-
1
-
-
84862242893
-
Mapping abandoned agriculture with multi-temporal MODIS satellite data
-
Alcantara, C.; Kuemmerle, T.; Prishchepov, A.V.; Radeloff, V.C. Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sens. Environ. 2012, 124, 334-347.
-
(2012)
Remote Sens. Environ
, vol.124
, pp. 334-347
-
-
Alcantara, C.1
Kuemmerle, T.2
Prishchepov, A.V.3
Radeloff, V.C.4
-
2
-
-
84971382123
-
Mapping deforestation and forest degradation patterns in western Himalaya, Pakistan
-
Qamer, F.M.; Shehzad, K.; Abbas, S.; Murthy, M.; Xi, C.; Gilani, H.; Bajracharya, B. Mapping deforestation and forest degradation patterns in western Himalaya, Pakistan. Remote Sens. 2016, 8, 385.
-
(2016)
Remote Sens
, vol.8
, pp. 385
-
-
Qamer, F.M.1
Shehzad, K.2
Abbas, S.3
Murthy, M.4
Xi, C.5
Gilani, H.6
Bajracharya, B.7
-
3
-
-
85013641319
-
Monitoring urban areas with Sentinel-2A data: Application to the update of the Copernicus high resolution layer imperviousness degree
-
Lefebvre, A.; Sannier, C.; Corpetti, T. Monitoring urban areas with Sentinel-2A data: Application to the update of the Copernicus high resolution layer imperviousness degree. Remote Sens. 2016, 8, 606.
-
(2016)
Remote Sens
, vol.8
, pp. 606
-
-
Lefebvre, A.1
Sannier, C.2
Corpetti, T.3
-
4
-
-
0344972104
-
Decision tree classification of land cover from remotely sensed data
-
Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61, 399-409.
-
(1997)
Remote Sens. Environ
, vol.61
, pp. 399-409
-
-
Friedl, M.A.1
Brodley, C.E.2
-
5
-
-
69849104695
-
Classifier ensembles for land cover mapping using multitemporal SAR imagery
-
Waske, B.; Braun, M. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS J. Photogramm. Remote Sens. 2009, 64, 450-457.
-
(2009)
ISPRS J. Photogramm. Remote Sens
, vol.64
, pp. 450-457
-
-
Waske, B.1
Braun, M.2
-
6
-
-
84903531897
-
A review of remote sensing image classification techniques: The role of spatio-contextual information
-
Li, M.; Zang, S.; Zhang, B.; Li, S.;Wu, C. A review of remote sensing image classification techniques: The role of spatio-contextual information. Eur. J. Remote Sens. 2014, 47, 389-411.
-
(2014)
Eur. J. Remote Sens
, vol.47
, pp. 389-411
-
-
Li, M.1
Zang, S.2
Zhang, B.3
Li, S.4
Wu, C.5
-
7
-
-
78649797017
-
A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones
-
Szuster, B.W.; Chen, Q.; Borger, M. A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Appl. Geogr. 2011, 31, 525-532.
-
(2011)
Appl. Geogr
, vol.31
, pp. 525-532
-
-
Szuster, B.W.1
Chen, Q.2
Borger, M.3
-
8
-
-
84958236853
-
A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research
-
Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89-100.
-
(2016)
Remote Sens. Environ
, vol.177
, pp. 89-100
-
-
Khatami, R.1
Mountrakis, G.2
Stehman, S.V.3
-
9
-
-
84961815144
-
Optical remotely sensed time series data for land cover classification: A review
-
Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55-72.
-
(2016)
ISPRS J. Photogramm. Remote Sens
, vol.116
, pp. 55-72
-
-
Gómez, C.1
White, J.C.2
Wulder, M.A.3
-
10
-
-
84971489739
-
Production of the Japan 30-m land cover map of 2013-2015 using a Random Forests-based feature optimization approach
-
Sharma, R.C.; Tateishi, R.; Hara, K.; Iizuka, K. Production of the Japan 30-m land cover map of 2013-2015 using a Random Forests-based feature optimization approach. Remote Sens. 2016, 8, 429.
-
(2016)
Remote Sens
, vol.8
, pp. 429
-
-
Sharma, R.C.1
Tateishi, R.2
Hara, K.3
Iizuka, K.4
-
11
-
-
84942518161
-
Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery
-
Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; et al. Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery. Remote Sens. 2015, 7, 12356-12379.
