메뉴 건너뛰기




Volumn 8, Issue 1, 2017, Pages 99-108

Mapping rice greenhouse gas emissions in the Red River Delta, Vietnam

Author keywords

agriculture; GHG accounting; measurement, reporting and verification (MRV); remote sensing

Indexed keywords

AGRICULTURE; CARBON; CARBON DIOXIDE; CLASSIFICATION (OF INFORMATION); CLIMATE CHANGE; DECISION MAKING; DECISION TREES; DIGITAL STORAGE; GAS EMISSIONS; RADAR IMAGING; REMOTE SENSING; SATELLITE IMAGERY; SPACE-BASED RADAR; SYNTHETIC APERTURE RADAR; TIME SERIES ANALYSIS; WATER MANAGEMENT;

EID: 85013642245     PISSN: 17583004     EISSN: 17583012     Source Type: Journal    
DOI: 10.1080/17583004.2016.1275816     Document Type: Article
Times cited : (23)

References (51)
  • 1
    • 33746547007 scopus 로고    scopus 로고
    • Global anthropogenic methane and nitrous oxide emissions
    • Scheehle EA, Kruger D. Global anthropogenic methane and nitrous oxide emissions. Energy J. 27(1), 33–44 (2005).
    • (2005) Energy J. , vol.27 , Issue.1 , pp. 33-44
    • Scheehle, E.A.1    Kruger, D.2
  • 3
    • 0035665165 scopus 로고    scopus 로고
    • Technical and policy aspects of strategies to decrease greenhouse gas emissions from agriculture
    • Oenema O, Velthof G, Kuikman P. Technical and policy aspects of strategies to decrease greenhouse gas emissions from agriculture. Nutr. Cycl. Agroecosys. 60, 301–315 (2001). doi:10.1023/A:1012601113751.
    • (2001) Nutr. Cycl. Agroecosys. , vol.60 , pp. 301-315
    • Oenema, O.1    Velthof, G.2    Kuikman, P.3
  • 5
    • 0034527933 scopus 로고    scopus 로고
    • Characterization of methane emissions from rice fields in Asia. II. Differences among irrigated, rainfed, and deepwater rice
    • Wassmann R, Neue H-U, Lantin RS, et al. Characterization of methane emissions from rice fields in Asia. II. Differences among irrigated, rainfed, and deepwater rice. Nutr. Cycl. Agroecosys. 58, 13–22 (2000). doi:10.1023/A:1009822030832.
    • (2000) Nutr. Cycl. Agroecosys. , vol.58 , pp. 13-22
    • Wassmann, R.1    Neue, H.-U.2    Lantin, R.S.3
  • 6
    • 1342289954 scopus 로고    scopus 로고
    • Methane emission from rice fields in mainland China: amount and seasonal and spatial distribution
    • Yan X, Cai Z, Ohara T, Akimoto H. Methane emission from rice fields in mainland China:amount and seasonal and spatial distribution. J. Geophys. Res. 108(D16), (2003). doi:10.1029/2002JD003182.
    • (2003) J. Geophys. Res. , vol.108 , Issue.D16
    • Yan, X.1    Cai, Z.2    Ohara, T.3    Akimoto, H.4
  • 7
    • 27744527678 scopus 로고    scopus 로고
    • Modeling impacts of farming management alternatives on CO2, CH4, and N2O emissions: a case study for water management of rice agriculture of China
    • Li C, Frolking S, Xiao X, et al. Modeling impacts of farming management alternatives on CO2, CH4, and N2O emissions:a case study for water management of rice agriculture of China. Global Biogeochem. Cycles 19(3), (2005). doi:10.1029/2004GB002341.
    • (2005) Global Biogeochem. Cycles , vol.19 , Issue.3
    • Li, C.1    Frolking, S.2    Xiao, X.3
  • 8
    • 34250749814 scopus 로고    scopus 로고
    • Mapping and modelling of greenhouse gas emissions from rice paddies with satellite radar observations and the DNDC biogeochemical model
    • Salas W, Boles S, Li C, et al. Mapping and modelling of greenhouse gas emissions from rice paddies with satellite radar observations and the DNDC biogeochemical model. Aquat. Conserv:Mar. Freshw. Ecosys. 17(3), 319–329 (2007). doi:10.1002/aqc.837.
