, P.H.3    Wei, L.J.4
  • 54
    • 85053096636 scopus 로고    scopus 로고
    • Statistical methods for personalized medicine
    • 2nd edn. Singapore: World Scientific Publishing
    • Lu T, Zhao X. Statistical methods for personalized medicine. Advanced Medical Statistics. 2nd edn. Singapore: World Scientific Publishing, 2015.
    • (2015) Advanced Medical Statistics
    • Lu, T.1    Zhao, X.2
  • 55
    • 0028157955 scopus 로고
    • Who benefits from medical interventions?
    • Davey Smith G, Egger M. Who benefits from medical interventions? BMJ 1994;308:72-74.
    • (1994) BMJ , vol.308 , pp. 72-74
    • Davey Smith, G.1    Egger, M.2
  • 56
    • 84899796356 scopus 로고    scopus 로고
    • Risk estimation for recurrent Clostridium difficile infection based on clinical factors
    • D'Agostino RB Sr, Collins SH, Pencina KM, Kean Y, Gorbach S. Risk estimation for recurrent Clostridium difficile infection based on clinical factors. Clin Infect Dis 2014;58:1386-93.
    • (2014) Clin Infect Dis , vol.58 , pp. 1386-1393
    • D'Agostino, R.B.1    Collins, S.H.2    Pencina, K.M.3    Kean, Y.4    Gorbach, S.5
  • 57
    • 0030883718 scopus 로고    scopus 로고
    • Patient-specific predictions of outcomes in myocardial infarction for real-time emergency use: a thrombolytic predictive instrument
    • Selker HP, Griffith JL, Beshansky JR et al. Patient-specific predictions of outcomes in myocardial infarction for real-time emergency use: a thrombolytic predictive instrument. Ann Intern Med 1997;127:538-56.
    • (1997) Ann Intern Med , vol.127 , pp. 538-556
    • Selker, H.P.1    Griffith, J.L.2    Beshansky, J.R.3
  • 58
    • 25444528059 scopus 로고    scopus 로고
    • Simple risk stratification at admission to identify patients with reduced mortality from primary angioplasty
    • Thune JJ, Hoefsten DE, Lindholm MG et al. Simple risk stratification at admission to identify patients with reduced mortality from primary angioplasty. Circulation 2005;112:2017-21.
    • (2005) Circulation , vol.112 , pp. 2017-2021
    • Thune, J.J.1    Hoefsten, D.E.2    Lindholm, M.G.3
  • 59
    • 84880560754 scopus 로고    scopus 로고
    • Targeting of lowdose CT screening according to the risk of lung-cancer death
    • Kovalchik SA, Tammemagi M, Berg CD et al. Targeting of lowdose CT screening according to the risk of lung-cancer death. N Engl J Med 2013;369:245-54.
    • (2013) N Engl J Med , vol.369 , pp. 245-254
    • Kovalchik, S.A.1    Tammemagi, M.2    Berg, C.D.3
  • 60
    • 85017140260 scopus 로고    scopus 로고
    • Discussion of a paper by Professor Miettinen
    • Robins JM. Discussion of a paper by Professor Miettinen. Epidemiol Methods 2015;4:33-36.
    • (2015) Epidemiol Methods , vol.4 , pp. 33-36
    • Robins, J.M.1
  • 61
    • 84932153315 scopus 로고    scopus 로고
    • The Lake Wobegon effect:Why most patients are at below-average risk
    • Vickers AJ, Kent DM. The Lake Wobegon effect:Why most patients are at below-average risk. Ann Intern Med 2015;162: 886-67.
    • (2015) Ann Intern Med , vol.162 , pp. 886-967
    • Vickers, A.J.1    Kent, D.M.2
  • 62
    • 85017179116 scopus 로고    scopus 로고
    • Risk and treatment effect heterogeneity: re-analysis of individual participant data from 32 large clinical trials
    • Kent DM, Nelson J, Dahabreh IJ, Rothwell PM, Altman DG, Hayward RA. Risk and treatment effect heterogeneity: re-analysis of individual participant data from 32 large clinical trials. Int J Epidemiol 2016;45:2075-88.
    • (2016) Int J Epidemiol , vol.45 , pp. 2075-2088
    • Kent, D.M.1    Nelson, J.2    Dahabreh, I.J.3    Rothwell, P.M.4    Altman, D.G.5    Hayward, R.A.6
  • 63
    • 0032401967 scopus 로고    scopus 로고
    • Heterogeneity of the baseline risk within patient populations of clinical trials: a proposed evaluation algorithm
    • Ioannidis JP, Lau J. Heterogeneity of the baseline risk within patient populations of clinical trials: a proposed evaluation algorithm. Am J Epidemiol 1998;148:1117-26.
    • (1998) Am J Epidemiol , vol.148 , pp. 1117-1126
    • Ioannidis, J.P.1    Lau, J.2
  • 64
    • 0030668793 scopus 로고    scopus 로고
    • The impact of high-risk patients on the results of clinical trials
    • Ioannidis JP, Lau J. The impact of high-risk patients on the results of clinical trials. J Clin Epidemiol 1997;50:1089-98.
    • (1997) J Clin Epidemiol , vol.50 , pp. 1089-1098
    • Ioannidis, J.P.1    Lau, J.2
  • 65
    • 0036460157 scopus 로고    scopus 로고
    • Is primary angioplasty for some as good as primary angioplasty for all?
    • Kent DM, Schmid CH, Lau J, Selker HP. Is primary angioplasty for some as good as primary angioplasty for all? J Gen Intern Med 2002;17:887-94.