-
(2015)
Remote Sens
, vol.7
, pp. 12356-12379
-
-
Inglada, J.1
Arias, M.2
Tardy, B.3
Hagolle, O.4
Valero, S.5
Morin, D.6
Dedieu, G.7
Sepulcre, G.8
Bontemps, S.9
Defourny, P.10
-
12
-
-
84961834117
-
Random Forest in remote sensing: A review of applications and future directions
-
Belgiu, M.; Drăguţ, L. Random Forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24-31.
-
(2016)
ISPRS J. Photogramm. Remote Sens
, vol.114
, pp. 24-31
-
-
Belgiu, M.1
Drăguţ, L.2
-
13
-
-
84931270718
-
Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data
-
Tatsumi, K.; Yamashiki, Y.; Torres, M.A.C.; Taipe, C.L.R. Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data. Comput. Electron. Agric. 2015, 115, 171-179.
-
(2015)
Comput. Electron. Agric
, vol.115
, pp. 171-179
-
-
Tatsumi, K.1
Yamashiki, Y.2
Torres, M.A.C.3
Taipe, C.L.R.4
-
14
-
-
84855970934
-
An assessment of the effectiveness of a Random Forest classifier for land-cover classification
-
Rodriguez-Galiano, V.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J. An assessment of the effectiveness of a Random Forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93-104.
-
(2012)
ISPRS J. Photogramm. Remote Sens
, vol.67
, pp. 93-104
-
-
Rodriguez-Galiano, V.1
Ghimire, B.2
Rogan, J.3
Chica-Olmo, M.4
Rigol-Sanchez, J.5
-
15
-
-
13344278660
-
Random Forest classifier for remote sensing classification
-
Pal, M. Random Forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217-222.
-
(2005)
Int. J. Remote Sens
, vol.26
, pp. 217-222
-
-
Pal, M.1
-
16
-
-
84954105449
-
Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals
-
Meyer, H.; Kühnlein, M.; Appelhans, T.; Nauss, T. Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals. Atmos. Res. 2016, 169, 424-433.
-
(2016)
Atmos. Res
, vol.169
, pp. 424-433
-
-
Meyer, H.1
Kühnlein, M.2
Appelhans, T.3
Nauss, T.4
-
18
-
-
79952041537
-
Batch-Mode active-learning methods for the interactive classification of remote sensing images
-
Demir, B.; Persello, C.; Bruzzone, L. Batch-Mode active-learning methods for the interactive classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1014-1031.
-
(2011)
IEEE Trans. Geosci. Remote Sens
, vol.49
, pp. 1014-1031
-
-
Demir, B.1
Persello, C.2
Bruzzone, L.3
-
19
-
-
79957456032
-
A survey of active learning algorithms for supervised remote sensing image classification
-
Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M.; Munoz-Mari, J. A survey of active learning algorithms for supervised remote sensing image classification. IEEE J. Sel. Top. Signal Process. 2011, 5, 606-617.
-
(2011)
IEEE J. Sel. Top. Signal Process
, vol.5
, pp. 606-617
-
-
Tuia, D.1
Volpi, M.2
Copa, L.3
Kanevski, M.4
Munoz-Mari, J.5
-
20
-
-
84901482913
-
Automated training sample extraction for global land cover mapping
-
Radoux, J.; Lamarche, C.; Van Bogaert, E.; Bontemps, S.; Brockmann, C.; Defourny, P. Automated training sample extraction for global land cover mapping. Remote Sens. 2014, 6, 3965.
-
(2014)
Remote Sens
, vol.6
, pp. 3965
-
-
Radoux, J.1
Lamarche, C.2
Van Bogaert, E.3
Bontemps, S.4
Brockmann, C.5
Defourny, P.6
-
21
-
-
70449402784
-
Geo-Wiki.Org: The use of crowdsourcing to improve global land cover
-
Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; Grillmayer, R.; Achard, F.; Kraxner, F.; Obersteiner, M. Geo-Wiki.Org: The use of crowdsourcing to improve global land cover. Remote Sens. 2009, 1, 345-354.
