메뉴 건너뛰기




Volumn Part F128815, Issue , 2013, Pages 722-730

Mining evolutionary multi-branch trees from text streams

Author keywords

Clustering; Multi branch tree; Time series data; Topic evolution; Visualization

Indexed keywords

CLUSTERING ALGORITHMS; CONSTRAINT THEORY; DATA MINING; DATA VISUALIZATION; EVOLUTIONARY ALGORITHMS; FLOW VISUALIZATION;

EID: 85015215625     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2487575.2487603     Document Type: Conference Paper
Times cited : (19)

References (30)
  • 2
    • 52649163923 scopus 로고    scopus 로고
    • Dynamic non-parametric mixture models and the recurrent Chinese restaurant process: With applications to evolutionary clustering
    • A. Ahmed and E. P. Xing. Dynamic non-parametric mixture models and the recurrent chinese restaurant process: With applications to evolutionary clustering. In SDM, pages 219-230, 2008.
    • (2008) SDM , pp. 219-230
    • Ahmed, A.1    Xing, E.P.2
  • 3
    • 80053141847 scopus 로고    scopus 로고
    • Timeline: A dynamic hierarchical dirichlet process model for recovering birth/death and evolution of topics in text stream
    • A. Ahmed and E. P. Xing. Timeline: A dynamic hierarchical dirichlet process model for recovering birth/death and evolution of topics in text stream. In UAI, 2010.
    • (2010) UAI
    • Ahmed, A.1    Xing, E.P.2
  • 4
    • 52649118619 scopus 로고    scopus 로고
    • Creating a cluster hierarchy under constraints of a partially known hierarchy
    • K. Bade and A. Nürnberger. Creating a cluster hierarchy under constraints of a partially known hierarchy. In SDM, pages 13-24, 2008.
    • (2008) SDM , pp. 13-24
    • Bade, K.1    Nürnberger, A.2
  • 5
    • 12244300524 scopus 로고    scopus 로고
    • A probabilistic framework for semi-supervised clustering
    • S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised clustering. In KDD, 2004.
    • (2004) KDD
    • Basu, S.1    Bilenko, M.2    Mooney, R.J.3
  • 6
    • 33749242628 scopus 로고    scopus 로고
    • Dynamic topic models
    • D. M. Blei and J. D. Lafferty. Dynamic topic models. In ICML, pages 113-120, 2006.
    • (2006) ICML , pp. 113-120
    • Blei, D.M.1    Lafferty, J.D.2
  • 7
    • 84864706570 scopus 로고    scopus 로고
    • Discovering non-binary hierarchical structures with Bayesian rose trees
    • K. Mengersen, C. P. Robert, and M. Titterington, editors, John Wiley & Sons
    • C. Blundell, Y. W. Teh, and K. Heller. Discovering non-binary hierarchical structures with Bayesian rose trees. In K. Mengersen, C. P. Robert, and M. Titterington, editors, Mixture Estimation and Applications. John Wiley & Sons, 2011.
    • (2011) Mixture Estimation and Applications
    • Blundell, C.1    Teh, Y.W.2    Heller, K.3
  • 9
    • 33749572698 scopus 로고    scopus 로고
    • Evolutionary clustering
    • D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary clustering. In KDD, pages 554-560, 2006.
    • (2006) KDD , pp. 554-560
    • Chakrabarti, D.1    Kumar, R.2    Tomkins, A.3
  • 10
    • 80955143433 scopus 로고    scopus 로고
    • Textflow: Towards better understanding of evolving topics in text
    • W. Cui, S. Liu, L. Tan, C. Shi, Y. Song, Z. Gao, H. Qu, and X. Tong. Textflow: Towards better understanding of evolving topics in text. IEEE TVCG, 17(12):2412-2421, 2011.
    • (2011) IEEE TVCG , vol.17 , Issue.12 , pp. 2412-2421
    • Cui, W.1    Liu, S.2    Tan, L.3    Shi, C.4    Song, Y.5    Gao, Z.6    Qu, H.7    Tong, X.8
