-
2
-
-
77952649961
-
Linked data -The story so far
-
C. Bizer, T. Heath, and T. Berners-Lee. Linked Data -The Story So Far. IJSWIS, 5(3), 2009.
-
IJSWIS
, vol.5
, Issue.3
, pp. 2009
-
-
Bizer, C.1
Heath, T.2
Berners-Lee, T.3
-
4
-
-
84893411649
-
Using encyclopedic knowledge for named entity disambiguation
-
R. Bunescu and M. Pasca. Using Encyclopedic Knowledge for Named Entity Disambiguation. In EACL'06.
-
EACL'06.
-
-
Bunescu, R.1
Pasca, M.2
-
5
-
-
78649608428
-
Short and tweet: Experiments on recommending content from information streams
-
J. Chen, R. Nairn, L. Nelson, M. Bernstein, and E. Chi. Short and tweet: Experiments on recommending content from information streams. In CHI'10.
-
CHI'10.
-
-
Chen, J.1
Nairn, R.2
Nelson, L.3
Bernstein, M.4
Chi, E.5
-
6
-
-
84866619572
-
Collaborative personalized tweet recommendation
-
K. Chen, T. Chen, G. Zheng, O. Jin, E. Yao, and Y. Yu. Collaborative personalized tweet recommendation. In SIGIR'12.
-
SIGIR'12.
-
-
Chen, K.1
Chen, T.2
Zheng, G.3
Jin, O.4
Yao, E.5
Yu, Y.6
-
7
-
-
80053379324
-
Large-scale named entity disambiguation based on wikipedia data
-
S. Cucerzan. Large-Scale Named Entity Disambiguation Based on Wikipedia Data. In EMNLP-CoNLL'07.
-
EMNLP-CoNLL'07.
-
-
Cucerzan, S.1
-
8
-
-
84863399647
-
Object matching in tweets with spatial models
-
N. Dalvi, R. Kumar, and B. Pang. Object matching in tweets with spatial models. In WSDM'12.
-
WSDM'12.
-
-
Dalvi, N.1
Kumar, R.2
Pang, B.3
-
9
-
-
85054105119
-
Collective entity linking in web text: A graph-based method
-
X. Han, L. Sun, and J. Zhao. Collective entity linking in web text: A graph-based method. In SIGIR'11.
-
SIGIR'11.
-
-
Han, X.1
Sun, L.2
Zhao, J.3
-
11
-
-
80053222382
-
Robust disambiguation of named entities in text
-
J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal, M. Spaniol, B. Taneva, S. Thater, and G. Weikum. Robust disambiguation of named entities in text. In EMNLP'11.
-
EMNLP'11.
-
-
Hoffart, J.1
Yosef, M.A.2
Bordino, I.3
Fürstenau, H.4
Pinkal, M.5
Spaniol, M.6
Taneva, B.7
Thater, S.8
Weikum, G.9
-
13
-
-
84866634031
-
Twiner: Named entity recognition in targeted twitter stream
-
C. Li, J. Weng, Q. He, Y. Yao, A. Datta, A. Sun, and B.-S. Lee. Twiner: named entity recognition in targeted twitter stream. In SIGIR'12.
-
SIGIR'12.
-
-
Li, C.1
Weng, J.2
He, Q.3
Yao, Y.4
Datta, A.5
Sun, A.6
Lee, B.-S.7
-
15
-
-
84858053980
-
Adding semantics to microblog posts
-
E. Meij, W. Weerkamp, and M. de Rijke. Adding semantics to microblog posts. In WSDM'12, pages 563-572.
-
WSDM'12
, pp. 563-572
-
-
Meij, E.1
Weerkamp, W.2
Rijke, M.D.3
-
16
-
-
84873176426
-
Discovering users' topics of interest on twitter: A first look
-
M. Michelson and S. A. Macskassy. Discovering users' topics of interest on twitter: A first look. In AND'10.
-
AND'10.
-
-
Michelson, M.1
Macskassy, S.A.2
-
17
-
-
84871058302
-
An effective, low-cost measure of semantic relatedness obtained from Wikipedia links
-
D. Milne and I. H. Witten. An effective, low-cost measure of semantic relatedness obtained from Wikipedia links. In WIKIAI'08.
-
WIKIAI'08.
-
-
Milne, D.1
Witten, I.H.2
-
18
-
-
84871094240
-
A graph-based approach for ontology population with named entities
-
W. Shen, J. Wang, P. Luo, and M. Wang. A graph-based approach for ontology population with named entities. In CIKM'12, pages 345-354.
-
CIKM'12
, pp. 345-354
-
-
Shen, W.1
Wang, J.2
Luo, P.3
Wang, M.4
-
20
-
-
84860877558
-
Linden: Linking named entities with knowledge base via semantic knowledge
-
W. Shen, J. Wang, P. Luo, and M. Wang. Linden: linking named entities with knowledge base via semantic knowledge. In WWW'12.
-
WWW'12.
-
-
Shen, W.1
Wang, J.2
Luo, P.3
Wang, M.4
-
21
-
-
38049087241
-
Yago: A core of semantic knowledge unifying wordnet and wikipedia
-
F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A core of semantic knowledge unifying wordnet and wikipedia. In WWW'07.
-
WWW'07.
-
-
Suchanek, F.M.1
Kasneci, G.2
Weikum, G.3
-
22
-
-
77950897279
-
Twitterrank: Finding topic-sensitive influential twitterers
-
J. Weng, E.-P. Lim, J. Jiang, and Q. He. Twitterrank: Finding topic-sensitive influential twitterers. In WSDM'10.
-
WSDM'10
-
-
Weng, J.1
Lim, E.-P.2
Jiang, J.3
He, Q.4
-
23
-
-
84862653732
-
Probase: A probabilistic taxonomy for text understanding
-
W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A probabilistic taxonomy for text understanding. In SIGMOD'12.
-
SIGMOD'12.
-
-
Wu, W.1
Li, H.2
Wang, H.3
Zhu, K.Q.4
-
24
-
-
85025651376
-
Discovering user interest on twitter with a modified author-Topic model
-
Z. Xu, L. Ru, L. Xiang, and Q. Yang. Discovering user interest on twitter with a modified author-Topic model. In WI-IAT'11.
-
WI-IAT'11.
-
-
Xu, Z.1
Ru, L.2
Xiang, L.3
Yang, Q.4
|