-
1
-
-
77953522089
-
Issues in multiple imputation of missing data for large general practice clinical databases
-
Marston L, Carpenter JR, Walters KR, Morris RW, Nazareth I, Petersen I. Issues in multiple imputation of missing data for large general practice clinical databases. Pharmacoepidemiol Drug Saf. 2010;19(6):618–626.
-
(2010)
Pharmacoepidemiol Drug Saf
, vol.19
, Issue.6
, pp. 618-626
-
-
Marston, L.1
Carpenter, J.R.2
Walters, K.R.3
Morris, R.W.4
Nazareth, I.5
Petersen, I.6
-
2
-
-
84954476896
-
Perceived stress and risk of any osteoporotic fracture
-
Pedersen AB, Baggesen LM, Ehrenstein V, Pedersen L, Lasgaard M, Mikkelsen EM. Perceived stress and risk of any osteoporotic fracture. Osteoporos Int. 2016;27(6):2035–2045.
-
(2016)
Osteoporos Int
, vol.27
, Issue.6
, pp. 2035-2045
-
-
Pedersen, A.B.1
Baggesen, L.M.2
Ehrenstein, V.3
Pedersen, L.4
Lasgaard, M.5
Mikkelsen, E.M.6
-
4
-
-
68249114452
-
Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls
-
Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393.
-
(2009)
BMJ
, vol.338
-
-
Sterne, J.A.1
White, I.R.2
Carlin, J.B.3
-
5
-
-
60549085055
-
Missing data analysis: Making it work in the real world
-
Graham JW. Missing data analysis: making it work in the real world. Annu Rev Psychol. 2009;60:549–576.
-
(2009)
Annu Rev Psychol
, vol.60
, pp. 549-576
-
-
Graham, J.W.1
-
6
-
-
0017133178
-
Inference and missing data
-
Rubin DB. Inference and missing data. Biometrika. 1976;63(3):581–592.
-
(1976)
Biometrika
, vol.63
, Issue.3
, pp. 581-592
-
-
Rubin, D.B.1
-
7
-
-
33748520872
-
Review: A gentle introduction to imputation of missing values
-
Donders AR, van der Heijden GJ, Stijnen T, Moons KG. Review: a gentle introduction to imputation of missing values. J Clin Epidemiol. 2006;59(10):1087–1091.
-
(2006)
J Clin Epidemiol
, vol.59
, Issue.10
, pp. 1087-1091
-
-
Donders, A.R.1
Van Der Heijden, G.J.2
Stijnen, T.3
Moons, K.G.4
-
8
-
-
84936853890
-
A test of missing completelly at random for multivariate data with missing values
-
Little RJA. A test of missing completelly at random for multivariate data with missing values. J Am Stat Assoc. 1988;83(404):1198–1202.
-
(1988)
J am Stat Assoc
, vol.83
, Issue.404
, pp. 1198-1202
-
-
Little, R.J.A.1
-
9
-
-
84899011648
-
Graphical models for inference with missing data
-
Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger KQ, editors, Red Hook, NY: Curran Associates, Inc
-
Mohan K, Pearl J, Tian J. Graphical models for inference with missing data. In: Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger KQ, editors. Advances in Neural Information Processing System 26 (NIPS-2013). Red Hook, NY: Curran Associates, Inc.; 2013:1277–1285.
-
(2013)
Advances in Neural Information Processing System 26 (NIPS-2013)
, pp. 1277-1285
-
-
Mohan, K.1
Pearl, J.2
Tian, J.3
-
10
-
-
85083633110
-
-
Boca Raton, FL: CRC Press
-
Cappelleri JC, Zou KH, Bushmakin A, Alvir MJM, Symonds T. Patient-Reported Outcomes: Measurement, Implementation and Interpretation. Boca Raton, FL: CRC Press; 2013:2013.
-
(2013)
Patient-Reported Outcomes: Measurement, Implementation and Interpretation
, pp. 2013
-
-
Cappelleri, J.C.1
Zou, K.H.2
Bushmakin, A.3
Alvir, M.J.M.4
Symonds, T.5
-
11
-
-
33744941826
-
Prevention of missing data in clinical research studies
-
Wisniewski SR, Leon AC, Otto MW, Trivedi MH. Prevention of missing data in clinical research studies. Biol Psychiatry. 2006;59(11):997–1000.
-
(2006)
Biol Psychiatry
, vol.59
, Issue.11
, pp. 997-1000
-
-
Wisniewski, S.R.1
Leon, A.C.2
Otto, M.W.3
Trivedi, M.H.4
-
12
-
-
0029584587
-
A critical look at methods for handling missing covariates in epidemiologic regression analyses
-
Greenland S, Finkle WD. A critical look at methods for handling missing covariates in epidemiologic regression analyses. Am J Epidemiol. 1995;142(12):1255–1264.
-
(1995)
Am J Epidemiol
, vol.142
, Issue.12
, pp. 1255-1264
-
-
Greenland, S.1
Finkle, W.D.2
-
13
-
-
84950455641
-
Regression with missing X’s: A review
-
Little RJA. Regression with missing X’s: a review. J Am Stat Assoc. 1992;87(420):1227–1237.
-
(1992)
J am Stat Assoc
, vol.87
, Issue.420
, pp. 1227-1237
-
-
Little, R.J.A.1
-
14
-
-
79959965813
-
Weight gain and the risk of total hip replacement a population-based prospective cohort study of 265,725 individuals
-
Apold H, Meyer HE, Espehaug B, Nordsletten L, Havelin LI, Flugsrud GB. Weight gain and the risk of total hip replacement a population-based prospective cohort study of 265,725 individuals. Osteoarthritis Cartilage. 2011;19(7):809–815.
