메뉴 건너뛰기




Volumn 44, Issue 3, 2017, Pages 1050-1062

Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels

Author keywords

computed tomography; features; gray levels; phantom; radiomics; texture; voxel size

Indexed keywords

ABS RESINS; COMPUTERIZED TOMOGRAPHY; IMAGE RECONSTRUCTION; IMAGE SEGMENTATION; MEDICAL IMAGING; PIXELS; PROJECTILES; SCANNING; STYRENE;

EID: 85016313953     PISSN: 00942405     EISSN: 24734209     Source Type: Journal    
DOI: 10.1002/MP.12123     Document Type: Article
Times cited : (465)

References (41)
  • 1
    • 84857037061 scopus 로고    scopus 로고
    • Radiomics: Extracting more information from medical images using advanced feature analysis
    • Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–446.
    • (2012) Eur J Cancer , vol.48 , pp. 441-446
    • Lambin, P.1    Rios-Velazquez, E.2    Leijenaar, R.3
  • 2
    • 77953305247 scopus 로고    scopus 로고
    • The biology under-lying molecular imaging in oncology: From genome to anatome and back again
    • Gillies RJ, Anderson AR, Gatenby RA, Morse DL. The biology under-lying molecular imaging in oncology: From genome to anatome and back again. Clin Radiol. 2010;65:517–521.
    • (2010) Clin Radiol , vol.65 , pp. 517-521
    • Gillies, R.J.1    Anderson, A.R.2    Gatenby, R.A.3    Morse, D.L.4
  • 3
    • 84901946941 scopus 로고    scopus 로고
    • Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    • Aerts HJWL, Velazquez ER, Leijenaar RTH, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006–4013.
    • (2014) Nat Commun , vol.5 , pp. 4006-4013
    • Aerts, H.J.W.L.1    Velazquez, E.R.2    Leijenaar, R.T.H.3
  • 4
    • 34250697544 scopus 로고    scopus 로고
    • Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma
    • Kuo MD, Gollub J, Sirlin CB, Ooi C, Chen X. Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. J Vasc Interv Radiol. 2007;18:821–830.
    • (2007) J Vasc Interv Radiol , vol.18 , pp. 821-830
    • Kuo, M.D.1    Gollub, J.2    Sirlin, C.B.3    Ooi, C.4    Chen, X.5
  • 5
    • 84879911109 scopus 로고    scopus 로고
    • Epidermal growth factor receptor mutation in lung adenocarcinomas: Relationship with CT characteristics and histologic subtypes
    • Lee H-J, Kim YT, Kang CH, et al. Epidermal growth factor receptor mutation in lung adenocarcinomas: Relationship with CT characteristics and histologic subtypes. Radiology. 2013;268:254–264.
    • (2013) Radiology , vol.268 , pp. 254-264
    • Lee, H.-J.1    Kim, Y.T.2    Kang, C.H.3
  • 6
    • 84893482700 scopus 로고    scopus 로고
    • Radiogenomics of clear cell renal cell carcinoma: Associations between CT imaging features and muta-tions
    • Karlo CA, Paolo PLD, Chaim J, et al. Radiogenomics of clear cell renal cell carcinoma: Associations between CT imaging features and muta-tions. Radiology. 2014;270:464–471.
    • (2014) Radiology , vol.270 , pp. 464-471
    • Karlo, C.A.1    Paolo, P.L.D.2    Chaim, J.3
  • 7
    • 84864349266 scopus 로고    scopus 로고
    • Non–small cell lung cancer: Identify-ing prognostic imaging biomarkers by leveraging public gene expression microarray data—methods and preliminary results
    • Gevaert O, Xu J, Hoang CD, et al. Non–small cell lung cancer: Identify-ing prognostic imaging biomarkers by leveraging public gene expression microarray data—methods and preliminary results. Radiology. 2012;264:387–396.
    • (2012) Radiology , vol.264 , pp. 387-396
    • Gevaert, O.1    Xu, J.2    Hoang, C.D.3
