-
1
-
-
0020102027
-
Least squares quantization in PCM
-
Mar.
-
S. Lloyd, "Least squares quantization in PCM, " IEEE Trans. Inf. Theory, vol. IF-28, no. 2, pp. 129-137, Mar. 1982.
-
(1982)
IEEE Trans. Inf. Theory
, vol.IF-28
, Issue.2
, pp. 129-137
-
-
Lloyd, S.1
-
2
-
-
84898974025
-
Clustering viaconcave minimization
-
Denver, CO, USA
-
P. S. Bradley, O. L. Mangasarian, W. N. Street, "Clustering viaconcave minimization, " in Proc. Adv. Neural Inf. Process. Syst., Denver, CO, USA, 1997, pp. 368-374.
-
(1997)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 368-374
-
-
Bradley, P.S.1
Mangasarian, O.L.2
Street, W.N.3
-
3
-
-
29344456217
-
Unsupervised and semi-supervisedmulti-class support vector machines
-
Pittsburgh, PA, USA
-
L. Xu and D. Schuurmans, "Unsupervised and semi-supervisedmulti-class support vector machines, " in Proc. 20th Nat. Conf. Artif. Intell., Pittsburgh, PA, USA, 2005, pp. 904-910.
-
(2005)
Proc. 20th Nat. Conf. Artif. Intell.
, pp. 904-910
-
-
Xu, L.1
Schuurmans, D.2
-
4
-
-
84969135721
-
K-means++: The advantages of carefulseeding
-
New Orleans, LA, USA
-
D. Arthur and S. Vassilvitskii, "k-means++: The advantages of carefulseeding, " in Proc. 18th Annu. ACM-SIAM Symp. Discrete AlgorithmsSoc. Ind. Appl. Math., New Orleans, LA, USA, 2007, pp. 1027-1035.
-
(2007)
Proc. 18th Annu. ACM-SIAM Symp. Discrete Algorithms Soc. Ind. Appl. Math.
, pp. 1027-1035
-
-
Arthur, D.1
Vassilvitskii, S.2
-
5
-
-
0034514004
-
Clusteringdata streams
-
Redondo Beach, CA, USA
-
S. Guha, N. Mishra, R. Motwani, L. O'Callaghan, "Clusteringdata streams, " in Proc. 41st Annu. Symp. Found. Comput. Sci., Redondo Beach, CA, USA, 2000, pp. 359-366.
-
(2000)
Proc. 41st Annu. Symp. Found. Comput. Sci.
, pp. 359-366
-
-
Guha, S.1
Mishra, N.2
Motwani, R.3
O'Callaghan, L.4
-
6
-
-
85012236181
-
A framework for clusteringevolving data streams
-
Berlin, Germany
-
C. C. Aggarwal, J. Han, J. Wang, P. S. Yu, "A framework for clusteringevolving data streams, " in Proc. 29th Int. Conf. Very Large DataBases, Berlin, Germany, 2003, pp. 81-92.
-
(2003)
Proc. 29th Int. Conf. Very Large DataBases
, pp. 81-92
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
7
-
-
84863737078
-
StreamKM++: A clustering algorithm for datastreams
-
M. R. Ackermann, et al., "StreamKM++: A clustering algorithm for datastreams, " J. Exp. Algorithmics, vol. 17, no. 1, pp. 173-187, 2012.
-
(2012)
J. Exp. Algorithmics
, vol.17
, Issue.1
, pp. 173-187
-
-
Ackermann, M.R.1
-
8
-
-
77953022339
-
Intelligent choice of the number ofclusters in k-means clustering: An experimental study with differentcluster spreads
-
M. M.-T. Chiang and B. Mirkin, "Intelligent choice of the number ofclusters in k-means clustering: An experimental study with differentcluster spreads, " J. Classif., vol. 27, no. 1, pp. 3-40, 2010.
-
(2010)
J. Classif.
, vol.27
, Issue.1
, pp. 3-40
-
-
Chiang, M.M.-T.1
Mirkin, B.2
-
10
-
-
33745434639
-
Density-based clustering overan evolving data stream with noise
-
Bethesda, MD, USA
-
F. Cao, M. Ester, W. Qian, A. Zhou, "Density-based clustering overan evolving data stream with noise, " in Proc. Conf. Data Min., Bethesda, MD, USA, 2006, pp. 328-339.
-
(2006)
Proc. Conf. Data Min.
, pp. 328-339
-
-
Cao, F.1
Ester, M.2
Qian, W.3
Zhou, A.4
-
11
-
-
85170282443
-
A density-based algorithmfor discovering clusters in large spatial databases with noise
-
Portland, OR, USA
-
M. Ester, H.-P. Kriegel, J. Sander, X. Xu, "A density-based algorithmfor discovering clusters in large spatial databases with noise, "in Proc. Conf. Knowl. Disc. Data Min., vol. 2. Portland, OR, USA, 1996, pp. 226-231.