-
(2009)
Remote Sens
, vol.1
, pp. 345-354
-
-
Fritz, S.1
McCallum, I.2
Schill, C.3
Perger, C.4
Grillmayer, R.5
Achard, F.6
Kraxner, F.7
Obersteiner, M.8
-
22
-
-
0036213079
-
Status of land cover classification accuracy assessment
-
Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185-201.
-
(2002)
Remote Sens. Environ
, vol.80
, pp. 185-201
-
-
Foody, G.M.1
-
23
-
-
19544372918
-
Class noise vs. attribute noise: A quantitative study
-
Zhu, X.;Wu, X. Class noise vs. attribute noise: A quantitative study. Artif. Intell. Rev. 2004, 22, 177-210.
-
(2004)
Artif. Intell. Rev
, vol.22
, pp. 177-210
-
-
Zhu, X.1
Wu, X.2
-
24
-
-
84898030282
-
A study of the effect of different types of noise on the precision of supervised learning techniques
-
Nettleton, D.F.; Orriols-Puig, A.; Fornells, A. A study of the effect of different types of noise on the precision of supervised learning techniques. Artif. Intell. Rev. 2010, 33, 275-306.
-
(2010)
Artif. Intell. Rev
, vol.33
, pp. 275-306
-
-
Nettleton, D.F.1
Orriols-Puig, A.2
Fornells, A.3
-
26
-
-
1942484424
-
Eliminating class noise in large datasets
-
Washington, DC, USA, 21-24 August
-
Zhu, X.; Wu, X.; Chen, Q. Eliminating class noise in large datasets. In Proceedings of the Twentieth International Conference on Machine Learning (ICML), Washington, DC, USA, 21-24 August 2003; pp. 920-927.
-
(2003)
Proceedings of the Twentieth International Conference on Machine Learning (ICML)
, pp. 920-927
-
-
Zhu, X.1
Wu, X.2
Chen, Q.3
-
27
-
-
84959207049
-
Learning from massive noisy labeled data for image classification
-
Boston, MA, USA, 7-12 June
-
Xiao, T.; Xia, T.; Yang, Y.; Huang, C.; Wang, X. Learning from massive noisy labeled data for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 2691-2699.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2691-2699
-
-
Xiao, T.1
Xia, T.2
Yang, Y.3
Huang, C.4
Wang, X.5
-
29
-
-
38049136824
-
Class noise mitigation through instance weighting
-
Warsaw, Poland, 17-21 September
-
Rebbapragada, U.; Brodley, C.E. Class noise mitigation through instance weighting. In Proceedings of the European Conference on Machine Learning, Warsaw, Poland, 17-21 September 2007; pp. 708-715.
-
(2007)
Proceedings of the European Conference on Machine Learning
, pp. 708-715
-
-
Rebbapragada, U.1
Brodley, C.E.2
-
30
-
-
0030354375
-
Identifying and eliminating mislabeled training instances
-
Portland, OR, USA, 04-08 August 1996; American Association for Artificial Intelligence: Menlo Park, CA, USA
-
Brodley, C.E.; Friedl, M.A. Identifying and eliminating mislabeled training instances. In Proceedings of the American Association for Artificial Intelligence (AAAI)/Innovative Applications of Artificial Intelligence (IAAI), Portland, OR, USA, 04-08 August 1996; American Association for Artificial Intelligence: Menlo Park, CA, USA, 1996; pp. 799-805.
-
(1996)
Proceedings of the American Association for Artificial Intelligence (AAAI)/Innovative Applications of Artificial Intelligence (IAAI)
, pp. 799-805
-
-
Brodley, C.E.1
Friedl, M.A.2
-
32
-
-
84928328671
-
Exploring issues of training data imbalance and mislabelling on Random Forest performance for large area land cover classification using the ensemble margin
-
Mellor, A.; Boukir, S.; Haywood, A.; Jones, S. Exploring issues of training data imbalance and mislabelling on Random Forest performance for large area land cover classification using the ensemble margin. ISPRS J. Photogramm. Remote Sens. 2015, 105, 155-168.
