메뉴 건너뛰기




Volumn 2, Issue 1, 2017, Pages 1-7

Plasmonic Au@Pd nanoparticles supported on a basic metal-organic framework: Synergic boosting of H2 production from formic acid

Author keywords

[No Author keywords available]

Indexed keywords

CRYSTALLINE MATERIALS; FORMIC ACID; HYDROGEN BONDS; IRRADIATION; LIGHT; METAL NANOPARTICLES; ORGANIC POLYMERS; ORGANOMETALLICS; PALLADIUM; PLASMONICS; PLASMONS; SURFACE PLASMON RESONANCE; TITANIUM;

EID: 85013988288     PISSN: None     EISSN: 23808195     Source Type: Journal    
DOI: 10.1021/acsenergylett.6b00558     Document Type: Article
Times cited : (182)

References (52)
  • 1
    • 0035891321 scopus 로고    scopus 로고
    • Materials for fuel-cell technologies
    • Steele, B. C.; Heinzel, A. Materials for Fuel-Cell Technologies. Nature 2001, 414, 345-352.
    • (2001) Nature , vol.414 , pp. 345-352
    • Steele, B.C.1    Heinzel, A.2
  • 2
    • 0034673637 scopus 로고    scopus 로고
    • Direct oxidation of hydrocarbons in a solid-oxide fuel cell
    • Gorte, R.; Park, S.; Vohs, J. Direct Oxidation of Hydrocarbons in a Solid-Oxide Fuel Cell. Nature 2000, 404, 265-267.
    • (2000) Nature , vol.404 , pp. 265-267
    • Gorte, R.1    Park, S.2    Vohs, J.3
  • 3
    • 75749148056 scopus 로고    scopus 로고
    • High capacity hydrogen storage materials: Attributes for automotive applications and techniques for materials discovery
    • Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D. J. High Capacity Hydrogen Storage Materials: Attributes for Automotive Applications and Techniques for Materials Discovery. Chem. Soc. Rev. 2010, 39, 656-675.
    • (2010) Chem. Soc. Rev. , vol.39 , pp. 656-675
    • Yang, J.1    Sudik, A.2    Wolverton, C.3    Siegel, D.J.4
  • 4
    • 84864227859 scopus 로고    scopus 로고
    • Formic acid as a hydrogen source-recent developments and future trends
    • Grasemann, M.; Laurenczy, G. Formic Acid as a Hydrogen Source-Recent Developments and Future Trends. Energy Environ. Sci. 2012, 5, 8171-8181.
    • (2012) Energy Environ. Sci. , vol.5 , pp. 8171-8181
    • Grasemann, M.1    Laurenczy, G.2
  • 6
    • 84946838128 scopus 로고    scopus 로고
    • Effect of boron modifications of palladium catalysts for the production of hydrogen from formic acid
    • Yoo, J. S.; Zhao, Z. J.; Nørskov, J. K.; Studt, F. Effect of Boron Modifications of Palladium Catalysts for the Production of Hydrogen from Formic Acid. ACS Catal. 2015, 5, 6579-6586.
    • (2015) ACS Catal. , vol.5 , pp. 6579-6586
    • Yoo, J.S.1    Zhao, Z.J.2    Nørskov, J.K.3    Studt, F.4
  • 7
    • 79957882329 scopus 로고    scopus 로고
    • Decomposition of formic acid catalyzed by a phosphine-free ruthenium complex in a task-specific ionic liquid
    • Scholten, J. D.; Prechtl, M. H. G.; Dupont, J. Decomposition of Formic Acid Catalyzed by a Phosphine-Free Ruthenium Complex in a Task-Specific Ionic Liquid. ChemCatChem 2010, 2, 1265-1270.
