메뉴 건너뛰기




Volumn 55, Issue , 2017, Pages 533-548

Ensemble particle swarm optimizer

Author keywords

Ensemble; Particle swarm optimization; Real parameter optimization; Self adaptive; Strategy adaptation

Indexed keywords

BENCHMARKING; EVOLUTIONARY ALGORITHMS; PARAMETER ESTIMATION; PARTICLE SWARM OPTIMIZATION (PSO); PROBLEM SOLVING;

EID: 85014641950     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2017.02.007     Document Type: Article
Times cited : (251)

References (49)
  • 1
    • 80051969292 scopus 로고    scopus 로고
    • Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems
    • Jadavpur University, Nanyang Technological University Kolkata
    • [1] Das, S., Suganthan, P.N., Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems. 2010, Jadavpur University, Nanyang Technological University, Kolkata.
    • (2010)
    • Das, S.1    Suganthan, P.N.2
  • 3
    • 33751378899 scopus 로고    scopus 로고
    • Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization
    • Nangyang Technological University Singapore
    • [3] Liang, J., Runarsson, T.P., Mezura-Montes, M., Clerc, P., Coello, C.A.C., et al. Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization. 2006, Nangyang Technological University, Singapore.
    • (2006)
    • Liang, J.1    Runarsson, T.P.2    Mezura-Montes, M.3    Clerc, P.4    Coello, C.A.C.5
  • 4
    • 79956006594 scopus 로고    scopus 로고
    • Problem Definitions and Evaluation Criteria for the CEC 2010 Competition on Constrained Real-Parameter Optimization
    • Nanyang Technological University Singapore
    • [4] Mallipeddi, R., Suganthan, P.N., Problem Definitions and Evaluation Criteria for the CEC 2010 Competition on Constrained Real-Parameter Optimization. 2010, Nanyang Technological University, Singapore.
    • (2010)
    • Mallipeddi, R.1    Suganthan, P.N.2
  • 5
    • 84879539339 scopus 로고    scopus 로고
    • Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization
    • Zhengzhou University, Zhengzhou, China and Nanyang Technological University Singapore
    • [5] Liang, B., Suganthan, P., Hernández-Díaz, A.G., Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization. 2013, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore.
    • (2013)
    • Liang, B.1    Suganthan, P.2    Hernández-Díaz, A.G.3
  • 6
    • 84905701289 scopus 로고    scopus 로고
    • Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization
    • Zhengzhou University, China, Zhongyuan University of Technology, Zhengzhou, China and Nanyang Technological University Singapore
    • [6] Liang, J., Qu, B., Suganthan, P., Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. 2013, Zhengzhou University, China, Zhongyuan University of Technology, Zhengzhou, China and Nanyang Technological University, Singapore.
    • (2013)
    • Liang, J.1    Qu, B.2    Suganthan, P.3
  • 7
    • 84938896036 scopus 로고    scopus 로고
    • Problem Definitions and Evaluation Criteria for the CEC 2015 Competition on Learning-Based Real-Parameter Single Objective Optimization
    • Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University Singapore
    • [7] Liang, B., Suganthan, P., Chen, Q., Problem Definitions and Evaluation Criteria for the CEC 2015 Competition on Learning-Based Real-Parameter Single Objective Optimization., 2014, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore.
    • (2014)
    • Liang, B.1    Suganthan, P.2    Chen, Q.3
  • 8
    • 84904758522 scopus 로고    scopus 로고
    • Two-phase differential evolution for the multiobjective optimization of time–cost tradeoffs in resource-Constrained construction projects
    • [8] Cheng, M.Y., Tran, D.H., Two-phase differential evolution for the multiobjective optimization of time–cost tradeoffs in resource-Constrained construction projects. IEEE Trans. Eng. Manage. 61 (2014), 450–461.
    • (2014) IEEE Trans. Eng. Manage. , vol.61 , pp. 450-461
    • Cheng, M.Y.1    Tran, D.H.2
  • 9
    • 84943795386 scopus 로고    scopus 로고
    • Dynamic mentoring and self-regulation based particle swarm optimization algorithm for solving complex real-world optimization problems
    • 1/1/2016
    • [9] Tanweer, M.R., Suresh, S., Sundararajan, N., Dynamic mentoring and self-regulation based particle swarm optimization algorithm for solving complex real-world optimization problems. Inf. Sci. 326 (2016), 1–24 1/1/2016.
    • (2016) Inf. Sci. , vol.326 , pp. 1-24
