메뉴 건너뛰기




Volumn 125, Issue , 2017, Pages 152-161

A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion

Author keywords

Broadband; Frequency up conversion; Low speed; Magnetic plucking; Piezoelectric; Rotational energy harvesting

Indexed keywords

BACTERIOPHAGES; DISTRIBUTED PARAMETER CONTROL SYSTEMS; FREQUENCY CONVERTERS; KINETIC ENERGY; KINETICS; MAGNETISM; MAGNETS; PIEZOELECTRICITY;

EID: 85014005136     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2017.02.115     Document Type: Article
Times cited : (189)

References (40)
  • 1
    • 80052412997 scopus 로고    scopus 로고
    • Reverse electrowetting as a new approach to high-power energy harvesting
    • [1] Krupenkin, T., Taylor, J.A., Reverse electrowetting as a new approach to high-power energy harvesting. Nat Commun, 2, 2011, 448.
    • (2011) Nat Commun , vol.2 , pp. 448
    • Krupenkin, T.1    Taylor, J.A.2
  • 2
    • 38949170625 scopus 로고    scopus 로고
    • Energy harvesting from motion using rotating and gyroscopic proof masses
    • [2] Yeatman, E.M., Energy harvesting from motion using rotating and gyroscopic proof masses. Proc Instit Mech Eng Part C J Mech Eng Sci 222:1 (2008), 27–36.
    • (2008) Proc Instit Mech Eng Part C J Mech Eng Sci , vol.222 , Issue.1 , pp. 27-36
    • Yeatman, E.M.1
  • 3
    • 84880987708 scopus 로고    scopus 로고
    • Networking low-power energy harvesting devices: measurements and algorithms
    • [3] Gorlatova, M., Wallwater, A., Zussman, G., Networking low-power energy harvesting devices: measurements and algorithms. IEEE Trans Mob Comput 12:9 (2013), 1853–1865.
    • (2013) IEEE Trans Mob Comput , vol.12 , Issue.9 , pp. 1853-1865
    • Gorlatova, M.1    Wallwater, A.2    Zussman, G.3
  • 4
    • 33846077160 scopus 로고    scopus 로고
    • Energy harvesting vibration sources for microsystems applications
    • [4] Beeby, S.P., Tudor, M.J., White, N.M., Energy harvesting vibration sources for microsystems applications. Meas Sci Technol, 17(12), 2006, R175.
    • (2006) Meas Sci Technol , vol.17 , Issue.12 , pp. R175
    • Beeby, S.P.1    Tudor, M.J.2    White, N.M.3
  • 5
    • 51649122440 scopus 로고    scopus 로고
    • Energy harvesting from human and machine motion for wireless electronic devices
    • [5] Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S., Green, T.C., Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96:9 (2008), 1457–1486.
    • (2008) Proc IEEE , vol.96 , Issue.9 , pp. 1457-1486
    • Mitcheson, P.D.1    Yeatman, E.M.2    Rao, G.K.3    Holmes, A.S.4    Green, T.C.5
  • 6
    • 84877766168 scopus 로고    scopus 로고
    • Fundamental issues in nonlinear wideband-vibration energy harvesting
    • [6] Halvorsen, E., Fundamental issues in nonlinear wideband-vibration energy harvesting. Phys Rev E, 87, 2013, 042129.
    • (2013) Phys Rev E , vol.87 , pp. 042129
    • Halvorsen, E.1
  • 7
    • 84899883468 scopus 로고    scopus 로고
    • On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion
    • 040801–040801
    • [7] Daqaq, M.F., Masana, R., Erturk, A., Dane Quinn, D., On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl Mech Rev, 66(4), 2014 040801–040801.
    • (2014) Appl Mech Rev , vol.66 , Issue.4
    • Daqaq, M.F.1    Masana, R.2    Erturk, A.3    Dane Quinn, D.4
  • 8
    • 84890528611 scopus 로고    scopus 로고
    • Piezoelectric and ferroelectric materials and structures for energy harvesting applications
    • [8] Bowen, C.R., Kim, H.A., Weaver, P.M., Dunn, S., Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ Sci 7 (2014), 25–44.