-
(2015)
ISPRS J. Photogramm. Remote Sens
, vol.105
, pp. 155-168
-
-
Mellor, A.1
Boukir, S.2
Haywood, A.3
Jones, S.4
-
33
-
-
84878781560
-
Adversarial Label Flips Attack on Support Vector Machines
-
Montpellier, France, 27-31 August
-
Xiao, H.; Xiao, H.; Eckert, C. Adversarial Label Flips Attack on Support Vector Machines. In Proceedings of the Twentieth European Conference on Artificial Intelligence (ECAI), Montpellier, France, 27-31 August 2012; pp. 870-875.
-
(2012)
Proceedings of the Twentieth European Conference on Artificial Intelligence (ECAI)
, pp. 870-875
-
-
Xiao, H.1
Xiao, H.2
Eckert, C.3
-
34
-
-
84867112504
-
Support Vector Machines under adversarial label noise
-
Biggio, B.; Nelson, B.; Laskov, P. Support Vector Machines under adversarial label noise. ACML 2011, 20, 97-112.
-
(2011)
ACML
, vol.20
, pp. 97-112
-
-
Biggio, B.1
Nelson, B.2
Laskov, P.3
-
35
-
-
84938246267
-
Learning and Evaluation in Presence of Non-IID Label Noise
-
Reykjavik, Iceland, 22-25 April
-
Görnitz, N.; Porbadnigk, A.; Binder, A.; Sannelli, C.; Braun, M.L.; Müller, K.R.; Kloft, M. Learning and Evaluation in Presence of Non-IID Label Noise. In Proceedings of the International Conference on Artificial Intelligence and Statistics, Reykjavik, Iceland, 22-25 April 2014; pp. 293-302.
-
(2014)
Proceedings of the International Conference on Artificial Intelligence and Statistics
, pp. 293-302
-
-
Görnitz, N.1
Porbadnigk, A.2
Binder, A.3
Sannelli, C.4
Braun, M.L.5
Müller, K.R.6
Kloft, M.7
-
36
-
-
16244380722
-
A Comparison of Noise Handling Techniques
-
Key West, FL, USA, 21-23 May
-
Teng, C.M. A Comparison of Noise Handling Techniques. In Proceedings of the International Florida Artificial Intelligence Research Society Conference, Key West, FL, USA, 21-23 May 2001; pp. 269-273.
-
(2001)
Proceedings of the International Florida Artificial Intelligence Research Society Conference
, pp. 269-273
-
-
Teng, C.M.1
-
37
-
-
70350142137
-
Identifying Learners Robust to Low Quality Data
-
Folleco, A.; Khoshgoftaar, T.M.; Hulse, J.V.; Napolitano, A. Identifying Learners Robust to Low Quality Data. Informatica 2009, 33, 245-259.
-
(2009)
Informatica
, vol.33
, pp. 245-259
-
-
Folleco, A.1
Khoshgoftaar, T.M.2
Hulse, J.V.3
Napolitano, A.4
-
38
-
-
84927970970
-
Effect of label noise in the complexity of classification problems
-
Garcia, L.P.; de Carvalho, A.C.; Lorena, A.C. Effect of label noise in the complexity of classification problems. Neurocomputing 2015, 160, 108-119.
-
(2015)
Neurocomputing
, vol.160
, pp. 108-119
-
-
Garcia, L.P.1
de Carvalho, A.C.2
Lorena, A.C.3
-
39
-
-
33845594913
-
Class noise and supervised learning in medical domains: The effect of feature extraction
-
Salt Lake City, UT, USA, 22-23 June
-
Pechenizkiy, M.; Tsymbal, A.; Puuronen, S.; Pechenizkiy, O. Class noise and supervised learning in medical domains: The effect of feature extraction. In Proceedings of the 19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06), Salt Lake City, UT, USA, 22-23 June 2006; pp. 708-713.
-
(2006)
Proceedings of the 19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)
, pp. 708-713
-
-
Pechenizkiy, M.1
Tsymbal, A.2
Puuronen, S.3
Pechenizkiy, O.4
-
40
-
-
70449372975
-
Effect of errors in ground truth on classification accuracy
-
Carlotto, M.J. Effect of errors in ground truth on classification accuracy. Int. J. Remote Sens. 2009, 30, 4831-4849.