    • (2010) ChemCatChem , vol.2 , pp. 1265-1270
    • Scholten, J.D.1    Prechtl, M.H.G.2    Dupont, J.3
  • 9
    • 47049088164 scopus 로고    scopus 로고
    • Continuous hydrogen generation from formic acid: Highly active and stable ruthenium catalysts
    • Loges, B.; Boddien, A.; Junge, H.; Beller, M. Continuous Hydrogen Generation from Formic Acid: Highly Active and Stable Ruthenium Catalysts. Angew. Chem., Int. Ed. 2008, 47, 3962-3965.
    • (2008) Angew. Chem., Int. Ed. , vol.47 , pp. 3962-3965
    • Loges, B.1    Boddien, A.2    Junge, H.3    Beller, M.4
  • 10
    • 54449091687 scopus 로고    scopus 로고
    • Hydrogen generation at ambient conditions: Application in fuel cells
    • Boddien, A.; Loges, B.; Junge, H.; Beller, M. Hydrogen Generation at Ambient Conditions: Application in Fuel Cells. ChemSusChem 2008, 1, 751-758.
    • (2008) ChemSusChem , vol.1 , pp. 751-758
    • Boddien, A.1    Loges, B.2    Junge, H.3    Beller, M.4
  • 11
    • 70350599533 scopus 로고    scopus 로고
    • Continuous hydrogen generation from formic acid: Highly active and stable ruthenium catalysts
    • Boddien, A.; Loges, B.; Junge, H.; Gärtner, F.; Noyes, J. R.; Beller, M. Continuous Hydrogen Generation from Formic Acid: Highly Active and Stable Ruthenium Catalysts. Adv. Synth. Catal. 2009, 351, 2517-2520.
    • (2009) Adv. Synth. Catal. , vol.351 , pp. 2517-2520
    • Boddien, A.1    Loges, B.2    Junge, H.3    Gärtner, F.4    Noyes, J.R.5    Beller, M.6
  • 12
    • 67651064652 scopus 로고    scopus 로고
    • Insights into hydrogen generation from formic acid using ruthenium complexes
    • Morris, D. J.; Clarkson, G. J.; Wills, M. Insights into Hydrogen Generation from Formic Acid using Ruthenium Complexes. Organometallics 2009, 28, 4133-4140.
    • (2009) Organometallics , vol.28 , pp. 4133-4140
    • Morris, D.J.1    Clarkson, G.J.2    Wills, M.3
  • 13
    • 76149119101 scopus 로고    scopus 로고
    • Unusually large tunneling effect on highly efficient generation of hydrogen and hydrogen isotopes in pH-selective decomposition of formic acid catalyzed by a heterodinuclear iridium-ruthenium complex in water
    • Fukuzumi, S.; Kobayashi, T.; Suenobu, T. Unusually Large Tunneling Effect on Highly Efficient Generation of Hydrogen and Hydrogen Isotopes in pH-Selective Decomposition of Formic Acid Catalyzed by a Heterodinuclear Iridium-Ruthenium Complex in Water. J. Am. Chem. Soc. 2010, 132, 1496-1497.
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 1496-1497
    • Fukuzumi, S.1    Kobayashi, T.2    Suenobu, T.3
  • 14
    • 71549156277 scopus 로고    scopus 로고
    • Highly efficient hydrogen evolution by decomposition of formic acid using an iridium catalyst with 4,4′-dihydroxy-2,2′-bipyridine
    • Himeda, Y. Highly Efficient Hydrogen Evolution by Decomposition of Formic Acid Using an Iridium Catalyst with 4,4′-dihydroxy-2,2′-bipyridine. Green Chem. 2009, 11, 2018-2022.
    • (2009) Green Chem. , vol.11 , pp. 2018-2022
    • Himeda, Y.1
  • 15
    • 84861651733 scopus 로고    scopus 로고
    • Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decompostion under ambient conditions
    • Bi, Q. Y.; Du, X. L.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. Efficient Subnanometric Gold-Catalyzed Hydrogen Generation via Formic Acid Decompostion under Ambient Conditions. J. Am. Chem. Soc. 2012, 134, 8926-8933.