    • (2014) Energy Environ Sci , vol.7 , pp. 25-44
    • Bowen, C.R.1    Kim, H.A.2    Weaver, P.M.3    Dunn, S.4
  • 9
    • 84865394579 scopus 로고    scopus 로고
    • Design and modeling of a patterned-electret-based energy harvester for tire pressure monitoring systems
    • [9] Westby, E.R., Halvorsen, E., Design and modeling of a patterned-electret-based energy harvester for tire pressure monitoring systems. IEEE/ASME Trans Mech 17:5 (2012), 995–1005.
    • (2012) IEEE/ASME Trans Mech , vol.17 , Issue.5 , pp. 995-1005
    • Westby, E.R.1    Halvorsen, E.2
  • 10
    • 84988043508 scopus 로고    scopus 로고
    • Energy harvesting technologies for tire pressure monitoring systems
    • [10] Bowen, C.R., Arafa, M.H., Energy harvesting technologies for tire pressure monitoring systems. Adv Energy Mater, 5(7), 2014, 1401787.
    • (2014) Adv Energy Mater , vol.5 , Issue.7 , pp. 1401787
    • Bowen, C.R.1    Arafa, M.H.2
  • 11
    • 84889095515 scopus 로고    scopus 로고
    • System design of a weighted-pendulum-type electromagnetic generator for harvesting energy from a rotating wheel
    • [11] Wang, Y.-J., Chen, C.-D., Sung, C.-K., System design of a weighted-pendulum-type electromagnetic generator for harvesting energy from a rotating wheel. IEEE/ASME Trans Mech 18:2 (2013), 754–763.
    • (2013) IEEE/ASME Trans Mech , vol.18 , Issue.2 , pp. 754-763
    • Wang, Y.-J.1    Chen, C.-D.2    Sung, C.-K.3
  • 12
    • 84953736850 scopus 로고    scopus 로고
    • Design and analysis of a piezoelectric energy harvester for rotational motion system
    • [12] Guan, M., Liao, W.-H., Design and analysis of a piezoelectric energy harvester for rotational motion system. Energy Convers Manag 111 (2016), 239–244.
    • (2016) Energy Convers Manag , vol.111 , pp. 239-244
    • Guan, M.1    Liao, W.-H.2
  • 13
    • 84960154937 scopus 로고    scopus 로고
    • A miniature radial-flow wind turbine using piezoelectric transducers and magnetic excitation
    • [13] Fu, H., Yeatman, E.M., A miniature radial-flow wind turbine using piezoelectric transducers and magnetic excitation. J Phys Conf Ser, 660(1), 2015, 012058.
    • (2015) J Phys Conf Ser , vol.660 , Issue.1 , pp. 012058
    • Fu, H.1    Yeatman, E.M.2
  • 14
    • 79955103117 scopus 로고    scopus 로고
    • Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions
    • [14] Riemer, R., Shapiro, A., Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions. J Neuro Eng Rehab 8:1 (2011), 1–13.
    • (2011) J Neuro Eng Rehab , vol.8 , Issue.1 , pp. 1-13
    • Riemer, R.1    Shapiro, A.2
  • 15
    • 84892363912 scopus 로고    scopus 로고
    • A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications
    • [15] Pillatsch, P., Yeatman, E.M., Holmes, A.S., A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications. Sens Actuators A Phys 206 (2014), 178–185.
    • (2014) Sens Actuators A Phys , vol.206 , pp. 178-185
    • Pillatsch, P.1    Yeatman, E.M.2    Holmes, A.S.3
  • 16
    • 84860504133 scopus 로고    scopus 로고
    • Numerical model of a non-contact piezoelectric energy harvester for rotating objects
    • [16] Manla, G., White, N.M., Tudor, M.J., Numerical model of a non-contact piezoelectric energy harvester for rotating objects. IEEE Sens J 12:6 (2012), 1785–1793.