-
(2009)
Int. J. Remote Sens
, vol.30
, pp. 4831-4849
-
-
Carlotto, M.J.1
-
41
-
-
84898932626
-
Learning with Noisy Labels
-
Inc.: Lake Tahoe, USA
-
Natarajan, N.; Dhillon, I.S.; Ravikumar, P.K.; Tewari, A. Learning with Noisy Labels. In Advances in Neural Information Processing Systems 26; Curran Associates, Inc.: Lake Tahoe, USA, 2013; pp. 1196-1204.
-
(2013)
Advances in Neural Information Processing Systems 26; Curran Associates
, pp. 1196-1204
-
-
Natarajan, N.1
Dhillon, I.S.2
Ravikumar, P.K.3
Tewari, A.4
-
42
-
-
84927965371
-
Support Vector Machines under adversarial label contamination
-
Xiao, H.; Biggio, B.; Nelson, B.; Xiao, H.; Eckert, C.; Roli, F. Support Vector Machines under adversarial label contamination. Neurocomputing 2015, 160, 53-62.
-
(2015)
Neurocomputing
, vol.160
, pp. 53-62
-
-
Xiao, H.1
Biggio, B.2
Nelson, B.3
Xiao, H.4
Eckert, C.5
Roli, F.6
-
43
-
-
33746932125
-
On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance
-
Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207-2218.
-
(2006)
IEEE Trans. Geosci. Remote Sens
, vol.44
, pp. 2207-2218
-
-
Gao, F.1
Masek, J.2
Schwaller, M.3
Hall, F.4
-
44
-
-
0028582679
-
NDVI-derived land cover classifications at a global scale
-
DeFries, R.; Townshend, J. NDVI-derived land cover classifications at a global scale. Int. J. Remote Sens. 1994, 15, 3567-3586.
-
(1994)
Int. J. Remote Sens
, vol.15
, pp. 3567-3586
-
-
DeFries, R.1
Townshend, J.2
-
45
-
-
84922219472
-
Mapping land cover in complex Mediterranean landscapes using Landsat: Improved classification accuracies from integrating multi-seasonal and synthetic imagery
-
Senf, C.; Leitão, P.J.; Pflugmacher, D.; van der Linden, S.; Hostert, P. Mapping land cover in complex Mediterranean landscapes using Landsat: Improved classification accuracies from integrating multi-seasonal and synthetic imagery. Remote Sens. Environ. 2015, 156, 527-536.
-
(2015)
Remote Sens. Environ
, vol.156
, pp. 527-536
-
-
Senf, C.1
Leitão, P.J.2
Pflugmacher, D.3
van der Linden, S.4
Hostert, P.5
-
46
-
-
5144233854
-
TIMESAT-A program for analyzing time-series of satellite sensor data
-
Jönsson, P.; Eklundh, L. TIMESAT-A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833-845.
-
(2004)
Comput. Geosci
, vol.30
, pp. 833-845
-
-
Jönsson, P.1
Eklundh, L.2
-
47
-
-
0037333955
-
Monitoring vegetation phenology using MODIS
-
Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471-475.
-
(2003)
Remote Sens. Environ
, vol.84
, pp. 471-475
-
-
Zhang, X.1
Friedl, M.A.2
Schaaf, C.B.3
Strahler, A.H.4
Hodges, J.C.5
Gao, F.6
Reed, B.C.7
Huete, A.8
-
48
-
-
30544439121
-
Green leaf phenology at Landsat resolution: Scaling from the field to the satellite
-
Fisher, J.I.; Mustard, J.F.; Vadeboncoeur, M.A. Green leaf phenology at Landsat resolution: Scaling from the field to the satellite. Remote Sens. Environ. 2006, 100, 265-279.
-
(2006)
Remote Sens. Environ
, vol.100
, pp. 265-279
-
-
Fisher, J.I.1
Mustard, J.F.2
Vadeboncoeur, M.A.3
-
49
-
-
31344451662
-
Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI
-
Beck, P.S.; Atzberger, C.; Høgda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ. 2006, 100, 321-334.
-
(2006)
Remote Sens. Environ
, vol.100
, pp. 321-334
-
-
Beck, P.S.1
Atzberger, C.2
Høgda, K.A.3
Johansen, B.4
Skidmore, A.K.5
-
51
-
-
84942540471
-
SPOT-4 (Take 5): Simulation of Sentinel-2 time series on 45 large sites
-
Hagolle, O.; Sylvander, S.; Huc, M.; Claverie, M.; Clesse, D.; Dechoz, C.; Lonjou, V.; Poulain, V. SPOT-4 (Take 5): Simulation of Sentinel-2 time series on 45 large sites. Remote Sens. 2015, 7, 12242-12264.