    • (2007) Aquat. Conserv: Mar. Freshw. Ecosys. , vol.17 , Issue.3 , pp. 319-329
    • Salas, W.1    Boles, S.2    Li, C.3
  • 9
    • 2942672335 scopus 로고    scopus 로고
    • Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling
    • Li C, Mosier A, Wassmann R, et al. Modeling greenhouse gas emissions from rice-based production systems:sensitivity and upscaling. Global Biogeochem. Cycles 18(1), (2004). doi:10.1029/2003GB002045.
    • (2004) Global Biogeochem. Cycles , vol.18 , Issue.1
    • Li, C.1    Mosier, A.2    Wassmann, R.3
  • 10
    • 0027097422 scopus 로고
    • A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity
    • Li C, Frolking S, Frolking TA. A model of nitrous oxide evolution from soil driven by rainfall events:1. Model structure and sensitivity. J. Geophys. Res:Atmos. 97, 9759–9776 (1992a). doi:10.1029/92JD00509.
    • (1992) J. Geophys. Res: Atmos. , vol.97 , pp. 9759-9776
    • Li, C.1    Frolking, S.2    Frolking, T.A.3
  • 11
    • 0027097691 scopus 로고
    • A model of nitrous oxide evolution from soil driven by rainfall events: 2. Model applications
    • Li C, Frolking S, Frolking TA. A model of nitrous oxide evolution from soil driven by rainfall events:2. Model applications. J. Geophys. Res.:Atmos. 97(D9), 9777–9783 (1992b). doi:10.1029/92JD00510.
    • (1992) J. Geophys. Res.: Atmos. , vol.97 , Issue.D9 , pp. 9777-9783
    • Li, C.1    Frolking, S.2    Frolking, T.A.3
  • 12
    • 34547574356 scopus 로고    scopus 로고
    • Quantifying greenhouse gas emissions from soils: scientific basis and modeling approach
    • Li C. Quantifying greenhouse gas emissions from soils:scientific basis and modeling approach. Soil Sci. Plant Nutr. 53(4), 344–352 (2007). doi:10.1111/j.1747-0765.2007.00133.x.
    • (2007) Soil Sci. Plant Nutr. , vol.53 , Issue.4 , pp. 344-352
    • Li, C.1
  • 13
    • 0038032731 scopus 로고    scopus 로고
    • An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems
    • Zhang Y, Li C, Trettin CC, Li H, Sun G. An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems. Global Biogeochem Cycles 16(4), 9–1–9–17 (2002). doi:10.1029/2001GB001838.
    • (2002) Global Biogeochem Cycles , vol.16 , Issue.4
    • Zhang, Y.1    Li, C.2    Trettin, C.C.3    Li, H.4    Sun, G.5
  • 14
    • 0037110312 scopus 로고    scopus 로고
    • Reduced methane emissions from large-scale changes in water management of China's rice paddies during 1980-2000
    • Li C, Qiu J, Frolking S, et al. Reduced methane emissions from large-scale changes in water management of China's rice paddies during 1980-2000. Geophys. Res. Lett. 29(20), 33–1-33–4 (2002). doi:10.1029/2002GL015370.
    • (2002) Geophys. Res. Lett. , vol.29 , Issue.20 , pp. 33-34
    • Li, C.1    Qiu, J.2    Frolking, S.3
  • 15
    • 1642375740 scopus 로고    scopus 로고
    • Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems
    • Cai Z, Sawamoto T, Li C, et al. Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems. Global Biogeochem. Cycles 17(4), (2003). doi:10.1029/2003GB002046.
    • (2003) Global Biogeochem. Cycles , vol.17 , Issue.4
    • Cai, Z.1    Sawamoto, T.2    Li, C.3
  • 16
    • 33746477426 scopus 로고    scopus 로고
    • Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years
    • Li C, Salas W, DeAngelo B, Rose S. Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years. J. Environ. Qual. 35(4), 1554–1565 (2006). doi:10.2134/jeq2005.0208.