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 8926-8933
    • Bi, Q.Y.1    Du, X.L.2    Liu, Y.M.3    Cao, Y.4    He, H.Y.5    Fan, K.N.6
  • 16
    • 68049142199 scopus 로고    scopus 로고
    • Rational design of supported PdAu nanoparticle catalysts from structured nanoparticle precursors
    • Dash, P.; Bond, T.; Fowler, C.; Hou, W.; Coombs, N.; Scott, R. W. J. Rational Design of Supported PdAu Nanoparticle Catalysts from Structured Nanoparticle Precursors. J. Phys. Chem. C 2009, 113, 12719-12730.
    • (2009) J. Phys. Chem. C , vol.113 , pp. 12719-12730
    • Dash, P.1    Bond, T.2    Fowler, C.3    Hou, W.4    Coombs, N.5    Scott, R.W.J.6
  • 17
    • 0141859004 scopus 로고
    • Mechanism of formic acid decompostion on 3d metal oxides
    • Criado, J.; Gonzalez, G.; Trillo, J. M. Mechanism of Formic Acid Decompostion on 3d Metal Oxides. J. Catal. 1971, 23, 11-18.
    • (1971) J. Catal. , vol.23 , pp. 11-18
    • Criado, J.1    Gonzalez, G.2    Trillo, J.M.3
  • 18
    • 79961162183 scopus 로고    scopus 로고
    • Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage
    • Gu, X.; Lu, Z. H.; Jiang, H. L.; Akita, T.; Xu, Q. Synergistic Catalysis of Metal-Organic Framework-Immobilized Au-Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage. J. Am. Chem. Soc. 2011, 133, 11822-11825.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 11822-11825
    • Gu, X.1    Lu, Z.H.2    Jiang, H.L.3    Akita, T.4    Xu, Q.5
  • 19
    • 47949133010 scopus 로고    scopus 로고
    • High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C
    • Zhou, X.; Huang, Y.; Xing, W.; Liu, C.; Liao, J.; Lu, T. High-Quality Hydrogen from the Catalyzed Decomposition of Formic Acid by Pd-Au/C and Pd-Ag/C. Chem. Commun. 2008, 3540-3542.
    • (2008) Chem. Commun. , pp. 3540-3542
    • Zhou, X.1    Huang, Y.2    Xing, W.3    Liu, C.4    Liao, J.5    Lu, T.6
  • 20
    • 84875330481 scopus 로고    scopus 로고
    • Monodisperse AgPd alloy nanoparicles and their superior catalysis for the dehyogenation of formic acid
    • Zhang, S.; Metin, Ö.; Su, D.; Sun, S. Monodisperse AgPd Alloy Nanoparicles and Their Superior Catalysis for the Dehyogenation of Formic Acid. Angew. Chem., Int. Ed. 2013, 52, 3681-3684.
    • (2013) Angew. Chem., Int. Ed. , vol.52 , pp. 3681-3684
    • Zhang, S.1    Metin, O.2    Su, D.3    Sun, S.4
  • 21
    • 84929440835 scopus 로고    scopus 로고
    • High-quality hydrogen generated from formic acid triggered by In-situ prepared Pd/C catalyst for fuel cells
    • Lv, Q.; Feng, L.; Hu, C.; Liu, C.; Xing, W. High-Quality Hydrogen Generated from Formic Acid Triggered by In-Situ Prepared Pd/C Catalyst for Fuel Cells. Catal. Sci. Technol. 2015, 5, 2581-2584.
    • (2015) Catal. Sci. Technol. , vol.5 , pp. 2581-2584
    • Lv, Q.1    Feng, L.2    Hu, C.3    Liu, C.4    Xing, W.5
  • 22
    • 84901302270 scopus 로고    scopus 로고
    • Hydrogen production from formic acid vapour over a Pd/C catalyst promoted by potassium salts: Evidence for participation of buffer-like solution in the pores of the catalyst
    • Jia, L.; Bulushev, D. A.; Beloshapkin, S.; Ross, J. R. H. Hydrogen Production from Formic Acid Vapour over a Pd/C Catalyst Promoted by Potassium Salts: Evidence for Participation of Buffer-Like Solution in the Pores of the Catalyst. Appl. Catal., B 2014, 160-161, 35-43.