    • (2012) IEEE Sens J , vol.12 , Issue.6 , pp. 1785-1793
    • Manla, G.1    White, N.M.2    Tudor, M.J.3
  • 17
    • 84555197183 scopus 로고    scopus 로고
    • Compact passively self-tuning energy harvesting for rotating applications
    • [17] Gu, L., Livermore, C., Compact passively self-tuning energy harvesting for rotating applications. Smart Mater Struct, 21(1), 2012, 015002.
    • (2012) Smart Mater Struct , vol.21 , Issue.1 , pp. 015002
    • Gu, L.1    Livermore, C.2
  • 18
    • 84950336255 scopus 로고    scopus 로고
    • A miniaturized piezoelectric turbine with self-regulation for increased air speed range
    • [18] Fu, H., Yeatman, E.M., A miniaturized piezoelectric turbine with self-regulation for increased air speed range. Appl Phys Lett, 107(24), 2015, 243905.
    • (2015) Appl Phys Lett , vol.107 , Issue.24 , pp. 243905
    • Fu, H.1    Yeatman, E.M.2
  • 19
    • 84907215852 scopus 로고    scopus 로고
    • Energy harvester for rotating environments using offset pendulum and nonlinear dynamics
    • [19] Roundy, S., Tola, J., Energy harvester for rotating environments using offset pendulum and nonlinear dynamics. Smart Mater Struct, 23(10), 2014, 105004.
    • (2014) Smart Mater Struct , vol.23 , Issue.10 , pp. 105004
    • Roundy, S.1    Tola, J.2
  • 20
    • 58149345504 scopus 로고    scopus 로고
    • A continuously rotating energy harvester with maximum power point tracking
    • [20] Toh, T.T., Mitcheson, P.D., Holmes, A.S., Yeatman, E.M., A continuously rotating energy harvester with maximum power point tracking. J Micromech Microeng, 18(10), 2008, 104008.
    • (2008) J Micromech Microeng , vol.18 , Issue.10 , pp. 104008
    • Toh, T.T.1    Mitcheson, P.D.2    Holmes, A.S.3    Yeatman, E.M.4
  • 21
    • 84961743300 scopus 로고    scopus 로고
    • A cm scale electret-based electrostatic wind turbine for low-speed energy harvesting applications
    • [21] Perez, M., Boisseau, S., Gasnier, P., Willemin, J., Geisler, M., Reboud, J.L., A cm scale electret-based electrostatic wind turbine for low-speed energy harvesting applications. Smart Mater Struct, 25(4), 2016, 045015.
    • (2016) Smart Mater Struct , vol.25 , Issue.4 , pp. 045015
    • Perez, M.1    Boisseau, S.2    Gasnier, P.3    Willemin, J.4    Geisler, M.5    Reboud, J.L.6
  • 22
    • 84960153057 scopus 로고    scopus 로고
    • Energy harvesting from human motion using footstep-induced airflow
    • [22] Fu, H., Xu, R., Seto, K., Yeatman, E.M., Kim, S.G., Energy harvesting from human motion using footstep-induced airflow. J Phys Conf Ser, 660(1), 2015, 012060.
    • (2015) J Phys Conf Ser , vol.660 , Issue.1 , pp. 012060
    • Fu, H.1    Xu, R.2    Seto, K.3    Yeatman, E.M.4    Kim, S.G.5
  • 23
    • 84907104399 scopus 로고    scopus 로고
    • Performance of small-scale bladeless electromagnetic energy harvesters driven by water or air
    • [23] Zhao, D., Ji, C., Teo, C., Li, S., Performance of small-scale bladeless electromagnetic energy harvesters driven by water or air. Energy 74 (2014), 99–108.
    • (2014) Energy , vol.74 , pp. 99-108
    • Zhao, D.1    Ji, C.2    Teo, C.3    Li, S.4
  • 24
    • 5744241231 scopus 로고    scopus 로고
    • A piezoelectric vibration based generator for wireless electronics
    • [24] Roundy, S., Wright, P.K., A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct, 13(5), 2004, 1131.