    • (2006) J. Environ. Qual. , vol.35 , Issue.4 , pp. 1554-1565
    • Li, C.1    Salas, W.2    DeAngelo, B.3    Rose, S.4
  • 17
    • 16344375302 scopus 로고    scopus 로고
    • Mapping paddy rice agriculture in southern China using multi-temporal MODIS images
    • Xiao X, Boles S, Liu J, et al. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 95(1), 480–492 (2005). doi:10.1016/j.rse.2004.12.009.
    • (2005) Remote Sens. Environ. , vol.95 , Issue.1 , pp. 480-492
    • Xiao, X.1    Boles, S.2    Liu, J.3
  • 19
    • 80052332606 scopus 로고    scopus 로고
    • Monitoring rice agriculture in the Sacramento Valley, USA with multitemporal PALSAR and MODIS imagery
    • Torbick N, Salas WA, Hagen S, Xiao X. Monitoring rice agriculture in the Sacramento Valley, USA with multitemporal PALSAR and MODIS imagery. IEEE J. Sel Top. Appl Earth Obs. Remote Sens. 4(2), 451–457 (2010). doi:10.1109/JSTARS.2010.2091493.
    • (2010) IEEE J. Sel Top. Appl Earth Obs. Remote Sens. , vol.4 , Issue.2 , pp. 451-457
    • Torbick, N.1    Salas, W.A.2    Hagen, S.3    Xiao, X.4
  • 20
    • 84862192239 scopus 로고    scopus 로고
    • Interpreting SAR and optical imagery for regional mapping of paddy rice attributes in the Poyang Lake Watershed, China
    • Torbick N, Salas W, Xiao X, et al. Interpreting SAR and optical imagery for regional mapping of paddy rice attributes in the Poyang Lake Watershed, China. Canadian J. Remote Sens. 37(1), 17–26 (2011). doi:10.5589/m11-020.
    • (2011) Canadian J. Remote Sens. , vol.37 , Issue.1 , pp. 17-26
    • Torbick, N.1    Salas, W.2    Xiao, X.3
  • 21
    • 79551669816 scopus 로고    scopus 로고
    • Quantifying the area and spatial distribution of double and triple cropping croplands in India with multi-temporal MODIS imagery in 2005
    • Biradar CM, Xiao X. Quantifying the area and spatial distribution of double and triple cropping croplands in India with multi-temporal MODIS imagery in 2005. Int. J. Remote Sens. 32(2), 367–386 (2011). doi:10.1080/01431160903464179.
    • (2011) Int. J. Remote Sens. , vol.32 , Issue.2 , pp. 367-386
    • Biradar, C.M.1    Xiao, X.2
  • 22
    • 29244490029 scopus 로고    scopus 로고
    • Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images
    • Xiao X, Boles S, Frolking S, et al. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Enviorn. 100, 95–113 (2006). doi:10.1016/j.rse.2005.10.004.
    • (2006) Remote Sens. Enviorn. , vol.100 , pp. 95-113
    • Xiao, X.1    Boles, S.2    Frolking, S.3
  • 23
    • 29244449072 scopus 로고    scopus 로고
    • Spatio-temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers
    • Sakamoto T, Van Nguyen N, Ohno H, Ishitsuka N, Yokozawa M. Spatio-temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sens. Environ. 100(1), 1–16 (2006). doi:10.1016/j.rse.2005.09.007.
    • (2006) Remote Sens. Environ. , vol.100 , Issue.1 , pp. 1-16
    • Sakamoto, T.1    Van Nguyen, N.2    Ohno, H.3    Ishitsuka, N.4    Yokozawa, M.5
  • 24
    • 33646682573 scopus 로고    scopus 로고
    • A neural network integrated approach for rice crop monitoring
    • Chen C, McNairn H. A neural network integrated approach for rice crop monitoring. Int. J. Remote Sens. 27(7), 1367–1393 (2006). doi:10.1080/01431160500421507.