    • (2014) Appl. Catal., B , vol.160-161 , pp. 35-43
    • Jia, L.1    Bulushev, D.A.2    Beloshapkin, S.3    Ross, J.R.H.4
  • 24
    • 84938703747 scopus 로고    scopus 로고
    • Synergic catalysis of PdCu alloy nanoparticles within a macroreticular basic resin for hydrogen production from formic acid
    • Mori, K.; Tanaka, H.; Dojo, M.; Yoshizawa, K.; Yamashita, H. Synergic Catalysis of PdCu Alloy Nanoparticles within a Macroreticular Basic Resin for Hydrogen Production from Formic Acid. Chem. - Eur. J. 2015, 21, 12085-12092.
    • (2015) Chem. - Eur. J. , vol.21 , pp. 12085-12092
    • Mori, K.1    Tanaka, H.2    Dojo, M.3    Yoshizawa, K.4    Yamashita, H.5
  • 25
    • 84879141847 scopus 로고    scopus 로고
    • Pd and Pd-Ag nanoparticles within a macroreticular basic resin: An efficient catalyst for hydrogen production from formic acid decompostion
    • Mori, K.; Dojo, M.; Yamashita, H. Pd and Pd-Ag Nanoparticles within a Macroreticular Basic Resin: An Efficient Catalyst for Hydrogen Production from Formic Acid Decompostion. ACS Catal. 2013, 3, 1114-1119.
    • (2013) ACS Catal. , vol.3 , pp. 1114-1119
    • Mori, K.1    Dojo, M.2    Yamashita, H.3
  • 26
  • 27
    • 84957580457 scopus 로고    scopus 로고
    • A Ag-Pd alloy supported on an amine-functionalized UiO-66 as an efficient synergetic catalyst for the dehydrogenation of formic acid at room temperature
    • Gao, S. T.; Liu, W.; Feng, C.; Shang, N. Z.; Wang, C. A Ag-Pd Alloy Supported on an Amine-Functionalized UiO-66 as an Efficient Synergetic Catalyst for the Dehydrogenation of Formic Acid at Room Temperature. Catal. Sci. Technol. 2016, 6, 869-874.
    • (2016) Catal. Sci. Technol. , vol.6 , pp. 869-874
    • Gao, S.T.1    Liu, W.2    Feng, C.3    Shang, N.Z.4    Wang, C.5
  • 28
    • 84903184080 scopus 로고    scopus 로고
    • Controllable modification of the electronic structure of carbon-supported core-shell Cu@Pd catalysts for formic acid oxidation
    • Ren, M.; Zhou, Y.; Tao, F.; Zou, Z.; Akins, D. L.; Yang, H. Controllable Modification of the Electronic Structure of Carbon-Supported Core-Shell Cu@Pd Catalysts for Formic Acid Oxidation. J. Phys. Chem. C 2014, 118, 12669-12675.
    • (2014) J. Phys. Chem. C , vol.118 , pp. 12669-12675
    • Ren, M.1    Zhou, Y.2    Tao, F.3    Zou, Z.4    Akins, D.L.5    Yang, H.6
  • 29
    • 84865718227 scopus 로고    scopus 로고
    • 2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcoholes to aldehydes or ketones in aqueous suspensions under irradiation by green light
    • 2 Exhibiting Strong Surface Plasmon Resonance Effective for Selective or Chemoselective Oxidation of Alcoholes to Aldehydes or Ketones in Aqueous Suspensions under Irradiation by Green Light. J. Am. Chem. Soc. 2012, 134, 14526-14533.
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 14526-14533
    • Tanaka, A.1    Hashimoto, K.2    Kominami, H.3
  • 30
    • 84892722377 scopus 로고    scopus 로고
    • 3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation
    • 3 Photocatalyst Utilizing Two Types of Photoabsorption Due to Surface Plasmon Resonance and Band-Gap Excitation. J. Am. Chem. Soc. 2014, 136, 586-589.