-
(2015)
Remote Sens
, vol.7
, pp. 12242-12264
-
-
Hagolle, O.1
Sylvander, S.2
Huc, M.3
Claverie, M.4
Clesse, D.5
Dechoz, C.6
Lonjou, V.7
Poulain, V.8
-
52
-
-
84926382691
-
A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENμS and Sentinel-2 images
-
Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENμS and Sentinel-2 images. Remote Sens. 2015, 7, 2668.
-
(2015)
Remote Sens
, vol.7
, pp. 2668
-
-
Hagolle, O.1
Huc, M.2
Villa Pascual, D.3
Dedieu, G.4
-
54
-
-
84992151859
-
Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas
-
Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156-168.
-
(2016)
Remote Sens. Environ
, vol.187
, pp. 156-168
-
-
Pelletier, C.1
Valero, S.2
Inglada, J.3
Champion, N.4
Dedieu, G.5
-
55
-
-
80054718586
-
Improving classification accuracy by identifying and removing instances that should be misclassified
-
San Jose, CA, USA, 31 July-5 August
-
Smith, M.R.; Martinez, T. Improving classification accuracy by identifying and removing instances that should be misclassified. In Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN), San Jose, CA, USA, 31 July-5 August 2011; pp. 2690-2697.
-
(2011)
Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN)
, pp. 2690-2697
-
-
Smith, M.R.1
Martinez, T.2
-
56
-
-
84962609076
-
Identification and correction of mislabeled training data for land cover classification based on ensemble margin
-
Milan, Italy, 26-31 July
-
Feng, W.; Boukir, S.; Guo, L. Identification and correction of mislabeled training data for land cover classification based on ensemble margin. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium 2015 (IGARSS), Milan, Italy, 26-31 July 2015; pp. 4991-4994.
-
(2015)
Proceedings of the IEEE International Geoscience and Remote Sensing Symposium 2015 (IGARSS)
, pp. 4991-4994
-
-
Feng, W.1
Boukir, S.2
Guo, L.3
-
57
-
-
79954739964
-
On the suitability of MODIS time series metrics to map vegetation types in dry savanna ecosystems: A case study in the Kalahari of NE Namibia
-
Hüttich, C.; Gessner, U.; Herold, M.; Strohbach, B.J.; Schmidt, M.; Keil, M.; Dech, S. On the suitability of MODIS time series metrics to map vegetation types in dry savanna ecosystems: A case study in the Kalahari of NE Namibia. Remote Sens. 2009, 1, 620-643.
-
(2009)
Remote Sens
, vol.1
, pp. 620-643
-
-
Hüttich, C.1
Gessner, U.2
Herold, M.3
Strohbach, B.J.4
Schmidt, M.5
Keil, M.6
Dech, S.7
-
58
-
-
84883234670
-
Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of Random Forest classification of wetlands in Northern Minnesota
-
Corcoran, J.M.; Knight, J.F.; Gallant, A.L. Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of Random Forest classification of wetlands in Northern Minnesota. Remote Sens. 2013, 5, 3212-3238.
-
(2013)
Remote Sens
, vol.5
, pp. 3212-3238
-
-
Corcoran, J.M.1
Knight, J.F.2
Gallant, A.L.3
-
59
-
-
84962488348
-
First experience with Sentinel-2 data for crop and tree species classifications in Central Europe
-
Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in Central Europe. Remote Sens. 2016, 8, 166.
-
(2016)
Remote Sens
, vol.8
, pp. 166
-
-
Immitzer, M.1
Vuolo, F.2
Atzberger, C.3
-
60
-
-
0037138473
-
An assessment of Support Vector Machines for land cover classification
-
Huang, C.; Davis, L.S.; Townshend, J. An assessment of Support Vector Machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725-749.