-
(2011)
Osteoarthritis Cartilage
, vol.19
, Issue.7
, pp. 809-815
-
-
Apold, H.1
Meyer, H.E.2
Espehaug, B.3
Nordsletten, L.4
Havelin, L.I.5
Flugsrud, G.B.6
-
15
-
-
77956994596
-
Risk factors for venous thromboembolism in patients undergoing total hip replacement and receiving routine thromboprophylaxis
-
Pedersen AB, Sorensen HT, Mehnert F, Overgaard S, Johnsen SP. Risk factors for venous thromboembolism in patients undergoing total hip replacement and receiving routine thromboprophylaxis. J Bone Joint Surg Am. 2010;92-A(12):2156–2164.
-
(2010)
J Bone Joint Surg Am
, vol.92
, Issue.12
, pp. 2156-2164
-
-
Pedersen, A.B.1
Sorensen, H.T.2
Mehnert, F.3
Overgaard, S.4
Johnsen, S.P.5
-
16
-
-
76249118894
-
Missing data assumptions and methods in a smoking cessation study
-
Barnes SA, Larsen MD, Schroeder D, Hanson A, Decker PA. Missing data assumptions and methods in a smoking cessation study. Addiction. 2010;105(3):431–437.
-
(2010)
Addiction
, vol.105
, Issue.3
, pp. 431-437
-
-
Barnes, S.A.1
Larsen, M.D.2
Schroeder, D.3
Hanson, A.4
Decker, P.A.5
-
17
-
-
49449091081
-
Use of multiple imputation in the epidemiologic literature
-
Klebanoff MA, Cole SR. Use of multiple imputation in the epidemiologic literature. Am J Epidemiol. 2008;168(4):355–357.
-
(2008)
Am J Epidemiol
, vol.168
, Issue.4
, pp. 355-357
-
-
Klebanoff, M.A.1
Cole, S.R.2
-
18
-
-
0030539070
-
Multiple imputation after 18+ years
-
Rubin DB. Multiple imputation after 18+ years. J Am Stat Assoc. 1996; 91(434):473–489.
-
(1996)
J am Stat Assoc
, vol.91
, Issue.434
, pp. 473-489
-
-
Rubin, D.B.1
-
20
-
-
85047673373
-
Missing data: Our view of the state of the art
-
Schafer JL, Graham JW. Missing data: our view of the state of the art. Psychol Methods. 2002;7(2):147–177.
-
(2002)
Psychol Methods
, vol.7
, Issue.2
, pp. 147-177
-
-
Schafer, J.L.1
Graham, J.W.2
-
21
-
-
0035755636
-
A comparison of inclusive and restrictive strategies in modern missing data procedures
-
Collins LM, Schafer JL, Kam CM. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychol Methods. 2001;6(4):330–351.
-
(2001)
Psychol Methods
, vol.6
, Issue.4
, pp. 330-351
-
-
Collins, L.M.1
Schafer, J.L.2
Kam, C.M.3
-
22
-
-
33748709502
-
Using the outcome for imputation of missing predictor values was preferred
-
Moons KG, Donders RA, Stijnen T, Harrell FE Jr. Using the outcome for imputation of missing predictor values was preferred. J Clin Epidemiol. 2006;59(10):1092–1101.
-
(2006)
J Clin Epidemiol
, vol.59
, Issue.10
, pp. 1092-1101
-
-
Moons, K.G.1
Donders, R.A.2
Stijnen, T.3
Harrell, F.E.4
-
23
-
-
78651256743
-
Multiple imputation using chained equations: Issues and guidance for practice
-
White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Stat Med. 2011;30(4): 377–399.
-
(2011)
Stat Med
, vol.30
, Issue.4
, pp. 377-399
-
-
White, I.R.1
Royston, P.2
Wood, A.M.3
-
24
-
-
34347407592
-
Multiple imputation of discrete and continuous data by fully conditional specification
-
van Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res. 2007;16(3):219–242.
-
(2007)
Stat Methods Med Res
, vol.16
, Issue.3
, pp. 219-242
-
-
Van Buuren, S.1
-
25
-
-
84858433083
-
-
College Station, TX: StataCorp LP, Accessed December 1, 2016
-
StataCorp. Stata: Release 13. Statistical Software. College Station, TX: StataCorp LP; 2013. Available from: https://www.stata.com/manuals13/mi.pdf. Accessed December 1, 2016.
-
(2013)
Stata: Release 13. Statistical Software
-
-
-
27
-
-
34548451124
-
How many imputations are really needed? Some practical clarifications of multiple imputation theory
-
Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prev Sci. 2007;8(3):206–213.
-
(2007)
Prev Sci
, vol.8
, Issue.3
, pp. 206-213
-
-
Graham, J.W.1
Olchowski, A.E.2
Gilreath, T.D.3
-
28
-
-
54049109688
-
What improves with increased missing data imputations?
-
Bodner TE. What improves with increased missing data imputations? Struct Equ Modeling. 2008;15(4):651–675.
-
(2008)
Struct Equ Modeling
, vol.15
, Issue.4
, pp. 651-675
-
-
Bodner, T.E.1
-
29
-
-
36849065071
-
The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies
-
von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vanden-broucke JP; STROBE Initiative. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370(9596): 1453–1457.
-
(2007)
Lancet
, vol.370
, Issue.9596
, pp. 1453-1457
-
-
Von Elm, E.1
Altman, D.G.2
Egger, M.3
Pocock, S.J.4
Gotzsche, P.C.5
Vanden-Broucke, J.P.6
|