    • (2006) Int. J. Remote Sens. , vol.27 , Issue.7 , pp. 1367-1393
    • Chen, C.1    McNairn, H.2
  • 25
    • 0036322873 scopus 로고    scopus 로고
    • Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarizaiton backscatter signatures over paddy rice field and their relationship with biological variables
    • Inoue Y, Kurosi T, Maeno H, et al. Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarizaiton backscatter signatures over paddy rice field and their relationship with biological variables. Remote Sens. Environ. 81(2-3), 194–204 (2002). doi:10.1016/S0034-4257(01)00343-1.
    • (2002) Remote Sens. Environ. , vol.81 , Issue.2-3 , pp. 194-204
    • Inoue, Y.1    Kurosi, T.2    Maeno, H.3
  • 26
    • 0030783483 scopus 로고    scopus 로고
    • Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results
    • Le Toan T, Ribbes F, Wang L-F, et al. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Geosci.Remote Sens. 35(1), 41–56 (1997). doi:10.1109/36.551933.
    • (1997) IEEE Geosci.Remote Sens. , vol.35 , Issue.1 , pp. 41-56
    • Le Toan, T.1    Ribbes, F.2    Wang, L.-F.3
  • 28
    • 84870494166 scopus 로고    scopus 로고
    • Remote sensing of rice crop areas
    • Kuenzer C, Knauer K. Remote sensing of rice crop areas. Int. J. Remote Sens. 34(6), 2101–2139 (2012). doi:10.1080/01431161.2012.738946
    • (2012) Int. J. Remote Sens. , vol.34 , Issue.6 , pp. 2101-2139
    • Kuenzer, C.1    Knauer, K.2
  • 29
    • 84912097595 scopus 로고    scopus 로고
    • Towards an operational SAR-based rice monitoring system in Asia: examples from 13 demonstration sites across Asia in the RIICE project
    • Nelson A, Setiyono T, Rala AB, et al. Towards an operational SAR-based rice monitoring system in Asia:examples from 13 demonstration sites across Asia in the RIICE project. Remote Sens. 6, 10773–10812 (2014).
    • (2014) Remote Sens. , vol.6 , pp. 10773-10812
    • Nelson, A.1    Setiyono, T.2    Rala, A.B.3
  • 30
    • 84893688324 scopus 로고    scopus 로고
    • Mapping agricultural wetlands in the Sacramento Valley, USA with satellite remote sensing
    • Torbick N, Salas W. Mapping agricultural wetlands in the Sacramento Valley, USA with satellite remote sensing. Wetlands Ecol. Manag. 23(1), 79–94 (2014). doi:10.1007/s11273-014-9342-x.
    • (2014) Wetlands Ecol. Manag. , vol.23 , Issue.1 , pp. 79-94
    • Torbick, N.1    Salas, W.2
  • 31
    • 84920506757 scopus 로고    scopus 로고
    • Application of remote sensors in mapping rice area and forecasting its production: a review
    • Mosleh MK, Hassan QK, Chowdhury EH. Application of remote sensors in mapping rice area and forecasting its production:a review. Sensors 15(1), 769–791 (2015). doi:10.3390/s150100769.
    • (2015) Sensors , vol.15 , Issue.1 , pp. 769-791
    • Mosleh, M.K.1    Hassan, Q.K.2    Chowdhury, E.H.3
  • 32
    • 0002872223 scopus 로고
    • Monitoring vegetation systems in the great plains with ERTS
    • Freden S.C., Mercanti E.P., Becker M.A., (eds), US Government Printing Office, Washington D.C:
    • Rouse JW, Haas RH, Schell JA, Deering DW. Monitoring vegetation systems in the great plains with ERTS. In:Third Earth Resources Technology Satellite-1 Symposium, Freden SC, Mercanti EP, Becker MA. US Government Printing Office, Washington D.C, 309–317 (1974).