    • Tanweer, M.R.1    Suresh, S.2    Sundararajan, N.3
  • 10
    • 84898544384 scopus 로고    scopus 로고
    • A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queues
    • 6/20/2014
    • [10] Xu, Y., Li, K., Hu, J., Li, K., A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queues. Inf. Sci. 270 (2014), 255–287 6/20/2014.
    • (2014) Inf. Sci. , vol.270 , pp. 255-287
    • Xu, Y.1    Li, K.2    Hu, J.3    Li, K.4
  • 11
    • 84960854018 scopus 로고    scopus 로고
    • A hybrid chemical reaction optimization scheme for task scheduling on heterogeneous computing systems
    • [11] Xu, Y., Li, K., He, L., Zhang, L., Li, K., A hybrid chemical reaction optimization scheme for task scheduling on heterogeneous computing systems. IEEE Trans. Parallel Distrib. Syst. 26 (2015), 3208–3222.
    • (2015) IEEE Trans. Parallel Distrib. Syst. , vol.26 , pp. 3208-3222
    • Xu, Y.1    Li, K.2    He, L.3    Zhang, L.4    Li, K.5
  • 12
    • 84941710664 scopus 로고    scopus 로고
    • Particle swarm optimization method for estimation of Weibull parameters: a case study for the Brazilian northeast region
    • (2//2016)
    • [12] Carneiro, T.C., Melo, S.P., Carvalho, P.C.M., Braga, A.P.d.S., Particle swarm optimization method for estimation of Weibull parameters: a case study for the Brazilian northeast region. Renewable Energy 86 (2016), 751–759 (2//2016).
    • (2016) Renewable Energy , vol.86 , pp. 751-759
    • Carneiro, T.C.1    Melo, S.P.2    Carvalho, P.C.M.3    Braga, A.P.D.S.4
  • 13
    • 85028172112 scopus 로고    scopus 로고
    • Parallel hybrid PSO with CUDA for lD heat conduction equation
    • 3/30/2015
    • [13] Ouyang, A., Tang, Z., Zhou, X., Xu, Y., Pan, G., Li, K., Parallel hybrid PSO with CUDA for lD heat conduction equation. Comput. Fluids 110 (2015), 198–210 3/30/2015.
    • (2015) Comput. Fluids , vol.110 , pp. 198-210
    • Ouyang, A.1    Tang, Z.2    Zhou, X.3    Xu, Y.4    Pan, G.5    Li, K.6
  • 16
    • 33744730797 scopus 로고    scopus 로고
    • Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
    • [16] Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S., Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10 (2006), 281–295.
    • (2006) IEEE Trans. Evol. Comput. , vol.10 , pp. 281-295
    • Liang, J.J.1    Qin, A.K.2    Suganthan, P.N.3    Baskar, S.4
  • 18
    • 3142768423 scopus 로고    scopus 로고
    • Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
    • [18] Ratnaweera, A., Halgamuge, S.K., Watson, H.C., Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8 (2004), 240–255.
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , pp. 240-255
    • Ratnaweera, A.1    Halgamuge, S.K.2    Watson, H.C.3
  • 19
    • 84878400479 scopus 로고    scopus 로고
    • A distance-based locally informed particle swarm model for multimodal optimization
    • [19] Qu, B.Y., Suganthan, P.N., Das, S., A distance-based locally informed particle swarm model for multimodal optimization. IEEE Trans. Evol. Comput. 17 (2013), 387–402.
    • (2013) IEEE Trans. Evol. Comput. , vol.17 , pp. 387-402
    • Qu, B.Y.1    Suganthan, P.N.2    Das, S.3
  • 20
    • 59649083826 scopus 로고    scopus 로고
    • Differential evolution algorithm with strategy adaptation for global numerical optimization
    • [20] Qin, A.K., Huang, V.L., Suganthan, P.N., Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13 (2009), 398–417.
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , pp. 398-417
    • Qin, A.K.1    Huang, V.L.2    Suganthan, P.N.3
  • 24
    • 78651514761 scopus 로고    scopus 로고
    • Particle Swarm Optimization and Intelligence: Advances and Applications: Advances and Applications: Information Science Reference
    • [24] Parsopoulos, K.E., Particle Swarm Optimization and Intelligence: Advances and Applications: Advances and Applications: Information Science Reference. 2010.
    • (2010)
    • Parsopoulos, K.E.1
  • 27
    • 35448934039 scopus 로고    scopus 로고
    • A review of particle swarm optimization. Part I: background and development
    • [27] Banks, A., Vincent, J., Anyakoha, C., A review of particle swarm optimization. Part I: background and development. Nat. Comput. 6 (2007), 467–484.
    • (2007) Nat. Comput. , vol.6 , pp. 467-484
    • Banks, A.1    Vincent, J.2    Anyakoha, C.3
  • 28
    • 33845385672 scopus 로고    scopus 로고
    • Fundamentals of Computational Swarm Intelligence
