-
1
-
-
84857037061
-
Radiomics: Extracting more information from medical images using advanced feature analysis
-
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–446.
-
(2012)
Eur J Cancer
, vol.48
, pp. 441-446
-
-
Lambin, P.1
Rios-Velazquez, E.2
Leijenaar, R.3
-
2
-
-
77953305247
-
The biology under-lying molecular imaging in oncology: From genome to anatome and back again
-
Gillies RJ, Anderson AR, Gatenby RA, Morse DL. The biology under-lying molecular imaging in oncology: From genome to anatome and back again. Clin Radiol. 2010;65:517–521.
-
(2010)
Clin Radiol
, vol.65
, pp. 517-521
-
-
Gillies, R.J.1
Anderson, A.R.2
Gatenby, R.A.3
Morse, D.L.4
-
3
-
-
84901946941
-
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
-
Aerts HJWL, Velazquez ER, Leijenaar RTH, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006–4013.
-
(2014)
Nat Commun
, vol.5
, pp. 4006-4013
-
-
Aerts, H.J.W.L.1
Velazquez, E.R.2
Leijenaar, R.T.H.3
-
4
-
-
34250697544
-
Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma
-
Kuo MD, Gollub J, Sirlin CB, Ooi C, Chen X. Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. J Vasc Interv Radiol. 2007;18:821–830.
-
(2007)
J Vasc Interv Radiol
, vol.18
, pp. 821-830
-
-
Kuo, M.D.1
Gollub, J.2
Sirlin, C.B.3
Ooi, C.4
Chen, X.5
-
5
-
-
84879911109
-
Epidermal growth factor receptor mutation in lung adenocarcinomas: Relationship with CT characteristics and histologic subtypes
-
Lee H-J, Kim YT, Kang CH, et al. Epidermal growth factor receptor mutation in lung adenocarcinomas: Relationship with CT characteristics and histologic subtypes. Radiology. 2013;268:254–264.
-
(2013)
Radiology
, vol.268
, pp. 254-264
-
-
Lee, H.-J.1
Kim, Y.T.2
Kang, C.H.3
-
6
-
-
84893482700
-
Radiogenomics of clear cell renal cell carcinoma: Associations between CT imaging features and muta-tions
-
Karlo CA, Paolo PLD, Chaim J, et al. Radiogenomics of clear cell renal cell carcinoma: Associations between CT imaging features and muta-tions. Radiology. 2014;270:464–471.
-
(2014)
Radiology
, vol.270
, pp. 464-471
-
-
Karlo, C.A.1
Paolo, P.L.D.2
Chaim, J.3
-
7
-
-
84864349266
-
Non–small cell lung cancer: Identify-ing prognostic imaging biomarkers by leveraging public gene expression microarray data—methods and preliminary results
-
Gevaert O, Xu J, Hoang CD, et al. Non–small cell lung cancer: Identify-ing prognostic imaging biomarkers by leveraging public gene expression microarray data—methods and preliminary results. Radiology. 2012;264:387–396.
-
(2012)
Radiology
, vol.264
, pp. 387-396
-
-
Gevaert, O.1
Xu, J.2
Hoang, C.D.3
-
8
-
-
79952788113
-
Intratumor heterogeneity character-ized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer
-
Tixier F, Le Rest CC, Hatt M, et al. Intratumor heterogeneity character-ized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–378.
-
(2011)
J Nucl Med
, vol.52
, pp. 369-378
-
-
Tixier, F.1
Le Rest, C.C.2
Hatt, M.3
-
9
-
-
84927569956
-
CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma
-
Coroller TP, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 2015;114:345–350.
-
(2015)
Radiother Oncol
, vol.114
, pp. 345-350
-
-
Coroller, T.P.1
Grossmann, P.2
Hou, Y.3
-
10
-
-
84867139157
-
Radiomics: The process and the chal-lenges
-
Kumar V, Gu Y, Basu S, et al. Radiomics: The process and the chal-lenges. Magn Reson Imaging. 2012;30:1234–1248.