  • 8
    • 79952788113 scopus 로고    scopus 로고
    • Intratumor heterogeneity character-ized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer
    • Tixier F, Le Rest CC, Hatt M, et al. Intratumor heterogeneity character-ized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–378.
    • (2011) J Nucl Med , vol.52 , pp. 369-378
    • Tixier, F.1    Le Rest, C.C.2    Hatt, M.3
  • 9
    • 84927569956 scopus 로고    scopus 로고
    • CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma
    • Coroller TP, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 2015;114:345–350.
    • (2015) Radiother Oncol , vol.114 , pp. 345-350
    • Coroller, T.P.1    Grossmann, P.2    Hou, Y.3
  • 10
    • 84867139157 scopus 로고    scopus 로고
    • Radiomics: The process and the chal-lenges
    • Kumar V, Gu Y, Basu S, et al. Radiomics: The process and the chal-lenges. Magn Reson Imaging. 2012;30:1234–1248.
    • (2012) Magn Reson Imaging , vol.30 , pp. 1234-1248
    • Kumar, V.1    Gu, Y.2    Basu, S.3
  • 11
    • 84962314053 scopus 로고    scopus 로고
    • Reproducibility of radiomics for deci-phering tumor phenotype with imaging
    • Zhao B, Tan Y, Tsai W-Y, et al. Reproducibility of radiomics for deci-phering tumor phenotype with imaging. Sci Rep. 2016;6:23428.
    • (2016) Sci Rep , vol.6
    • Zhao, B.1    Tan, Y.2    Tsai, W.-Y.3
  • 12
    • 77956565862 scopus 로고    scopus 로고
    • Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters
    • Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol (Stockholm, Sweden). 2010;49:1012–1016.
    • (2010) Acta Oncol (Stockholm, Sweden) , vol.49 , pp. 1012-1016
    • Galavis, P.E.1    Hollensen, C.2    Jallow, N.3    Paliwal, B.4    Jeraj, R.5
  • 13
    • 84876196444 scopus 로고    scopus 로고
    • Quantifying tumour heterogeneity with CT
    • Ganeshan B, Miles KA. Quantifying tumour heterogeneity with CT. Cancer imaging. 2013;13:140–149.
    • (2013) Cancer Imaging , vol.13 , pp. 140-149
    • Ganeshan, B.1    Miles, K.A.2
  • 15
    • 84943774122 scopus 로고    scopus 로고
    • Measuring computed tomography scanner variability of radiomics features
    • Mackin D, Fave X, Zhang L, et al. Measuring computed tomography scanner variability of radiomics features. Invest Radiol. 2015;50:757– 765.
    • (2015) Invest Radiol , vol.50 , pp. 757-765
    • Mackin, D.1    Fave, X.2    Zhang, L.3
  • 16
    • 84946918741 scopus 로고    scopus 로고
    • Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung can-cer?
    • Fave X, Mackin D, Yang J, et al. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung can-cer? Med Phys. 2015;42:6784–6797.
    • (2015) Med Phys , vol.42 , pp. 6784-6797
    • Fave, X.1    Mackin, D.2    Yang, J.3
  • 18
    • 84902489272 scopus 로고    scopus 로고
    • Exploring variability in CT characterization of tumors: A preliminary phantom study
    • Zhao B, Tan Y, Tsai WY, Schwartz LH, Lu L. Exploring variability in CT characterization of tumors: A preliminary phantom study. Transl Oncol. 2014;7:88–93.
    • (2014) Transl Oncol , vol.7 , pp. 88-93
    • Zhao, B.1    Tan, Y.2    Tsai, W.Y.3    Schwartz, L.H.4    Lu, L.5
  • 19
    • 84976407838 scopus 로고    scopus 로고
    • Applications and limitations of radiomics
    • Yip SS, Aerts HJ. Applications and limitations of radiomics. Phys Med Biol. 2016;61:R150–R166.
    • (2016) Phys Med Biol , vol.61 , pp. R150-R166
    • Yip, S.S.1    Aerts, H.J.2
  • 20