-
(1996)
Proc. Conf. Knowl. Disc. Data Min.
, vol.2
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
12
-
-
0010012318
-
Incremental learning from noisydata
-
J. C. Schlimmer and R. H. Granger, "Incremental learning from noisydata, " Mach. Learn., vol. 1, no. 3, pp. 317-354, 1986.
-
(1986)
Mach. Learn.
, vol.1
, Issue.3
, pp. 317-354
-
-
Schlimmer, J.C.1
Granger, R.H.2
-
13
-
-
0030126609
-
Learning in the presence of concept driftand hidden contexts
-
G. Widmer and M. Kubat, "Learning in the presence of concept driftand hidden contexts, " Mach. Learn., vol. 23, no. 1, pp. 69-101, 1996.
-
(1996)
Mach. Learn.
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
-
14
-
-
84901228061
-
A survey on concept drift adaptation
-
J. Gama, I. Žliobaite, A. Bifet, M. Pecheniztkiy, A. Bouchachia, "A survey on concept drift adaptation, " ACM Comput. Surveys, vol. 46, no. 4, 2014, Art. no. 44.
-
(2014)
ACM Comput. Surveys
, vol.46
, Issue.4
-
-
Gama, J.1
Žliobaite, I.2
Bifet, A.3
Pecheniztkiy, M.4
Bouchachia, A.5
-
15
-
-
84886036088
-
Countering the concept-drift problem in big datausing iOVFDT
-
CA, USA
-
H. Yang and S. Fong, "Countering the concept-drift problem in big datausing iOVFDT, " in Proc. IEEE Int. Congr. Big Data. Santa Clara, CA, USA, 2013, pp. 126-132.
-
(2013)
Proc. IEEE Int. Congr. Big Data. Santa Clara
, pp. 126-132
-
-
Yang, H.1
Fong, S.2
-
16
-
-
84878825414
-
An adaptive ensemble classifier for mining conceptdrifting data streams
-
D. M. Farid, et al., "An adaptive ensemble classifier for mining conceptdrifting data streams, " Expert Syst. Appl., vol. 40, no. 15, pp. 5895-5906, 2013.
-
(2013)
Expert Syst. Appl.
, vol.40
, Issue.15
, pp. 5895-5906
-
-
Farid, D.M.1
-
17
-
-
84881500997
-
Exploringconcept drift using interactive simulations
-
(PERCOM Workshops), San Diego, CA, USA
-
J. Smith, N. Dulay, M. A. Tóth, O. Amft, Y. Zhang, "Exploringconcept drift using interactive simulations, " in Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshop (PERCOM Workshops), San Diego, CA, USA, 2013, pp. 49-54.
-
(2013)
Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshop
, pp. 49-54
-
-
Smith, J.1
Dulay, N.2
Tóth, M.A.3
Amft, O.4
Zhang, Y.5
-
18
-
-
70450179606
-
Unsupervised classifier selfcalibrationthrough repeated context occurences: Is there robustnessagainst sensor displacement to gain
-
K. Forster, D. Roggen, G. Troster, "Unsupervised classifier selfcalibrationthrough repeated context occurences: Is there robustnessagainst sensor displacement to gain" in Proc. IEEE Int. Symp. WearableComput., Linz, Austria, 2009, pp. 77-84.
-
(2009)
Proc. IEEE Int. Symp. WearableComput., Linz, Austria
, pp. 77-84
-
-
Forster, K.1
Roggen, D.2
Troster, G.3
-
19
-
-
84898031819
-
Unsupervised learning foranalyzing the dynamic behavior of online banking fraud
-
Dallas, TX, USA
-
G. Cabanes, Y. Bennani, N. Grozavu, "Unsupervised learning foranalyzing the dynamic behavior of online banking fraud, " in Proc. IEEE 13th Int. Conf. Data Min. Workshops, Dallas, TX, USA, 2013, pp. 513-520.
-
(2013)
Proc. IEEE 13th Int. Conf. Data Min. Workshops
, pp. 513-520
-
-
Cabanes, G.1
Bennani, Y.2
Grozavu, N.3
-
20
-
-
0001473437
-
On estimation of a probability density function and mode
-
E. Parzen, "On estimation of a probability density function and mode, "Ann. Math. Stat., vol. 33, no. 3, pp. 1065-1076, 1962.
-
(1962)
Ann. Math. Stat.
, vol.33
, Issue.3
, pp. 1065-1076
-
-
Parzen, E.1
-
21
-
-
0001529784
-
Remarks on some nonparametric estimates of a densityfunction
-
M. Rosenblatt, "Remarks on some nonparametric estimates of a densityfunction, " Ann. Math. Stat., vol. 27, no. 3, pp. 832-837, 1956.