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 586-589
    • Tanaka, A.1    Hashimoto, K.2    Kominami, H.3
  • 31
    • 84923936529 scopus 로고    scopus 로고
    • Harnessing single-active plasmonic nanostructures for enhanced photocatalysis under visible light
    • Cheng, H.; Fuku, K.; Kuwahara, Y.; Mori, K.; Yamashita, H. Harnessing Single-Active Plasmonic Nanostructures for Enhanced Photocatalysis under Visible Light. J. Mater. Chem. A 2015, 3, 5244-5258.
    • (2015) J. Mater. Chem. A , vol.3 , pp. 5244-5258
    • Cheng, H.1    Fuku, K.2    Kuwahara, Y.3    Mori, K.4    Yamashita, H.5
  • 32
    • 84896773649 scopus 로고    scopus 로고
    • Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane uner visible light
    • Cheng, H.; Kamegawa, T.; Mori, K.; Yamashita, H. Surfactant-Free Nonaqueous Synthesis of Plasmonic Molybdenum Oxide Nanosheets with Enhanced Catalytic Activity for Hydrogen Generation from Ammonia Borane uner Visible Light. Angew. Chem., Int. Ed. 2014, 53, 2910-2914.
    • (2014) Angew. Chem., Int. Ed. , vol.53 , pp. 2910-2914
    • Cheng, H.1    Kamegawa, T.2    Mori, K.3    Yamashita, H.4
  • 33
    • 84880093044 scopus 로고    scopus 로고
    • The synthesis of size- and color-controlled silver nanoparticles by using microwave heaing and their enhanced catalytic activity by localized surface plasmon resonance
    • Fuku, K.; Hayashi, R.; Takakura, S.; Kamegawa, T.; Mori, K.; Yamashita, H. The Synthesis of Size- and Color-Controlled Silver Nanoparticles by Using Microwave Heaing and Their Enhanced Catalytic Activity by Localized Surface Plasmon Resonance. Angew. Chem., Int. Ed. 2013, 52, 7446-7450.
    • (2013) Angew. Chem., Int. Ed. , vol.52 , pp. 7446-7450
    • Fuku, K.1    Hayashi, R.2    Takakura, S.3    Kamegawa, T.4    Mori, K.5    Yamashita, H.6
  • 34
    • 78149423195 scopus 로고    scopus 로고
    • Enhancement of the photoinduced oxidation activity of a ruthenium (II) complex anchored on silica-coated silver nanoparticles by localized surface plasmon resonance
    • Mori, K.; Kawashima, M.; Che, M.; Yamashita, H. Enhancement of the Photoinduced Oxidation Activity of a Ruthenium (II) Complex Anchored on Silica-Coated Silver Nanoparticles by Localized Surface Plasmon Resonance. Angew. Chem., Int. Ed. 2010, 49, 8598-8601.
    • (2010) Angew. Chem., Int. Ed. , vol.49 , pp. 8598-8601
    • Mori, K.1    Kawashima, M.2    Che, M.3    Yamashita, H.4
  • 35
    • 84979934618 scopus 로고    scopus 로고
    • Hydrogen doped metal oxide semiconductors with exceptional and tunable localized surface plasmon resonances
    • Cheng, H.; Wen, M.; Ma, X.; Kuwahara, Y.; Mori, K.; Dai, Y.; Huang, B.; Yamashita, H. Hydrogen Doped Metal Oxide Semiconductors with Exceptional and Tunable Localized Surface Plasmon Resonances. J. Am. Chem. Soc. 2016, 138, 9316-9324.
    • (2016) J. Am. Chem. Soc. , vol.138 , pp. 9316-9324
    • Cheng, H.1    Wen, M.2    Ma, X.3    Kuwahara, Y.4    Mori, K.5    Dai, Y.6    Huang, B.7    Yamashita, H.8
  • 38
    • 84921629536 scopus 로고    scopus 로고
    • Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal-organic frameworks (MOFs)
    • Sun, D.; Liu, W.; Qiu, M.; Zhang, Y.; Li, Z. Introduction of a Mediator for Enhancing Photocatalytic Performance via Post-synthetic Metal Exchange in Metal-Organic Frameworks (MOFs). Chem. Commun. 2015, 51, 2056-2059.