    • 59149105325 scopus 로고    scopus 로고
    • Exploring feature-based approaches in PET images for predicting cancer treatment outcomes
    • El Naqa I, Grigsby P, Apte A, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn. 2009;42:1162–1171.
    • (2009) Pattern Recogn , vol.42 , pp. 1162-1171
    • El Naqa, I.1    Grigsby, P.2    Apte, A.3
  • 22
    • 84885428106 scopus 로고    scopus 로고
    • Robustness of intratumour (1)(8)F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma
    • Hatt M, Tixier F, Cheze Le Rest C, Pradier O, Visvikis D. Robustness of intratumour (1)(8)F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging. 2013;40:1662–1671.
    • (2013) Eur J Nucl Med Mol Imaging , vol.40 , pp. 1662-1671
    • Hatt, M.1    Tixier, F.2    Cheze Le Rest, C.3    Pradier, O.4    Visvikis, D.5
  • 23
    • 84938942773 scopus 로고    scopus 로고
    • The effect of SUV discretization in quantitative FDG-PET Radiomics: The need for standardized methodology in tumor texture analysis
    • Leijenaar RT, Nalbantov G, Carvalho S, et al. The effect of SUV discretization in quantitative FDG-PET Radiomics: The need for standardized methodology in tumor texture analysis. Sci Rep. 2015;5: 11075.
    • (2015) Sci Rep , vol.5
    • Leijenaar, R.T.1    Nalbantov, G.2    Carvalho, S.3
  • 25
    • 0018466704 scopus 로고
    • Statistical and structural approaches to texture
    • Haralick RM. Statistical and structural approaches to texture. Proc IEEE. 1979;67:786–804.
    • (1979) Proc IEEE , vol.67 , pp. 786-804
    • Haralick, R.M.1
  • 26
    • 85046672212 scopus 로고    scopus 로고
    • Comparative analysis of textural features derived from GLCM for ultrasound liver image clas-sification
    • O JA, Aborisade DO, Amole AO, Durodola AO. Comparative analysis of textural features derived from GLCM for ultrasound liver image clas-sification. Int J Comput Trends Technol. 2014;V11:239–244.
    • (2014) Int J Comput Trends Technol , vol.11 , pp. 239-244
    • Ja, O.1    Aborisade, D.O.2    Amole, A.O.3    Durodola, A.O.4
  • 28
    • 84949801178 scopus 로고    scopus 로고
    • Variability of image features computed from conventional and respira-tory-gated PET/CT images of lung cancer
    • Oliver JA, Budzevich M, Zhang GG, Dilling TJ, Latifi K, Moros EG. Variability of image features computed from conventional and respira-tory-gated PET/CT images of lung cancer. Trans Oncol. 2015;8:524– 534.
    • (2015) Trans Oncol , vol.8 , pp. 524-534
    • Oliver, J.A.1    Budzevich, M.2    Zhang, G.G.3    Dilling, T.J.4    Latifi, K.5    Moros, E.G.6
  • 29
    • 0001416258 scopus 로고
    • Texture analysis using gray level run lengths
    • Galloway MM. Texture analysis using gray level run lengths. Comput Graph Image Process. 1975;4:172–179.
    • (1975) Comput Graph Image Process , vol.4 , pp. 172-179
    • Galloway, M.M.1
  • 30
    • 0025585326 scopus 로고
    • Use of gray value distribution of run lengths for texture analysis
    • Chu A, Sehgal CM, Greenleaf JF. Use of gray value distribution of run lengths for texture analysis. Pattern Recogn Lett. 1990;11:415–419.
    • (1990) Pattern Recogn Lett , vol.11 , pp. 415-419
    • Chu, A.1    Sehgal, C.M.2    Greenleaf, J.F.3
  • 31
    • 0026276969 scopus 로고
    • Image characterizations based on joint gray level—run length distributions
    • Dasarathy BV, Holder EB. Image characterizations based on joint gray level—run length distributions. Pattern Recogn Lett. 1991;12: 497–502.