-
(2012)
Magn Reson Imaging
, vol.30
, pp. 1234-1248
-
-
Kumar, V.1
Gu, Y.2
Basu, S.3
-
11
-
-
84962314053
-
Reproducibility of radiomics for deci-phering tumor phenotype with imaging
-
Zhao B, Tan Y, Tsai W-Y, et al. Reproducibility of radiomics for deci-phering tumor phenotype with imaging. Sci Rep. 2016;6:23428.
-
(2016)
Sci Rep
, vol.6
-
-
Zhao, B.1
Tan, Y.2
Tsai, W.-Y.3
-
12
-
-
77956565862
-
Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters
-
Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol (Stockholm, Sweden). 2010;49:1012–1016.
-
(2010)
Acta Oncol (Stockholm, Sweden)
, vol.49
, pp. 1012-1016
-
-
Galavis, P.E.1
Hollensen, C.2
Jallow, N.3
Paliwal, B.4
Jeraj, R.5
-
13
-
-
84876196444
-
Quantifying tumour heterogeneity with CT
-
Ganeshan B, Miles KA. Quantifying tumour heterogeneity with CT. Cancer imaging. 2013;13:140–149.
-
(2013)
Cancer Imaging
, vol.13
, pp. 140-149
-
-
Ganeshan, B.1
Miles, K.A.2
-
14
-
-
84994833338
-
-
Nyflot MJ, Yang F, Byrd D, Bowen SR, Sandison GA, Kinahan PE. Quantitative radiomics: Impact of stochastic effects on textural feature analysis implies the need for standards. J Med Imaging (Bellingham, Wash.). 2015;2:041002.
-
(2015)
Quantitative Radiomics: Impact of Stochastic Effects on Textural Feature Analysis Implies the Need for Standards. J Med Imaging (Bellingham, Wash.)
, pp. 2
-
-
Nyflot, M.J.1
Yang, F.2
Byrd, D.3
Bowen, S.R.4
Sandison, G.A.5
Kinahan, P.E.6
-
15
-
-
84943774122
-
Measuring computed tomography scanner variability of radiomics features
-
Mackin D, Fave X, Zhang L, et al. Measuring computed tomography scanner variability of radiomics features. Invest Radiol. 2015;50:757– 765.
-
(2015)
Invest Radiol
, vol.50
, pp. 757-765
-
-
Mackin, D.1
Fave, X.2
Zhang, L.3
-
16
-
-
84946918741
-
Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung can-cer?
-
Fave X, Mackin D, Yang J, et al. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung can-cer? Med Phys. 2015;42:6784–6797.
-
(2015)
Med Phys
, vol.42
, pp. 6784-6797
-
-
Fave, X.1
Mackin, D.2
Yang, J.3
-
17
-
-
83755172956
-
Developing a classifier model for lung tumors in CT-scan images
-
Basu S, Hall LO, Goldgof DB, et al. Developing a classifier model for lung tumors in CT-scan images. I. E. International Conference on Sys-tems, Man, and Cybernetics (SMC), IEEE. 2011;1306–1312.
-
(2011)
I. E. International Conference on Sys-Tems, Man, and Cybernetics (SMC), IEEE.
, pp. 1306-1312
-
-
Basu, S.1
Hall, L.O.2
Goldgof, D.B.3
-
18
-
-
84902489272
-
Exploring variability in CT characterization of tumors: A preliminary phantom study
-
Zhao B, Tan Y, Tsai WY, Schwartz LH, Lu L. Exploring variability in CT characterization of tumors: A preliminary phantom study. Transl Oncol. 2014;7:88–93.
-
(2014)
Transl Oncol
, vol.7
, pp. 88-93
-
-
Zhao, B.1
Tan, Y.2
Tsai, W.Y.3
Schwartz, L.H.4
Lu, L.5
-
19
-
-
84976407838
-
Applications and limitations of radiomics
-
Yip SS, Aerts HJ. Applications and limitations of radiomics. Phys Med Biol. 2016;61:R150–R166.
-
(2016)
Phys Med Biol
, vol.61
, pp. R150-R166
-
-
Yip, S.S.1
Aerts, H.J.2
-
20
-
-
59149105325
-
Exploring feature-based approaches in PET images for predicting cancer treatment outcomes
-
El Naqa I, Grigsby P, Apte A, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn. 2009;42:1162–1171.