    • (2015) Chem. Commun. , vol.51 , pp. 2056-2059
    • Sun, D.1    Liu, W.2    Qiu, M.3    Zhang, Y.4    Li, Z.5
  • 39
    • 84874072260 scopus 로고    scopus 로고
    • 2 with metal cocatalysts exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation under irradiation of visible light
    • 2 with Metal Cocatalysts Exhibiting Strong Surface Plasmon Resonance Effective for Photoinduced Hydrogen Formation under Irradiation of Visible Light. ACS Catal. 2013, 3, 79-85.
    • (2013) ACS Catal. , vol.3 , pp. 79-85
    • Tanaka, A.1    Sakaguchi, S.2    Hashimoto, K.3    Kominami, H.4
  • 40
    • 84876478812 scopus 로고    scopus 로고
    • Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures
    • Sarina, S.; Zhu, H.; Jaatinen, E.; Xiao, Q.; Liu, H.; Jia, J.; Chen, C.; Zhao, J. Enhancing Catalytic Performance of Palladium in Gold and Palladium Alloy Nanoparticles for Organic Synthesis Reactions through Visible Light Irradiation at Ambient Temperatures. J. Am. Chem. Soc. 2013, 135, 5793-5801.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 5793-5801
    • Sarina, S.1    Zhu, H.2    Jaatinen, E.3    Xiao, Q.4    Liu, H.5    Jia, J.6    Chen, C.7    Zhao, J.8
  • 42
    • 84971311514 scopus 로고    scopus 로고
    • Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis
    • Sun, Q.; Sun, Y.; Zhang, T.; Chen, G.; Zhang, F.; Liu, D.; Cai, W.; Li, Y.; Yang, X.; Li, C. Complete Au@ZnO Core-Shell Nanoparticles with Enhanced Plasmonic Absorption Enabling Significantly Improved Photocatalysis. Nanoscale 2016, 8, 10774-10782.
    • (2016) Nanoscale , vol.8 , pp. 10774-10782
    • Sun, Q.1    Sun, Y.2    Zhang, T.3    Chen, G.4    Zhang, F.5    Liu, D.6    Cai, W.7    Li, Y.8    Yang, X.9    Li, C.10
  • 43
    • 48249128331 scopus 로고    scopus 로고
    • Au-PbS core-shell nanocrystals: Plasmonic absorption enhancement and electrical doping via intra-particle charge transfer
    • Lee, J.-S.; Shevchenko, E. V.; Talapin, D. V. Au-PbS Core-Shell Nanocrystals: Plasmonic Absorption Enhancement and Electrical Doping via Intra-particle Charge Transfer. J. Am. Chem. Soc. 2008, 130, 9673-9675.
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 9673-9675
    • Lee, J.-S.1    Shevchenko, E.V.2    Talapin, D.V.3
  • 44
    • 84885121829 scopus 로고    scopus 로고
    • Au@Pd core-shell nanoclusters growing on nitrogen-doped mildly reduced graphene oxide with enhanced catalytic performance for hydrogen generation from formic acid
    • Wang, Z. L.; Yan, J. M.; Wang, H. L.; Ping, Y.; Jiang, Q. Au@Pd Core-Shell Nanoclusters Growing on Nitrogen-Doped Mildly Reduced Graphene Oxide with Enhanced Catalytic Performance for Hydrogen Generation from Formic Acid. J. Mater. Chem. A 2013, 1, 12721-12725.
