-
1
-
-
0039129509
-
Environmental applications of semiconductor photocatalysis
-
[1] Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., Environmental applications of semiconductor photocatalysis. Chem. Rev. 95 (1995), 69–96.
-
(1995)
Chem. Rev.
, vol.95
, pp. 69-96
-
-
Hoffmann, M.R.1
Martin, S.T.2
Choi, W.3
Bahnemann, D.W.4
-
2
-
-
84875159704
-
On the synergetic catalytic effect in heterogeneous nanocomposite catalysts
-
[2] Shi, J., On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem. Rev. 113 (2013), 2139–2181.
-
(2013)
Chem. Rev.
, vol.113
, pp. 2139-2181
-
-
Shi, J.1
-
3
-
-
34547486889
-
Titanium dioxide nanomaterials: synthesis, properties, modification, and applications
-
[3] Chen, X., Mao, S.S., Titanium dioxide nanomaterials: synthesis, properties, modification, and applications. Chem. Rev. 107 (2007), 2891–2959.
-
(2007)
Chem. Rev.
, vol.107
, pp. 2891-2959
-
-
Chen, X.1
Mao, S.S.2
-
4
-
-
78449288259
-
Semiconductor-based photocatalytic hydrogen generation
-
[4] Chen, X., Shen, S., Guo, L., Mao, S.S., Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110 (2010), 6503–6570.
-
(2010)
Chem. Rev.
, vol.110
, pp. 6503-6570
-
-
Chen, X.1
Shen, S.2
Guo, L.3
Mao, S.S.4
-
5
-
-
4544235448
-
2 surfaces-principles, mechanisms, and selected results
-
[5] Linsebigler, A.L., Lu, G., Yates, J.T., Photocatalysis on TiO2 surfaces-principles, mechanisms, and selected results. Chem. Rev. 95 (1995), 735–758.
-
(1995)
Chem. Rev.
, vol.95
, pp. 735-758
-
-
Linsebigler, A.L.1
Lu, G.2
Yates, J.T.3
-
6
-
-
79954600047
-
Recent Progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation
-
[6] Abe, R., Recent Progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J. Photochem. Photobiol. C 11 (2010), 179–209.
-
(2010)
J. Photochem. Photobiol. C
, vol.11
, pp. 179-209
-
-
Abe, R.1
-
7
-
-
57649159482
-
Heterogeneous photocatalyst materials for water splitting
-
[7] Kudo, A., Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38 (2009), 253–278.
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 253-278
-
-
Kudo, A.1
Miseki, Y.2
-
8
-
-
84858432931
-
Advanced nanoarchitectures for solar photocatalytic applications
-
[8] Kubacka, A., Fernandez-Garcia, M., Colon, G., Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112 (2012), 1555–1614.
-
(2012)
Chem. Rev.
, vol.112
, pp. 1555-1614
-
-
Kubacka, A.1
Fernandez-Garcia, M.2
Colon, G.3
-
9
-
-
84868354566
-
Nanomaterials for renewable energy production and storage
-
[9] Chen, X., Li, C., Gratzel, M., Kostecki, R., Mao, S.S., Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41 (2012), 7909–7937.
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 7909-7937
-
-
Chen, X.1
Li, C.2
Gratzel, M.3
Kostecki, R.4
Mao, S.S.5
-
10
-
-
84901923735
-
Photochemical splitting of water for hydrogen production by photocatalysis: a review
-
[10] Ismail, A.A., Bahnemann, D.W., Photochemical splitting of water for hydrogen production by photocatalysis: a review. Sol. Energy Mater. Sol. Cells 128 (2014), 85–101.
-
(2014)
Sol. Energy Mater. Sol. Cells
, vol.128
, pp. 85-101
-
-
Ismail, A.A.1
Bahnemann, D.W.2
-
11
-
-
84905580502
-
All-solid-state Z-scheme photocatalytic systems
-
[11] Zhou, P., Yu, J., Jaroniec, M., All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26 (2014), 4920–4935.
-
(2014)
Adv. Mater.
, vol.26
, pp. 4920-4935
-
-
Zhou, P.1
Yu, J.2
Jaroniec, M.3
-
12
-
-
84905580502
-
All-solid-state Z-scheme photocatalytic systems
-
[12] Zhou, P., Yu, J.G., Jaroniec, M., All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26 (2014), 4920–4935.