    • (2002) J Gen Intern Med , vol.17 , pp. 887-894
    • Kent, D.M.1    Schmid, C.H.2    Lau, J.3    Selker, H.P.4
  • 66
    • 0037159557 scopus 로고    scopus 로고
    • An independently derived and validated predictive model for selecting patients with myocardial infarction who are likely to benefit from tissue plasminogen activator compared with streptokinase
    • Kent DM, Hayward RA, Griffith JL et al. An independently derived and validated predictive model for selecting patients with myocardial infarction who are likely to benefit from tissue plasminogen activator compared with streptokinase. Am J Med 2002;113:104-11.
    • (2002) Am J Med , vol.113 , pp. 104-111
    • Kent, D.M.1    Hayward, R.A.2    Griffith, J.L.3
  • 67
    • 34548575455 scopus 로고    scopus 로고
    • Limitations of applying summary results of clinical trials to individual patients: the need for risk stratification
    • Kent DM, Hayward RA. Limitations of applying summary results of clinical trials to individual patients: the need for risk stratification. JAMA 2007;298:1209-12.
    • (2007) JAMA , vol.298 , pp. 1209-1212
    • Kent, D.M.1    Hayward, R.A.2
  • 68
    • 84859006522 scopus 로고    scopus 로고
    • Estimating treatment effects for individual patients based on the results of randomised clinical trials
    • Dorresteijn JA, Visseren FL, Ridker PM et al. Estimating treatment effects for individual patients based on the results of randomised clinical trials. BMJ 2011;343:d5888.
    • (2011) BMJ , vol.343
    • Dorresteijn, J.A.1    Visseren, F.L.2    Ridker, P.M.3
  • 69
    • 0037321042 scopus 로고    scopus 로고
    • Are some patients likely to benefit from recombinant tissue-type plasminogen activator for acute ischemic stroke even beyond 3 hours from symptom onset?
    • Kent DM, Ruthazer R, Selker HP. Are some patients likely to benefit from recombinant tissue-type plasminogen activator for acute ischemic stroke even beyond 3 hours from symptom onset? Stroke 2003;34:464-67.
    • (2003) Stroke , vol.34 , pp. 464-467
    • Kent, D.M.1    Ruthazer, R.2    Selker, H.P.3
  • 71
    • 28444477335 scopus 로고    scopus 로고
    • Reporting clinical trial results to inform providers, payers, and consumers
    • Hayward RA, Kent DM, Vijan S, Hofer TP. Reporting clinical trial results to inform providers, payers, and consumers. Health Aff (Millwood) 2005;24:1571-81.
    • (2005) Health Aff (Millwood) , vol.24 , pp. 1571-1581
    • Hayward, R.A.1    Kent, D.M.2    Vijan, S.3    Hofer, T.P.4
  • 72
    • 0032714536 scopus 로고    scopus 로고
    • A multivariate test of interaction for use in clinical trials
    • Follmann DA, Proschan MA. A multivariate test of interaction for use in clinical trials. Biometrics 1999;55:1151-55.
    • (1999) Biometrics , vol.55 , pp. 1151-1155
    • Follmann, D.A.1    Proschan, M.A.2
  • 73
    • 84898716004 scopus 로고    scopus 로고
    • Using internally developed risk models to assess heterogeneity in treatment effects in clinical trials
    • Burke JF, Hayward RA, Nelson JP, Kent DM. Using internally developed risk models to assess heterogeneity in treatment effects in clinical trials. Circ Cardiovasc Qual Outcomes 2014;7: 163-69.
    • (2014) Circ Cardiovasc Qual Outcomes , vol.7 , pp. 163-169
    • Burke, J.F.1    Hayward, R.A.2    Nelson, J.P.3    Kent, D.M.4
  • 74
    • 84888346371 scopus 로고    scopus 로고
    • A regression model for risk difference estimation in population-based case-control studies clarifies gender differences in lung cancer risk of smokers and never smokers
    • Kovalchik SA, De MS, Landi MT et al. A regression model for risk difference estimation in population-based case-control studies clarifies gender differences in lung cancer risk of smokers and never smokers. BMC Med Res Methodol 2013;13:143.
    • (2013) BMC Med Res Methodol , vol.13 , pp. 143
    • Kovalchik, S.A.1    De, M.S.2    Landi, M.T.3
  • 75
    • 84927697109 scopus 로고    scopus 로고
    • Estimating subject-specific treatment differences for risk-benefit assessment with competing risk event-time data
    • Harvard University, Biostatistics Working Paper Series
    • Clagget B, Zhao L, Tian L, Castagno D, Wei LJ. Estimating subject-specific treatment differences for risk-benefit assessment with competing risk event-time data. Harvard University, Biostatistics Working Paper Series 2011.
    • (2011)
    • Clagget, B.1    Zhao, L.2    Tian, L.3    Castagno, D.4    Wei, L.J.5
  • 76
    • 85017125566 scopus 로고    scopus 로고
    • Treatment selections using risk-benefit profiles based on data from comparative randomized clinical trials with multiple endpoints
    • Harvard University, Biostatistics Working Paper Series
    • Claggett B, Tian L, Castagno D, Wei LJ. Treatment selections using risk-benefit profiles based on data from comparative randomized clinical trials with multiple endpoints. Harvard University, Biostatistics Working Paper Series 2012.
    • (2012)
    • Claggett, B.1    Tian, L.2    Castagno, D.3    Wei, L.J.4
  • 77
    • 43249093045 scopus 로고    scopus 로고
    • More on subgroup analyses in clinical trials
    • Pocock SJ, Lubsen J. More on subgroup analyses in clinical trials. N Engl J Med 2008;358:2076-77.
    • (2008) N Engl J Med , vol.358 , pp. 2076-2077
    • Pocock, S.J.1    Lubsen, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.