-
(2002)
Int. J. Remote Sens
, vol.23
, pp. 725-749
-
-
Huang, C.1
Davis, L.S.2
Townshend, J.3
-
61
-
-
84912086651
-
Land cover classification of Landsat data with phenological features extracted from time series MODIS NDVI data
-
Jia, K.; Liang, S.;Wei, X.; Yao, Y.; Su, Y.; Jiang, B.;Wang, X. Land cover classification of Landsat data with phenological features extracted from time series MODIS NDVI data. Remote Sens. 2014, 6, 11518-11532.
-
(2014)
Remote Sens
, vol.6
, pp. 11518-11532
-
-
Jia, K.1
Liang, S.2
Wei, X.3
Yao, Y.4
Su, Y.5
Jiang, B.6
Wang, X.7
-
62
-
-
84904489362
-
Combined use of multi-temporal optical and radar satellite images for grassland monitoring
-
Dusseux, P.; Corpetti, T.; Hubert-Moy, L.; Corgne, S. Combined use of multi-temporal optical and radar satellite images for grassland monitoring. Remote Sens. 2014, 6, 6163-6182.
-
(2014)
Remote Sens
, vol.6
, pp. 6163-6182
-
-
Dusseux, P.1
Corpetti, T.2
Hubert-Moy, L.3
Corgne, S.4
-
65
-
-
34249753618
-
Support-Vector Networks
-
Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273-297.
-
(1995)
Mach. Learn
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
66
-
-
0003408420
-
-
MIT Press: London, UK
-
Schölkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press: London, UK, 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
68
-
-
0003802343
-
-
Chapman & Hall/CRC: Bocar Raton, FL, USA
-
Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R. Classification and Regression Trees; Chapman & Hall/CRC: Bocar Raton, FL, USA, 1984.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Stone, C.J.3
Olshen, R.4
-
69
-
-
0035478854
-
Random Forests
-
Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5-32.
-
(2001)
Mach. Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
70
-
-
0030211964
-
Bagging predictors
-
Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123-140.
-
(1996)
Mach. Learn
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
71
-
-
0345040873
-
Classification and regression by Random Forest
-
Liaw, A.;Wiener, M. Classification and regression by Random Forest. R News 2002, 2, 18-22.
-
(2002)
R News
, vol.2
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
72
-
-
38449114584
-
Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J
-
Cutler, D.R.; Edwards, T.C. Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783-2792.
-
(2007)
Random forests for classification in ecology. Ecology
, vol.88
, pp. 2783-2792
-
-
Cutler, D.R.1
Edwards, T.C.2
-
73
-
-
84873187093
-
Overview of Random Forest methodology and practical guidance with emphasis on computational biology and bioinformatics
-
Boulesteix, A.L.; Janitza, S.; Kruppa, J.; König, I.R. Overview of Random Forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2012, 2, 493-507.
-
(2012)
Wiley Interdiscip. Rev. Data Min. Knowl. Discov
, vol.2
, pp. 493-507
-
-
Boulesteix, A.L.1
Janitza, S.2
Kruppa, J.3
König, I.R.4
-
74
-
-
78651086789
-
Data mining for credit card fraud: A comparative study
-
Bhattacharyya, S.; Jha, S.; Tharakunnel, K.; Westland, J.C. Data mining for credit card fraud: A comparative study. Decis. Support Syst. 2011, 50, 602-613.
-
(2011)
Decis. Support Syst
, vol.50
, pp. 602-613
-
-
Bhattacharyya, S.1
Jha, S.2
Tharakunnel, K.3
Westland, J.C.4
-
75
-
-
33749554766
-
-
Technical report; Center for Bioinformatics and Molecular Biostatistics, UC San Fransisco: San Fransisco, CA, USA
-
Segal, M.R. Machine Learning Benchmarks and Random Forest Regression; Technical report; Center for Bioinformatics and Molecular Biostatistics, UC San Fransisco: San Fransisco, CA, USA, 2004.
-
(2004)
Machine Learning Benchmarks and Random Forest Regression
-
-
Segal, M.R.1
-
76
-
-
77956907243
-
On over-fitting in model selection and subsequent selection bias in performance evaluation
-
Cawley, G.C.; Talbot, N.L. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 2010, 11, 2079-2107.
-
(2010)
J. Mach. Learn. Res
, vol.11
, pp. 2079-2107
-
-
Cawley, G.C.1
Talbot, N.L.2
|