    • (2004) Smart Mater Struct , vol.13 , Issue.5 , pp. 1131
    • Roundy, S.1    Wright, P.K.2
  • 25
    • 78049441684 scopus 로고    scopus 로고
    • A mems electret generator with electrostatic levitation for vibration-driven energy-harvesting applications
    • [25] Suzuki, Y., Miki, D., Edamoto, M., Honzumi, M., A mems electret generator with electrostatic levitation for vibration-driven energy-harvesting applications. J Micromech Microeng, 20(10), 2010, 104002.
    • (2010) J Micromech Microeng , vol.20 , Issue.10 , pp. 104002
    • Suzuki, Y.1    Miki, D.2    Edamoto, M.3    Honzumi, M.4
  • 26
    • 84915750341 scopus 로고    scopus 로고
    • Degradation of piezoelectric materials for energy harvesting applications
    • [26] Pillatsch, P., Shashoua, N., Holmes, A.S., Yeatman, E.M., Wright, P.K., Degradation of piezoelectric materials for energy harvesting applications. J Phys Conf Ser, 557(1), 2014, 012129.
    • (2014) J Phys Conf Ser , vol.557 , Issue.1 , pp. 012129
    • Pillatsch, P.1    Shashoua, N.2    Holmes, A.S.3    Yeatman, E.M.4    Wright, P.K.5
  • 27
    • 79961043160 scopus 로고    scopus 로고
    • Design and performance of a centimetre-scale shrouded wind turbine for energy harvesting
    • [27] Howey, D.A., Bansal, A., Holmes, A.S., Design and performance of a centimetre-scale shrouded wind turbine for energy harvesting. Smart Mater Struct, 20(8), 2011, 085021.
    • (2011) Smart Mater Struct , vol.20 , Issue.8 , pp. 085021
    • Howey, D.A.1    Bansal, A.2    Holmes, A.S.3
  • 28
    • 84908074558 scopus 로고    scopus 로고
    • Miniature horizontal axis wind turbine system for multipurpose application
    • [28] Xu, F., Yuan, F., Hu, J., Qiu, Y., Miniature horizontal axis wind turbine system for multipurpose application. Energy 75 (2014), 216–224.
    • (2014) Energy , vol.75 , pp. 216-224
    • Xu, F.1    Yuan, F.2    Hu, J.3    Qiu, Y.4
  • 29
    • 84963823808 scopus 로고    scopus 로고
    • A topology and design optimization method for wideband piezoelectric wind energy harvesters
    • [29] Rezaei-Hosseinabadi, N., Tabesh, A., Dehghani, R., A topology and design optimization method for wideband piezoelectric wind energy harvesters. IEEE Trans Ind Electron 63:4 (2016), 2165–2173.
    • (2016) IEEE Trans Ind Electron , vol.63 , Issue.4 , pp. 2165-2173
    • Rezaei-Hosseinabadi, N.1    Tabesh, A.2    Dehghani, R.3
  • 30
    • 84905591407 scopus 로고    scopus 로고
    • Rotational piezoelectric wind energy harvesting using impact-induced resonance
    • [30] Yang, Y., Shen, Q., Jin, J., Wang, Y., Qian, W., Yuan, D., Rotational piezoelectric wind energy harvesting using impact-induced resonance. Appl Phys Lett, 105(5), 2014.
    • (2014) Appl Phys Lett , vol.105 , Issue.5
    • Yang, Y.1    Shen, Q.2    Jin, J.3    Wang, Y.4    Qian, W.5    Yuan, D.6
  • 31
    • 27344449437 scopus 로고    scopus 로고
    • Modeling of electric energy harvesting using piezoelectric windmill
    • [31] Priya, S., Modeling of electric energy harvesting using piezoelectric windmill. Appl Phys Lett, 87(18), 2005.