    • (1974) Third Earth Resources Technology Satellite-1 Symposium , pp. 309-317
    • Rouse, J.W.1    Haas, R.H.2    Schell, J.A.3    Deering, D.W.4
  • 33
    • 0018465733 scopus 로고
    • Red and photographic infrared linear combinations for monitoring vegetation
    • Tucker CJ, Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8(2), 127–150 (1979). doi:10.1016/0034-4257(79)90013-0.
    • (1979) Remote Sens. Environ. , vol.8 , Issue.2 , pp. 127-150
    • Tucker, C.J.1
  • 34
    • 0036321547 scopus 로고    scopus 로고
    • Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using vegetation sensor data
    • Xiao X, Boles S, Salas W, Moore B, III, Li C. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using vegetation sensor data. Int. J. Remote Sens. 23(15), 3009–3022 (2002). doi:10.1080/01431160110107734.
    • (2002) Int. J. Remote Sens. , vol.23 , Issue.15 , pp. 3009-3022
    • Xiao, X.1    Boles, S.2    Salas, W.3    Moore, B.4    Li, C.5
  • 35
    • 41249098819 scopus 로고    scopus 로고
    • Improved rangeland information from satellites for land cover change tudies in the Southwest
    • Qi J, Marsett R, Heilman P, et al. Improved rangeland information from satellites for land cover change tudies in the Southwest. EOS Trans. Am. Geophys. Union (2002).
    • (2002) EOS Trans. Am. Geophys. Union
    • Qi, J.1    Marsett, R.2    Heilman, P.3
  • 36
    • 33750029423 scopus 로고    scopus 로고
    • Remote sensing for grassland management in the arid southwest
    • Marsett RC, Qi J, Heilman P, et al. Remote sensing for grassland management in the arid southwest. Rangeland Ecol. Manag. 59(5), 530–540 (2006). doi:10.2111/05-201R.1.
    • (2006) Rangeland Ecol. Manag. , vol.59 , Issue.5 , pp. 530-540
    • Marsett, R.C.1    Qi, J.2    Heilman, P.3
  • 37
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman L. Random Forests. Mach. Learn. 45(1), 5–32 (2001). doi:10.1023/A:1010933404324.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 38
    • 31344453556 scopus 로고    scopus 로고
    • Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest)
    • Lawrence R, Wood SD, Sheley RL. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sens. Environ. 100(3), 356–362 (2006). doi:10.1016/j.rse.2005.10.014.
    • (2006) Remote Sens. Environ. , vol.100 , Issue.3 , pp. 356-362
    • Lawrence, R.1    Wood, S.D.2    Sheley, R.L.3
  • 39
    • 67651115922 scopus 로고    scopus 로고
    • Monitoring of cropland practices for carbon sequestration purposes in north central Montana by Landsat remote sensing
    • Watts JD, Lawrence RL, Miller PR, Montagne C. Monitoring of cropland practices for carbon sequestration purposes in north central Montana by Landsat remote sensing. Remote Sens. Environ. 113(9), 1843–1852 (2009). doi:10.1016/j.rse.2009.04.015.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.9 , pp. 1843-1852
    • Watts, J.D.1    Lawrence, R.L.2    Miller, P.R.3    Montagne, C.4
  • 40
    • 84950112053 scopus 로고    scopus 로고
    • Self-guided segmentation and classification of multi-temporal Landsat 8 images for crop type mapping in southwestern Brazil
    • Schultz B, Immitzer M, Formaggio AR, Sanches IDA, Luiz AJB, Atzberger C. Self-guided segmentation and classification of multi-temporal Landsat 8 images for crop type mapping in southwestern Brazil. Remote Sens. (7), 14482–14508 (2015).
    • (2015) Remote Sens , Issue.7 , pp. 14482-14508
    • Schultz, B.1    Immitzer, M.2    Formaggio, A.R.3    Sanches, I.D.A.4    Luiz, A.J.B.5    Atzberger, C.6
  • 42
    • 84865028024 scopus 로고    scopus 로고
    • High resolution mapping of Peatland hydroperiod at a high-latitude Swedish mire
    • Torbick N, Persson A, Olefeldt D, et al. High resolution mapping of Peatland hydroperiod at a high-latitude Swedish mire. Remote Sens. 4(7), 1974–1994 (2012). doi:10.3390/rs4071974.