    • Wiley New York
    • [28] Engelbrecht, A.P., Fundamentals of Computational Swarm Intelligence. 2006, Wiley, New York, 2006.
    • (2006) , pp. 2006
    • Engelbrecht, A.P.1
  • 30
  • 31
    • 44949127284 scopus 로고    scopus 로고
    • Multi-strategy ensemble particle swarm optimization for dynamic optimization
    • [31] Du, W., Li, B., Multi-strategy ensemble particle swarm optimization for dynamic optimization. Inf. Sci. 178 (2008), 3096–3109.
    • (2008) Inf. Sci. , vol.178 , pp. 3096-3109
    • Du, W.1    Li, B.2
  • 32
    • 78049242508 scopus 로고    scopus 로고
    • Heterogeneous particle swarm optimization
    • Springer
    • [32] Engelbrecht, A.P., Heterogeneous particle swarm optimization. Swarm Intelligence, 2010, Springer, 191–202.
    • (2010) Swarm Intelligence , pp. 191-202
    • Engelbrecht, A.P.1
  • 35
    • 0003649743 scopus 로고    scopus 로고
    • The Design and Analysis of a Computational Model of Cooperative Coevolution
    • Citeseer
    • [35] Potter, M.A., The Design and Analysis of a Computational Model of Cooperative Coevolution. 1997, Citeseer.
    • (1997)
    • Potter, M.A.1
  • 37
    • 67149144879 scopus 로고    scopus 로고
    • Self-adaptive multimethod search for global optimization in real-parameter spaces
    • [37] Vrugt, J.A., Robinson, B.A., Hyman, J.M., Self-adaptive multimethod search for global optimization in real-parameter spaces. IEEE Trans. Evol. Comput. 13 (2009), 243–259.
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , pp. 243-259
    • Vrugt, J.A.1    Robinson, B.A.2    Hyman, J.M.3
  • 39
    • 1442283467 scopus 로고    scopus 로고
    • A tabu-search hyperheuristic for timetabling and rostering
    • [39] Burke, E.K., Kendall, G., Soubeiga, E., A tabu-search hyperheuristic for timetabling and rostering. J. Heuristics 9 (2003), 451–470.
    • (2003) J. Heuristics , vol.9 , pp. 451-470
    • Burke, E.K.1    Kendall, G.2    Soubeiga, E.3
  • 41
    • 0036530387 scopus 로고    scopus 로고
    • An empirical study on the synergy of multiple crossover operators
    • [41] Yoon, H.-S., Moon, B.-R., An empirical study on the synergy of multiple crossover operators. IEEE Trans. Evol. Comput. 6 (2002), 212–223.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , pp. 212-223
    • Yoon, H.-S.1    Moon, B.-R.2
  • 42
    • 27144475732 scopus 로고    scopus 로고
    • Self-adaptive differential evolution algorithm for numerical optimization
    • [42] Qin, A.K., Suganthan, P.N., Self-adaptive differential evolution algorithm for numerical optimization. IEEE Congress on Evolutionary Computation, 2005 2005 (2005), 1785–1791.
    • (2005) IEEE Congress on Evolutionary Computation, 2005 , vol.2005 , pp. 1785-1791
    • Qin, A.K.1    Suganthan, P.N.2
  • 43
    • 76349125303 scopus 로고    scopus 로고
    • Ensemble strategies with adaptive evolutionary programming
    • [43] Mallipeddi, R., Mallipeddi, S., Suganthan, P.N., Ensemble strategies with adaptive evolutionary programming. Inf. Sci. 180 (2010), 1571–1581.
    • (2010) Inf. Sci. , vol.180 , pp. 1571-1581
    • Mallipeddi, R.1    Mallipeddi, S.2    Suganthan, P.N.3
  • 44
    • 84901839780 scopus 로고    scopus 로고
    • Multi-strategy ensemble artificial bee colony algorithm
    • [44] Wang, H., Wu, Z., Rahnamayan, S., Sun, H., Liu, Y., Pan, J.-s., Multi-strategy ensemble artificial bee colony algorithm. Inf. Sci. 279 (2014), 587–603.
    • (2014) Inf. Sci. , vol.279 , pp. 587-603
    • Wang, H.1    Wu, Z.2    Rahnamayan, S.3    Sun, H.4    Liu, Y.5    Pan, J.-S.6
  • 45
    • 85008512227 scopus 로고    scopus 로고
    • Multi-strategy ensemble artificial bee colony algorithm for large-scale production scheduling problem
    • [45] Wang, H., Wang, W., Sun, H., Multi-strategy ensemble artificial bee colony algorithm for large-scale production scheduling problem. Int. J. Innovative Comput. Appl. 6 (2015), 128–136.
    • (2015) Int. J. Innovative Comput. Appl. , vol.6 , pp. 128-136
    • Wang, H.1    Wang, W.2    Sun, H.3
  • 46
    • 3142781923 scopus 로고    scopus 로고
    • The fully informed particle swarm: simpler, maybe better
    • [46] Mendes, R., Kennedy, J., Neves, J., The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8 (2004), 204–210.
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , pp. 204-210
    • Mendes, R.1    Kennedy, J.2    Neves, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.