    • (2013) J. Mater. Chem. A , vol.1 , pp. 12721-12725
    • Wang, Z.L.1    Yan, J.M.2    Wang, H.L.3    Ping, Y.4    Jiang, Q.5
  • 46
    • 84867173907 scopus 로고    scopus 로고
    • Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal-organic framework
    • Horiuchi, Y.; Toyao, T.; Saito, M.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Anpo, M.; Matsuoka, M. Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal-Organic Framework. J. Phys. Chem. C 2012, 116, 20848-20853.
    • (2012) J. Phys. Chem. C , vol.116 , pp. 20848-20853
    • Horiuchi, Y.1    Toyao, T.2    Saito, M.3    Mochizuki, K.4    Iwata, M.5    Higashimura, H.6    Anpo, M.7    Matsuoka, M.8
  • 47
    • 19744378882 scopus 로고    scopus 로고
    • 2 films loaded with gold nanoparticles
    • 2 Films Loaded with Gold Nanoparticles. J. Am. Chem. Soc. 2005, 127, 7632-7637.
    • (2005) J. Am. Chem. Soc. , vol.127 , pp. 7632-7637
    • Tian, Y.1    Tatsuma, T.2
  • 48
    • 78049255765 scopus 로고    scopus 로고
    • Catalytic generation of hydrogen from formic acid and its derivatives: Useful hydrogen storage materials
    • Loges, B.; Boddien, A.; Gärtner, F.; Junge, H.; Beller, M. Catalytic Generation of Hydrogen from Formic Acid and Its Derivatives: Useful Hydrogen Storage Materials. Top. Catal. 2010, 53, 902-914.
    • (2010) Top. Catal. , vol.53 , pp. 902-914
    • Loges, B.1    Boddien, A.2    Gärtner, F.3    Junge, H.4    Beller, M.5
  • 49
    • 84911923255 scopus 로고    scopus 로고
    • Ultrasmall palladium nanoparticles supported on amin-functionalized SBA-15 efficiently catalyze hydrogen evolution from formic acid
    • Koh, K.; Seo, J.-E.; Lee, J. H.; Goswami, A.; Yoon, C. W.; Asefa, T. Ultrasmall Palladium Nanoparticles Supported on Amin-Functionalized SBA-15 Efficiently Catalyze Hydrogen Evolution from Formic Acid. J. Mater. Chem. A 2014, 2, 20444-20449.
    • (2014) J. Mater. Chem. A , vol.2 , pp. 20444-20449
    • Koh, K.1    Seo, J.-E.2    Lee, J.H.3    Goswami, A.4    Yoon, C.W.5    Asefa, T.6
  • 50
    • 84988643484 scopus 로고    scopus 로고
    • Experimental and computational studies of formic acid dehydrogenation over PdAu: Influence of ensemble and ligand effects on catalysis
    • Lee, J. H.; Cho, J.; Jeon, M.; Ridwan, M.; Park, H. S.; Choi, S. H.; Nam, S. W.; Han, J.; Lim, T.-H.; Ham, H. C.; Yoon, C. W. Experimental and Computational Studies of Formic Acid Dehydrogenation over PdAu: Influence of Ensemble and Ligand Effects on Catalysis. J. Mater. Chem. A 2016, 4, 14141-14147.
    • (2016) J. Mater. Chem. A , vol.4 , pp. 14141-14147
    • Lee, J.H.1    Cho, J.2    Jeon, M.3    Ridwan, M.4    Park, H.S.5    Choi, S.H.6    Nam, S.W.7    Han, J.8    Lim, T.-H.9    Ham, H.C.10    Yoon, C.W.11
  • 51
    • 84977139179 scopus 로고    scopus 로고
    • Aerobic oxideation of amines to imines by cesium-promoted mesoporous manganese oxide
    • Tsutsumi, K.; Uchikawa, F.; Sakai, K.; Tabata, K. Aerobic Oxideation of Amines to Imines by Cesium-Promoted Mesoporous Manganese Oxide. ACS Catal. 2016, 6, 4394-4403.
    • (2016) ACS Catal. , vol.6 , pp. 4394-4403
    • Tsutsumi, K.1    Uchikawa, F.2    Sakai, K.3    Tabata, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.