-
(2014)
Adv. Mater.
, vol.26
, pp. 4920-4935
-
-
Zhou, P.1
Yu, J.G.2
Jaroniec, M.3
-
13
-
-
79960615659
-
Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light
-
[13] Iwase, A., Ng, Y.H., Ishiguro, Y., Kudo, A., Amal, R., Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J. Am. Chem. Soc. 133 (2011), 11054–11057.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 11054-11057
-
-
Iwase, A.1
Ng, Y.H.2
Ishiguro, Y.3
Kudo, A.4
Amal, R.5
-
14
-
-
67649418010
-
2 hollow nanorod arrays with enhanced photocatalytic activity
-
[14] Zhu, H., Yang, B., Xu, J., Fu, Z., Wen, M., Guo, T., Fu, S., Zuo, J., Zhang, S., Construct ion of Z-scheme type CdS–Au–TiO2 hollow nanorod arrays with enhanced photocatalytic activity. Appl. Catal. B Environ. l 90 (2009), 463–469.
-
(2009)
Appl. Catal. B Environ. l
, vol.90
, pp. 463-469
-
-
Zhu, H.1
Yang, B.2
Xu, J.3
Fu, Z.4
Wen, M.5
Guo, T.6
Fu, S.7
Zuo, J.8
Zhang, S.9
-
15
-
-
84861183262
-
2 nanotube arrays with enhanced photocatalytic activity
-
[15] Xie, K., Wu, Q., Wang, Y., Guo, W., Wang, M., Sun, L., Lin, C., Electrochemical construction of Z-scheme type CdS–Ag–TiO2 nanotube arrays with enhanced photocatalytic activity. Electrochem. Commun. 13 (2011), 1469–1472.
-
(2011)
Electrochem. Commun.
, vol.13
, pp. 1469-1472
-
-
Xie, K.1
Wu, Q.2
Wang, Y.3
Guo, W.4
Wang, M.5
Sun, L.6
Lin, C.7
-
16
-
-
84962128835
-
4/Au/CdZnS Z-scheme photocatalyst to enhance photocatalysis performance
-
[16] Ma, X., Jiang, Q., Guo, W., Zheng, M., Xu, W., Ma, F., Hou, B., Fabrication of g-C3N4/Au/CdZnS Z-scheme photocatalyst to enhance photocatalysis performance. RSC Adv. 6 (2016), 28263–28269.
-
(2016)
RSC Adv.
, vol.6
, pp. 28263-28269
-
-
Ma, X.1
Jiang, Q.2
Guo, W.3
Zheng, M.4
Xu, W.5
Ma, F.6
Hou, B.7
-
17
-
-
84863104012
-
4 coupled with CdS quantum dots
-
[17] Ge, L., Zuo, F., Liu, J., Ma, Q., Wang, C., Sun, D., Bartels, L., Feng, P., Synthesis and efficient visible light photocatalytic hydrogen evolution of polymeric g-C3N4 coupled with CdS quantum dots. J. Phys. Chem. C 116 (2012), 13708–13714.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 13708-13714
-
-
Ge, L.1
Zuo, F.2
Liu, J.3
Ma, Q.4
Wang, C.5
Sun, D.6
Bartels, L.7
Feng, P.8
-
18
-
-
84889587137
-
4: fabrication and its high photocatalytic performance under visible light irradiation
-
[18] Zhao, H.X., Yu, H.T., Quan, X., Chen, S., Zhao, H.M., Wang, H., Atomic single layer graphitic-C3N4: fabrication and its high photocatalytic performance under visible light irradiation. RSC Adv. 4 (2014), 624–628.
-
(2014)
RSC Adv.
, vol.4
, pp. 624-628
-
-
Zhao, H.X.1
Yu, H.T.2
Quan, X.3
Chen, S.4
Zhao, H.M.5
Wang, H.6
-
19
-
-
84940055053
-
4 heterojunctions
-
[19] Yuan, J., Wen, J., Zhong, Y., Li, X., Fang, Y., Zhang, S., Liu, W., Enhanced photocatalytic H2 evolution over noble metal-free NiS cocatalyst modified CdS nanorods/g-C3N4 heterojunctions. J. Mater. Chem. A 3 (2015), 18244–18255.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 18244-18255
-
-
Yuan, J.1
Wen, J.2
Zhong, Y.3
Li, X.4
Fang, Y.5
Zhang, S.6
Liu, W.7
-
20
-
-
84922607474
-
Fabrication of inorganic-organic core–shell heterostructure: novel CdS@g-C3N4 nanorod arrays for photoelectrochemical hydrogen evolution
-
[20] Li, Y., Wei, X., Li, H., Wang, R., Feng, J., Yun, H., Zhou, A., Fabrication of inorganic-organic core–shell heterostructure: novel CdS@g-C3N4 nanorod arrays for photoelectrochemical hydrogen evolution. RSC Adv. 5 (2015), 14074–14080.