-
(2009)
Pattern Recogn
, vol.42
, pp. 1162-1171
-
-
El Naqa, I.1
Grigsby, P.2
Apte, A.3
-
21
-
-
84857636637
-
Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer
-
Vaidya M, Creach KM, Frye J, Dehdashti F, Bradley JD, El Naqa I. Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiother Oncol. 2012;102:239–245.
-
(2012)
Radiother Oncol
, vol.102
, pp. 239-245
-
-
Vaidya, M.1
Creach, K.M.2
Frye, J.3
Dehdashti, F.4
Bradley, J.D.5
El Naqa, I.6
-
22
-
-
84885428106
-
Robustness of intratumour (1)(8)F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma
-
Hatt M, Tixier F, Cheze Le Rest C, Pradier O, Visvikis D. Robustness of intratumour (1)(8)F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging. 2013;40:1662–1671.
-
(2013)
Eur J Nucl Med Mol Imaging
, vol.40
, pp. 1662-1671
-
-
Hatt, M.1
Tixier, F.2
Cheze Le Rest, C.3
Pradier, O.4
Visvikis, D.5
-
23
-
-
84938942773
-
The effect of SUV discretization in quantitative FDG-PET Radiomics: The need for standardized methodology in tumor texture analysis
-
Leijenaar RT, Nalbantov G, Carvalho S, et al. The effect of SUV discretization in quantitative FDG-PET Radiomics: The need for standardized methodology in tumor texture analysis. Sci Rep. 2015;5: 11075.
-
(2015)
Sci Rep
, vol.5
-
-
Leijenaar, R.T.1
Nalbantov, G.2
Carvalho, S.3
-
25
-
-
0018466704
-
Statistical and structural approaches to texture
-
Haralick RM. Statistical and structural approaches to texture. Proc IEEE. 1979;67:786–804.
-
(1979)
Proc IEEE
, vol.67
, pp. 786-804
-
-
Haralick, R.M.1
-
26
-
-
85046672212
-
Comparative analysis of textural features derived from GLCM for ultrasound liver image clas-sification
-
O JA, Aborisade DO, Amole AO, Durodola AO. Comparative analysis of textural features derived from GLCM for ultrasound liver image clas-sification. Int J Comput Trends Technol. 2014;V11:239–244.
-
(2014)
Int J Comput Trends Technol
, vol.11
, pp. 239-244
-
-
Ja, O.1
Aborisade, D.O.2
Amole, A.O.3
Durodola, A.O.4
-
27
-
-
85136406366
-
-
Kauai, Hawaii-USA, CGIM
-
Kurani AS, Xu D-H, Furst J, Raicu DS. Presented at the 7th IASTED International Conference on Computer Graphics and Imaging, Kauai, Hawaii-USA, CGIM; 2004.
-
(2004)
Presented at the 7Th IASTED International Conference on Computer Graphics and Imaging
-
-
Kurani, A.S.1
Xu, D.-H.2
Furst, J.3
Raicu, D.S.4
-
28
-
-
84949801178
-
Variability of image features computed from conventional and respira-tory-gated PET/CT images of lung cancer
-
Oliver JA, Budzevich M, Zhang GG, Dilling TJ, Latifi K, Moros EG. Variability of image features computed from conventional and respira-tory-gated PET/CT images of lung cancer. Trans Oncol. 2015;8:524– 534.
-
(2015)
Trans Oncol
, vol.8
, pp. 524-534
-
-
Oliver, J.A.1
Budzevich, M.2
Zhang, G.G.3
Dilling, T.J.4
Latifi, K.5
Moros, E.G.6
-
29
-
-
0001416258
-
Texture analysis using gray level run lengths
-
Galloway MM. Texture analysis using gray level run lengths. Comput Graph Image Process. 1975;4:172–179.
-
(1975)
Comput Graph Image Process
, vol.4
, pp. 172-179
-
-
Galloway, M.M.1
-
30
-
-
0025585326
-
Use of gray value distribution of run lengths for texture analysis
-
Chu A, Sehgal CM, Greenleaf JF. Use of gray value distribution of run lengths for texture analysis. Pattern Recogn Lett. 1990;11:415–419.