  • 11
    • 60849121404 scopus 로고    scopus 로고
    • Using instance-level constraints in agglomerative hierarchical clustering: Theoretical and empirical results
    • I. Davidson and S. S. Ravi. Using instance-level constraints in agglomerative hierarchical clustering: Theoretical and empirical results. Data Mining and Knowledge Discovery, 18(2):257-282, 2009.
    • (2009) Data Mining and Knowledge Discovery , vol.18 , Issue.2 , pp. 257-282
    • Davidson, I.1    Ravi, S.S.2
  • 12
    • 84863180885 scopus 로고    scopus 로고
    • Tracking and connecting topics via incremental hierarchical dirichlet processes
    • Z. Gao, Y. Song, S. Liu, H. Wang, H. Wei, Y. Chen, and W. Cui. Tracking and connecting topics via incremental hierarchical dirichlet processes. In ICDM, pages 1056-1061, 2011.
    • (2011) ICDM , pp. 1056-1061
    • Gao, Z.1    Song, Y.2    Liu, S.3    Wang, H.4    Wei, H.5    Chen, Y.6    Cui, W.7
  • 13
    • 34548562145 scopus 로고    scopus 로고
    • Semi-supervised clustering with metric learning using relative comparisons
    • N. Kumar, K. Kummamuru, and D. Paranjpe. Semi-supervised clustering with metric learning using relative comparisons. In ICDM, pages 693-696, 2005.
    • (2005) ICDM , pp. 693-696
    • Kumar, N.1    Kummamuru, K.2    Paranjpe, D.3
  • 14
    • 84861525734 scopus 로고    scopus 로고
    • A metric for phylogenetic trees based on matching
    • July
    • Y. Lin, V. Rajan, and B. M. E. Moret. A metric for phylogenetic trees based on matching. IEEE/ACM TCBB, 9(4):1014-1022, July 2012.
    • (2012) IEEE/ACM TCBB , vol.9 , Issue.4 , pp. 1014-1022
    • Lin, Y.1    Rajan, V.2    Moret, B.M.E.3
  • 15
    • 80052650978 scopus 로고    scopus 로고
    • Clustering with relative constraints
    • E. Liu, Z. Zhang, and W. Wang. Clustering with relative constraints. In KDD, pages 947-955, 2011.
    • (2011) KDD , pp. 947-955
    • Liu, E.1    Zhang, Z.2    Wang, W.3
  • 16
    • 84866030345 scopus 로고    scopus 로고
    • Automatic taxonomy construction from keywords
    • X. Liu, Y. Song, S. Liu, and H. Wang. Automatic taxonomy construction from keywords. In KDD, pages 1433-1441, 2012.
    • (2012) KDD , pp. 1433-1441
    • Liu, X.1    Song, Y.2    Liu, S.3    Wang, H.4
  • 17
    • 31844437086 scopus 로고    scopus 로고
    • Modeling word burstiness using the Dirichlet distribution
    • R. E. Madsen, D. Kauchak, and C. Elkan. Modeling word burstiness using the Dirichlet distribution. In ICML, pages 545-552, 2005.
    • (2005) ICML , pp. 545-552
    • Madsen, R.E.1    Kauchak, D.2    Elkan, C.3
  • 18
    • 80053057330 scopus 로고    scopus 로고
    • Constrained agglomerative hierarchical clustering algorithms with penalties
    • S. Miyamoto and A. Terami. Constrained agglomerative hierarchical clustering algorithms with penalties. In FUZZ-IEEE, pages 422-427, 2011.
    • (2011) FUZZ-IEEE , pp. 422-427
    • Miyamoto, S.1    Terami, A.2
  • 19
    • 0012337921 scopus 로고    scopus 로고
    • Reconstruction of rooted trees from subtrees
    • August
    • M. P. Ng and N. C. Wormald. Reconstruction of rooted trees from subtrees. Discrete Applied Mathematics, 69(1-2):19-31, August 1996.
    • (1996) Discrete Applied Mathematics , vol.69 , Issue.1-2 , pp. 19-31
    • Ng, M.P.1    Wormald, N.C.2
  • 21
    • 9444220002 scopus 로고    scopus 로고
    • Learning a distance metric from relative comparisons