-
(2015)
RSC Adv.
, vol.5
, pp. 14074-14080
-
-
Li, Y.1
Wei, X.2
Li, H.3
Wang, R.4
Feng, J.5
Yun, H.6
Zhou, A.7
-
21
-
-
84959322394
-
Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light
-
[21] Yan, Z., Sun, Z., Liu, X., Jia, H., Du, P., Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light. Nanoscale 8 (2016), 4748–4756.
-
(2016)
Nanoscale
, vol.8
, pp. 4748-4756
-
-
Yan, Z.1
Sun, Z.2
Liu, X.3
Jia, H.4
Du, P.5
-
22
-
-
84886773434
-
4 nanowires
-
[22] Zhang, J., Wang, Y., Jin, J., Zhang, J., Lin, Z., Huang, F., Yu, J., Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. ACS Appl. Mater. Interfaces 5 (2013), 10317–10324.
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 10317-10324
-
-
Zhang, J.1
Wang, Y.2
Jin, J.3
Zhang, J.4
Lin, Z.5
Huang, F.6
Yu, J.7
-
23
-
-
84872316741
-
4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation
-
[23] Cao, S., Yuan, Y., Fang, J., Shahjamali, M.M., Boey, F.Y.C., Barber, J., Loo, S.C.J., Xue, C., In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation. Inter. J. Hyd. Energy 38 (2013), 1258–1266.
-
(2013)
Inter. J. Hyd. Energy
, vol.38
, pp. 1258-1266
-
-
Cao, S.1
Yuan, Y.2
Fang, J.3
Shahjamali, M.M.4
Boey, F.Y.C.5
Barber, J.6
Loo, S.C.J.7
Xue, C.8
-
24
-
-
84879725501
-
2 photocatalysis of amitrole and atrazine with addition of oxidants under simulated solar light: Emerging synergies, degradation intermediates, and reusable attributes
-
[24] Andersen, J., Pelaez, M., Guay, L., Zhang, Z., Shea, K., Dionysiou, D.D., NF-TiO2 photocatalysis of amitrole and atrazine with addition of oxidants under simulated solar light: Emerging synergies, degradation intermediates, and reusable attributes. J. Hazard. Mater. 260 (2013), 569–575.
-
(2013)
J. Hazard. Mater.
, vol.260
, pp. 569-575
-
-
Andersen, J.1
Pelaez, M.2
Guay, L.3
Zhang, Z.4
Shea, K.5
Dionysiou, D.D.6
-
25
-
-
84983120345
-
2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine
-
[25] Zhang, Y., Han, C., Zhang, G., Dionysiou, D.D., Nadagouda, M.N., PEG-assisted synthesis of crystal TiO2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine. Chem. Eng. J. 268 (2015), 170–179.
-
(2015)
Chem. Eng. J.
, vol.268
, pp. 170-179
-
-
Zhang, Y.1
Han, C.2
Zhang, G.3
Dionysiou, D.D.4
Nadagouda, M.N.5
-
26
-
-
84907965333
-
2 supported on phosphors
-
[26] Sacco, O., Vaiano, V., Han, C., Sannino, D., Dionysiou, D.D., Photocatalytic removal of atrazine using N-doped TiO2 supported on phosphors. Appl. Catal. B Environ. 164 (2015), 462–474.
-
(2015)
Appl. Catal. B Environ.
, vol.164
, pp. 462-474
-
-
Sacco, O.1
Vaiano, V.2
Han, C.3
Sannino, D.4
Dionysiou, D.D.5
-
27
-
-
84922359039
-
The fabrication of innovative single crystal N, F-codoped titanium dioxide nanowires with enhanced photocatalytic activity for degradation of atrazine
-
[27] Zhang, Y., Han, C., Nadagouda, M.N., Dionysiou, D.D., The fabrication of innovative single crystal N, F-codoped titanium dioxide nanowires with enhanced photocatalytic activity for degradation of atrazine. Appl. Catal. B Environ. 168–169 (2015), 550–558.