    • (2005) Appl Phys Lett , vol.87 , Issue.18
    • Priya, S.1
  • 32
    • 58149344956 scopus 로고    scopus 로고
    • Characterization of different beam shapes for piezoelectric energy harvesting
    • [32] Goldschmidtboeing, F., Woias, P., Characterization of different beam shapes for piezoelectric energy harvesting. J Micromech Microeng, 18(10), 2008, 104013.
    • (2008) J Micromech Microeng , vol.18 , Issue.10 , pp. 104013
    • Goldschmidtboeing, F.1    Woias, P.2
  • 33
    • 80051698105 scopus 로고    scopus 로고
    • A review of vibration-based {MEMS} piezoelectric energy harvesters
    • [33] Saadon, S., Sidek, O., A review of vibration-based {MEMS} piezoelectric energy harvesters. Energy Convers Manag 52:1 (2011), 500–504.
    • (2011) Energy Convers Manag , vol.52 , Issue.1 , pp. 500-504
    • Saadon, S.1    Sidek, O.2
  • 34
    • 85008055140 scopus 로고    scopus 로고
    • Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications
    • [34] Kulah, H., Najafi, K., Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications. IEEE Sens J, 8(3), 2008.
    • (2008) IEEE Sens J , vol.8 , Issue.3
    • Kulah, H.1    Najafi, K.2
  • 35
    • 84925326151 scopus 로고    scopus 로고
    • Design and development of a multipurpose piezoelectric energy harvester
    • [35] Fan, K., Chang, J., Chao, F., Pedrycz, W., Design and development of a multipurpose piezoelectric energy harvester. Energy Convers Manag 96 (2015), 430–439.
    • (2015) Energy Convers Manag , vol.96 , pp. 430-439
    • Fan, K.1    Chang, J.2    Chao, F.3    Pedrycz, W.4
  • 36
    • 0021490402 scopus 로고
    • 3D analytical calculation of the forces exerted between two cuboidal magnets
    • [36] Akoun, G., Yonnet, J.P., 3D analytical calculation of the forces exerted between two cuboidal magnets. IEEE Trans Magn 20:5 (1984), 1962–1964.
    • (1984) IEEE Trans Magn , vol.20 , Issue.5 , pp. 1962-1964
    • Akoun, G.1    Yonnet, J.P.2
  • 37
    • 33644749219 scopus 로고    scopus 로고
    • Design considerations for mems-scale piezoelectric mechanical vibration energy harvesters
    • [37] Dutoit, N.E., Wardle, B.L., Kim, S.-G., Design considerations for mems-scale piezoelectric mechanical vibration energy harvesters. Integr Ferroelectr 71:1 (2005), 121–160.
    • (2005) Integr Ferroelectr , vol.71 , Issue.1 , pp. 121-160
    • Dutoit, N.E.1    Wardle, B.L.2    Kim, S.-G.3
  • 38
    • 85014056206 scopus 로고    scopus 로고
    • Base excitation problem for cantilevered structures and correction of the lumped-parameter electromechanical model
    • John Wiley & Sons, Ltd
    • [38] Erturk, A., Inman, D.J., Base excitation problem for cantilevered structures and correction of the lumped-parameter electromechanical model. 2011, John Wiley & Sons, Ltd, 19–48.
    • (2011) , pp. 19-48
    • Erturk, A.1    Inman, D.J.2
  • 39
    • 0004175949 scopus 로고    scopus 로고
    • Engineering vibration
    • Prentice Hall Englewood Cliffs, NJ
    • [39] Inman, D.J., Engineering vibration. 2007, Prentice Hall, Englewood Cliffs, NJ.
    • (2007)
    • Inman, D.J.1
  • 40
    • 85083959156 scopus 로고    scopus 로고
    • An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations
    • [40] Erturk, A., Inman, D.J., An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct, 18(2), 2009, 025009.
    • (2009) Smart Mater Struct , vol.18 , Issue.2 , pp. 025009
    • Erturk, A.1    Inman, D.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.