-
(1956)
Ann. Math. Stat.
, vol.27
, Issue.3
, pp. 832-837
-
-
Rosenblatt, M.1
-
24
-
-
84935473220
-
Biased and unbiased cross-validationin density estimation
-
D. W. Scott and G. R. Terrell, "Biased and unbiased cross-validationin density estimation, " J. Amer. Stat. Assoc., vol. 82, no. 400, pp. 1131-1146, 1987.
-
(1987)
J. Amer. Stat. Assoc.
, vol.82
, Issue.400
, pp. 1131-1146
-
-
Scott, D.W.1
Terrell, G.R.2
-
25
-
-
0001050272
-
A brief survey of bandwidthselection for density estimation
-
M. C. Jones, J. S. Marron, S. J. Sheather, "A brief survey of bandwidthselection for density estimation, " J. Amer. Stat. Assoc., vol. 91, no. 433, pp. 401-407, 1996.
-
(1996)
J. Amer. Stat. Assoc.
, vol.91
, Issue.433
, pp. 401-407
-
-
Jones, M.C.1
Marron, J.S.2
Sheather, S.J.3
-
26
-
-
77953527363
-
MOA: Massiveonline analysis
-
Jan.
-
A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, "MOA: Massiveonline analysis, " J. Mach. Learn. Res., vol. 11, pp. 1601-1604, Jan. 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 1601-1604
-
-
Bifet, A.1
Holmes, G.2
Kirkby, R.3
Pfahringer, B.4
-
27
-
-
79951737370
-
Clustering performance on evolving data streams:Assessing algorithms and evaluation measures within MOA
-
Sydney, NSW, Australia
-
P. Kranen, et al., "Clustering performance on evolving data streams:Assessing algorithms and evaluation measures within MOA, " in Proc. IEEE Int. Conf. Data Min. Workshops, Sydney, NSW, Australia, 2010, pp. 1400-1403.
-
(2010)
Proc. IEEE Int. Conf. Data Min. Workshops
, pp. 1400-1403
-
-
Kranen, P.1
-
28
-
-
84903640064
-
Integrating cluster analysisto the ARIMA model for forecasting geosensor data
-
S. Pravilovic, A. Appice, D. Malerba, "Integrating cluster analysisto the ARIMA model for forecasting geosensor data, " in Foundations ofIntelligent Systems, Cham, Switzerland, 2014, pp. 234-243.
-
(2014)
Foundations OfIntelligent Systems, Cham, Switzerland
, pp. 234-243
-
-
Pravilovic, S.1
Appice, A.2
Malerba, D.3
-
29
-
-
0023453329
-
Silhouettes: A graphical aid to the interpretation andvalidation of cluster analysis
-
P. J. Rousseeuw, "Silhouettes: A graphical aid to the interpretation andvalidation of cluster analysis, " J. Comput. Appl. Math., vol. 20, no. 1, pp. 53-65, 1987.
-
(1987)
J. Comput. Appl. Math.
, vol.20
, Issue.1
, pp. 53-65
-
-
Rousseeuw, P.J.1
-
30
-
-
33745781710
-
A symbolic representationof time series, with implications for streaming algorithms
-
San Diego, CA, USA
-
J. Lin, E. Keogh, S. Lonardi, B. Chiu, "A symbolic representationof time series, with implications for streaming algorithms, " in Proc. 8th ACM SIGMOD Workshop Res. Issues Data Min. Knowl. Disc., San Diego, CA, USA, 2003, pp. 2-11.
-
(2003)
Proc. 8th ACM SIGMOD Workshop Res. Issues Data Min. Knowl. Disc
, pp. 2-11
-
-
Lin, J.1
Keogh, E.2
Lonardi, S.3
Chiu, B.4
-
32
-
-
0018468345
-
A comparisonof three methods for selecting values of input variables in the analysisof output from a computer code
-
M. D. McKay, R. J. Beckman, W. J. Conover, "A comparisonof three methods for selecting values of input variables in the analysisof output from a computer code, " Technometrics, vol. 21, no. 2, pp. 239-245, 1979.
-
(1979)
Technometrics
, vol.21
, Issue.2
, pp. 239-245
-
-
McKay, M.D.1
Beckman, R.J.2
Conover, W.J.3
-
33
-
-
0033400675
-
Comparative accuracies of artificial neuralnetworks and discriminant analysis in predicting forest cover typesfrom cartographic variables
-
J. A. Blackard and D. J. Dean, "Comparative accuracies of artificial neuralnetworks and discriminant analysis in predicting forest cover typesfrom cartographic variables, " Comput. Electron. Agriculture, vol. 24, no. 3, pp. 131-151, 1999.
-
(1999)
Comput. Electron. Agriculture
, vol.24
, Issue.3
, pp. 131-151
-
-
Blackard, J.A.1
Dean, D.J.2
|