-
(2015)
Appl. Catal. B Environ.
, vol.168-169
, pp. 550-558
-
-
Zhang, Y.1
Han, C.2
Nadagouda, M.N.3
Dionysiou, D.D.4
-
28
-
-
33947461960
-
Preparation of graphene oxide
-
[28] Hummers, W.S., Offeman, R.E., Preparation of graphene oxide. J. Am. Chem. Soc., 80, 1958, 1339.
-
(1958)
J. Am. Chem. Soc.
, vol.80
, pp. 1339
-
-
Hummers, W.S.1
Offeman, R.E.2
-
29
-
-
84866372447
-
A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant
-
[29] Zhao, Y., Song, X., Song, Q., Yin, Z., A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant. Cryst. Eng. Comm. 14 (2012), 6710–6719.
-
(2012)
Cryst. Eng. Comm.
, vol.14
, pp. 6710-6719
-
-
Zhao, Y.1
Song, X.2
Song, Q.3
Yin, Z.4
-
30
-
-
84901371973
-
Carbon-doped ZnO hybridized homogeneously with graphitic carbon nitride nanocomposites for photocatalysis
-
[30] Zhu, Y.P., Li, M., Liu, Y.L., Ren, T.Z., Yuan, Z.Y., Carbon-doped ZnO hybridized homogeneously with graphitic carbon nitride nanocomposites for photocatalysis. J. Phys. Chem. C 118 (2014), 10963–10971.
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 10963-10971
-
-
Zhu, Y.P.1
Li, M.2
Liu, Y.L.3
Ren, T.Z.4
Yuan, Z.Y.5
-
31
-
-
72549106066
-
Walnut-like CdS micro-particles/single-walled carbon nanotube hybrids: one-step hydrothermal route to synthesis and their properties
-
[31] Chen, X., Huang, X., Kong, L., Guo, Z., Fu, X., Lia, M., Liu, J., Walnut-like CdS micro-particles/single-walled carbon nanotube hybrids: one-step hydrothermal route to synthesis and their properties. J. Mater. Chem. 20 (2010), 352–359.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 352-359
-
-
Chen, X.1
Huang, X.2
Kong, L.3
Guo, Z.4
Fu, X.5
Lia, M.6
Liu, J.7
-
32
-
-
84863095751
-
CdS–graphene and CdS–CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation
-
[32] Ye, A., Fan, W., Zhang, Q., Deng, W., Wang, Y., CdS–graphene and CdS–CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation. Catal. Sci. Technol. 2 (2012), 969–978.
-
(2012)
Catal. Sci. Technol.
, vol.2
, pp. 969-978
-
-
Ye, A.1
Fan, W.2
Zhang, Q.3
Deng, W.4
Wang, Y.5
-
33
-
-
84991670643
-
Reduction of graphene oxide via modified hydrothermal method
-
[33] Ghorbani, M., Abdizadeh, H., Golobostanfard, M.R., Reduction of graphene oxide via modified hydrothermal method. Proced. Mater. Sci. 11 (2015), 326–330.
-
(2015)
Proced. Mater. Sci.
, vol.11
, pp. 326-330
-
-
Ghorbani, M.1
Abdizadeh, H.2
Golobostanfard, M.R.3
-
34
-
-
84885582737
-
Size effects of raman and photoluminescence spectra of CdS nanobelts
-
[34] Hu, C., Zeng, X., Cui, J., Chen, H., Lu, J., Size effects of raman and photoluminescence spectra of CdS nanobelts. J. Phys. Chem. C 117 (2013), 20998–21005.
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 20998-21005
-
-
Hu, C.1
Zeng, X.2
Cui, J.3
Chen, H.4
Lu, J.5
-
35
-
-
84921515260
-
2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator
-
[35] Iwashina, K., Iwase, A., Ng, Y.H., Amal, R., Kudo, A., Z-Schematic Water Splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator. J. Am. Chem. Soc. 137 (2015), 604–607.
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 604-607
-
-
Iwashina, K.1
Iwase, A.2
Ng, Y.H.3
Amal, R.4
Kudo, A.5
|