-
(1990)
Pattern Recogn Lett
, vol.11
, pp. 415-419
-
-
Chu, A.1
Sehgal, C.M.2
Greenleaf, J.F.3
-
31
-
-
0026276969
-
Image characterizations based on joint gray level—run length distributions
-
Dasarathy BV, Holder EB. Image characterizations based on joint gray level—run length distributions. Pattern Recogn Lett. 1991;12: 497–502.
-
(1991)
Pattern Recogn Lett
, vol.12
, pp. 497-502
-
-
Dasarathy, B.V.1
Holder, E.B.2
-
33
-
-
0024738619
-
Textural features corresponding to textural prop-erties
-
Amadasun M, King R. Textural features corresponding to textural prop-erties. IEEE Trans Syst Man Cybern. 1989;19:1264–1274.
-
(1989)
IEEE Trans Syst Man Cybern
, vol.19
, pp. 1264-1274
-
-
Amadasun, M.1
King, R.2
-
34
-
-
0026927227
-
An efficient approach to estimate fractal dimension of textural images
-
Sarkar N, Chaudhuri BB. An efficient approach to estimate fractal dimension of textural images. Pattern Recogn. 1992;25:1035–1041.
-
(1992)
Pattern Recogn
, vol.25
, pp. 1035-1041
-
-
Sarkar, N.1
Chaudhuri, B.B.2
-
35
-
-
0028973885
-
Jayasooriah. A practical method for estimating fractal dimension
-
Jin XC, Ong SH, Jayasooriah. A practical method for estimating fractal dimension. Pattern Recogn Lett. 1995;16:457–464.
-
(1995)
Pattern Recogn Lett
, vol.16
, pp. 457-464
-
-
Jin, X.C.1
Ong, S.H.2
-
36
-
-
84890056425
-
High quality machine-robust image features: Identification in nonsmall cell lung cancer computed tomogra-phy images
-
Hunter LA, Krafft S, Stingo F, et al. High quality machine-robust image features: Identification in nonsmall cell lung cancer computed tomogra-phy images. Med Phys. 2013;40:121916.
-
(2013)
Med Phys
, vol.40
-
-
Hunter, L.A.1
Krafft, S.2
Stingo, F.3
-
37
-
-
61449171165
-
Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning
-
Yu H, Caldwell C, Mah K, Mozeg D. Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning. IEEE Trans Med Imaging. 2009;28:374–383.
-
(2009)
IEEE Trans Med Imaging
, vol.28
, pp. 374-383
-
-
Yu, H.1
Caldwell, C.2
Mah, K.3
Mozeg, D.4
-
38
-
-
84872015239
-
Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy?
-
Cook GJR, Yip C, Siddique M, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54:19–26.
-
(2013)
J Nucl Med
, vol.54
, pp. 19-26
-
-
Cook, G.J.R.1
Yip, C.2
Siddique, M.3
-
39
-
-
84983350368
-
Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer
-
Fave X, Zhang L, Yang J, et al. Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Trans Cancer Res. 2016;5:349–363.
-
(2016)
Trans Cancer Res
, vol.5
, pp. 349-363
-
-
Fave, X.1
Zhang, L.2
Yang, J.3
-
40
-
-
84879934752
-
On some misconceptions about tumor heterogeneity quantifi-cation
-
Brooks FJ. On some misconceptions about tumor heterogeneity quantifi-cation. Eur J Nucl Med Mol Imaging. 2013;40:1292–1294.
-
(2013)
Eur J Nucl Med Mol Imaging
, vol.40
, pp. 1292-1294
-
-
Brooks, F.J.1
-
41
-
-
84975260856
-
Robustness of radiomic features in [11C]-choline and [18F]FDG PET/CT imaging of nasopharyngeal carcinoma: Impact of segmentation and discretization
-
Lu L, Lv W, Jiang J, et al. Robustness of radiomic features in [11C]-choline and [18F]FDG PET/CT imaging of nasopharyngeal carcinoma: Impact of segmentation and discretization. Mol Imaging Biol. 2016;18:935–945.
-
(2016)
Mol Imaging Biol
, vol.18
, pp. 935-945
-
-
Lu, L.1
Lv, W.2
Jiang, J.3
|