    • (1991) Pattern Recogn Lett , vol.12 , pp. 497-502
    • Dasarathy, B.V.1    Holder, E.B.2
  • 33
    • 0024738619 scopus 로고
    • Textural features corresponding to textural prop-erties
    • Amadasun M, King R. Textural features corresponding to textural prop-erties. IEEE Trans Syst Man Cybern. 1989;19:1264–1274.
    • (1989) IEEE Trans Syst Man Cybern , vol.19 , pp. 1264-1274
    • Amadasun, M.1    King, R.2
  • 34
    • 0026927227 scopus 로고
    • An efficient approach to estimate fractal dimension of textural images
    • Sarkar N, Chaudhuri BB. An efficient approach to estimate fractal dimension of textural images. Pattern Recogn. 1992;25:1035–1041.
    • (1992) Pattern Recogn , vol.25 , pp. 1035-1041
    • Sarkar, N.1    Chaudhuri, B.B.2
  • 35
    • 0028973885 scopus 로고
    • Jayasooriah. A practical method for estimating fractal dimension
    • Jin XC, Ong SH, Jayasooriah. A practical method for estimating fractal dimension. Pattern Recogn Lett. 1995;16:457–464.
    • (1995) Pattern Recogn Lett , vol.16 , pp. 457-464
    • Jin, X.C.1    Ong, S.H.2
  • 36
    • 84890056425 scopus 로고    scopus 로고
    • High quality machine-robust image features: Identification in nonsmall cell lung cancer computed tomogra-phy images
    • Hunter LA, Krafft S, Stingo F, et al. High quality machine-robust image features: Identification in nonsmall cell lung cancer computed tomogra-phy images. Med Phys. 2013;40:121916.
    • (2013) Med Phys , vol.40
    • Hunter, L.A.1    Krafft, S.2    Stingo, F.3
  • 37
    • 61449171165 scopus 로고    scopus 로고
    • Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning
    • Yu H, Caldwell C, Mah K, Mozeg D. Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning. IEEE Trans Med Imaging. 2009;28:374–383.
    • (2009) IEEE Trans Med Imaging , vol.28 , pp. 374-383
    • Yu, H.1    Caldwell, C.2    Mah, K.3    Mozeg, D.4
  • 38
    • 84872015239 scopus 로고    scopus 로고
    • Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy?
    • Cook GJR, Yip C, Siddique M, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54:19–26.
    • (2013) J Nucl Med , vol.54 , pp. 19-26
    • Cook, G.J.R.1    Yip, C.2    Siddique, M.3
  • 39
    • 84983350368 scopus 로고    scopus 로고
    • Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer
    • Fave X, Zhang L, Yang J, et al. Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Trans Cancer Res. 2016;5:349–363.
    • (2016) Trans Cancer Res , vol.5 , pp. 349-363
    • Fave, X.1    Zhang, L.2    Yang, J.3
  • 40
    • 84879934752 scopus 로고    scopus 로고
    • On some misconceptions about tumor heterogeneity quantifi-cation
    • Brooks FJ. On some misconceptions about tumor heterogeneity quantifi-cation. Eur J Nucl Med Mol Imaging. 2013;40:1292–1294.
    • (2013) Eur J Nucl Med Mol Imaging , vol.40 , pp. 1292-1294
    • Brooks, F.J.1
  • 41
    • 84975260856 scopus 로고    scopus 로고
    • Robustness of radiomic features in [11C]-choline and [18F]FDG PET/CT imaging of nasopharyngeal carcinoma: Impact of segmentation and discretization
    • Lu L, Lv W, Jiang J, et al. Robustness of radiomic features in [11C]-choline and [18F]FDG PET/CT imaging of nasopharyngeal carcinoma: Impact of segmentation and discretization. Mol Imaging Biol. 2016;18:935–945.
    • (2016) Mol Imaging Biol , vol.18 , pp. 935-945
    • Lu, L.1    Lv, W.2    Jiang, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.