    • (2012) Remote Sens. , vol.4 , Issue.7 , pp. 1974-1994
    • Torbick, N.1    Persson, A.2    Olefeldt, D.3
  • 43
    • 84942550297 scopus 로고    scopus 로고
    • Mapping urban sprawl and impervious surfaces in the northeast United States for the past four decades
    • Torbick N, Corbiere M. Mapping urban sprawl and impervious surfaces in the northeast United States for the past four decades. GISci. Remote Sens. (52), 746–764 (2015).
    • (2015) GISci. Remote Sens. , Issue.52 , pp. 746-764
    • Torbick, N.1    Corbiere, M.2
  • 44
    • 80051901658 scopus 로고    scopus 로고
    • A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America
    • Atzberger C, Eilers PHC. A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America. Int. J. Digital Earth 4(5), 365–386 (2011). doi:10.1080/17538947.2010.505664.
    • (2011) Int. J. Digital Earth , vol.4 , Issue.5 , pp. 365-386
    • Atzberger, C.1    Eilers, P.H.C.2
  • 45
    • 84860508869 scopus 로고    scopus 로고
    • Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology
    • Atkinson P, Jadu Dash CJ, Atzberger C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 123(1), 400–417 (2012). doi:10.1016/j.rse.2012.04.001.
    • (2012) Remote Sens. Environ. , vol.123 , Issue.1 , pp. 400-417
    • Atkinson, P.1    Jadu Dash, C.J.2    Atzberger, C.3
  • 46
    • 0242669997 scopus 로고    scopus 로고
    • A perfect smoother
    • Eilers PHC. A perfect smoother. Anal. Chem. 75(14), 3631–3636 (2003). doi:10.1021/ac034173t.
    • (2003) Anal. Chem. , vol.75 , Issue.14 , pp. 3631-3636
    • Eilers, P.H.C.1
  • 47
    • 0028551888 scopus 로고
    • Modeling carbon biogeochemistry in agricultural soils
    • Li C, Frolking S, Harriss R. Modeling carbon biogeochemistry in agricultural soils. Global Biogeochem. Cycles 8(3), 237–254 (1994). doi:10.1029/94GB00767.
    • (1994) Global Biogeochem. Cycles , vol.8 , Issue.3 , pp. 237-254
    • Li, C.1    Frolking, S.2    Harriss, R.3
  • 48
    • 0030423501 scopus 로고    scopus 로고
    • Model estimates of nitrous oxide emissions from agricultural lands in the United States
    • Li C, Narayanan V, Harriss R. Model estimates of nitrous oxide emissions from agricultural lands in the United States. Global Biogeochem. Cycles 10(2), 297–306 (1996).
    • (1996) Global Biogeochem. Cycles , vol.10 , Issue.2 , pp. 297-306
    • Li, C.1    Narayanan, V.2    Harriss, R.3
  • 49
    • 34247370602 scopus 로고    scopus 로고
    • Climate Change 2007: The Physical Science Basis
    • Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L., (eds), Cambridge University Press, Cambridge, United Kingdom: New York, NY, USA:
    • IPCC. Climate Change 2007:The Physical Science Basis. In:Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, (Eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2007).
    • (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  • 50
    • 84904246796 scopus 로고    scopus 로고
    • Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam
    • Pandey A, Mai VT, Vu DQ, et al. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agric. Ecosys. Environ. 196(1), 137–146 (2014). doi:10.1016/j.agee.2014.06.010.
    • (2014) Agric. Ecosys. Environ. , vol.196 , Issue.1 , pp. 137-146
    • Pandey, A.1    Mai, V.T.2    Vu, D.Q.3
  • 51
    • 84919662746 scopus 로고    scopus 로고
    • version 1.1
    • Harmonized World Soil Database. FAO/IIASA/ISRIC/ISSCAS/JRC (2009). (version 1.1; http://www.fao.org/fileadmin/templates/nr/documents/HWSD/HWSD_Documentation.pdf).
    • (2009) FAO/IIASA/ISRIC/ISSCAS/JRC


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.