    • M. Schultz and T. Joachims. Learning a distance metric from relative comparisons. In NIPS, 2003.
    • (2003) NIPS
    • Schultz, M.1    Joachims, T.2
  • 22
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles -A knowledge reuse framework for combining multiple partitions
    • March
    • A. Strehl and J. Ghosh. Cluster ensembles -A knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3:583-617, March 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 23
    • 36849036336 scopus 로고    scopus 로고
    • Mining correlated bursty topic patterns from coordinated text streams
    • New York, NY, USA, ACM
    • X. Wang, C. Zhai, X. Hu, and R. Sproat. Mining correlated bursty topic patterns from coordinated text streams. In KDD, pages 784-793, New York, NY, USA, 2007. ACM.
    • (2007) KDD , pp. 784-793
    • Wang, X.1    Zhai, C.2    Hu, X.3    Sproat, R.4
  • 24
    • 70349089254 scopus 로고    scopus 로고
    • Mining common topics from multiple asynchronous text streams
    • X. Wang, K. Zhang, X. M. Jin, and D. Shen. Mining common topics from multiple asynchronous text streams. In WSDM, pages 192-201, 2009.
    • (2009) WSDM , pp. 192-201
    • Wang, X.1    Zhang, K.2    Jin, X.M.3    Shen, D.4
  • 25
    • 67049138448 scopus 로고    scopus 로고
    • Dirichlet process based evolutionary clustering
    • T. B. Xu, Z. F. Zhang, P. S. Yu, and B. Long. Dirichlet process based evolutionary clustering. In ICDM, pages 648-657, 2008.
    • (2008) ICDM , pp. 648-657
    • Xu, T.B.1    Zhang, Z.F.2    Yu, P.S.3    Long, B.4
  • 26
    • 67049114684 scopus 로고    scopus 로고
    • Evolutionary clustering by hierarchical Dirichlet process with hidden Markov state
    • T. B. Xu, Z. F. Zhang, P. S. Yu, and B. Long. Evolutionary clustering by hierarchical Dirichlet process with hidden Markov state. In ICDM, pages 658-667, 2008.
    • (2008) ICDM , pp. 658-667
    • Xu, T.B.1    Zhang, Z.F.2    Yu, P.S.3    Long, B.4
  • 27
    • 77950269433 scopus 로고    scopus 로고
    • Topic modeling for olap on multidimensional text databases: Topic cube and its applications
    • D. Zhang, C. Zhai, J. Han, A. N. Srivastava, and N. C. Oza. Topic modeling for olap on multidimensional text databases: Topic cube and its applications. Statistical Analysis and Data Mining, 2(5-6):378-395, 2009.
    • (2009) Statistical Analysis and Data Mining , vol.2 , Issue.5-6 , pp. 378-395
    • Zhang, D.1    Zhai, C.2    Han, J.3    Srivastava, A.N.4    Oza, N.C.5
  • 28
    • 77956211804 scopus 로고    scopus 로고
    • Evolutionary hierarchical Dirichlet processes for multiple correlated time-varying corpora
    • J. Zhang, Y. Song, C. Zhang, and S. Liu. Evolutionary hierarchical Dirichlet processes for multiple correlated time-varying corpora. In KDD, pages 1079-1088, 2010.
    • (2010) KDD , pp. 1079-1088
    • Zhang, J.1    Song, Y.2    Zhang, C.3    Liu, S.4
  • 29
    • 77952164657 scopus 로고    scopus 로고
    • Hierarchical agglomerative clustering with ordering constraints
    • H. Zhao and Z. Qi. Hierarchical agglomerative clustering with ordering constraints. In WKDD, pages 195-199, 2010.
    • (2010) WKDD , pp. 195-199
    • Zhao, H.1    Qi, Z.2
  • 30
    • 84863145218 scopus 로고    scopus 로고
    • Semi-supervised hierarchical clustering
    • L. Zheng and T. Li. Semi-supervised hierarchical clustering. In ICDM, pages 982-991, 2011.
    • (2011) ICDM , pp. 982-991
    • Zheng, L.1    Li, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.