메뉴 건너뛰기




Volumn 9, Issue 2, 2017, Pages

Effect of training class label noise on classification performances for land cover mapping with satellite image time series

Author keywords

Class label noise; Classification; Land cover mapping; Mislabeled training data; Random Forests; Satellite image time series; Support Vector Machines

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECISION TREES; IMAGE CLASSIFICATION; MAPS; NOISE POLLUTION; SATELLITES; SUPPORT VECTOR MACHINES; TIME SERIES; VECTORS;

EID: 85013630498     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs9020173     Document Type: Article
Times cited : (173)

References (76)
  • 3
    • 85013641319 scopus 로고    scopus 로고
    • Monitoring urban areas with Sentinel-2A data: Application to the update of the Copernicus high resolution layer imperviousness degree
    • Lefebvre, A.; Sannier, C.; Corpetti, T. Monitoring urban areas with Sentinel-2A data: Application to the update of the Copernicus high resolution layer imperviousness degree. Remote Sens. 2016, 8, 606.
    • (2016) Remote Sens , vol.8 , pp. 606
    • Lefebvre, A.1    Sannier, C.2    Corpetti, T.3
  • 4
    • 0344972104 scopus 로고    scopus 로고
    • Decision tree classification of land cover from remotely sensed data
    • Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61, 399-409.
    • (1997) Remote Sens. Environ , vol.61 , pp. 399-409
    • Friedl, M.A.1    Brodley, C.E.2
  • 5
    • 69849104695 scopus 로고    scopus 로고
    • Classifier ensembles for land cover mapping using multitemporal SAR imagery
    • Waske, B.; Braun, M. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS J. Photogramm. Remote Sens. 2009, 64, 450-457.
    • (2009) ISPRS J. Photogramm. Remote Sens , vol.64 , pp. 450-457
    • Waske, B.1    Braun, M.2
  • 6
    • 84903531897 scopus 로고    scopus 로고
    • A review of remote sensing image classification techniques: The role of spatio-contextual information
    • Li, M.; Zang, S.; Zhang, B.; Li, S.;Wu, C. A review of remote sensing image classification techniques: The role of spatio-contextual information. Eur. J. Remote Sens. 2014, 47, 389-411.
    • (2014) Eur. J. Remote Sens , vol.47 , pp. 389-411
    • Li, M.1    Zang, S.2    Zhang, B.3    Li, S.4    Wu, C.5
  • 7
    • 78649797017 scopus 로고    scopus 로고
    • A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones
    • Szuster, B.W.; Chen, Q.; Borger, M. A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Appl. Geogr. 2011, 31, 525-532.
    • (2011) Appl. Geogr , vol.31 , pp. 525-532
    • Szuster, B.W.1    Chen, Q.2    Borger, M.3
  • 8
    • 84958236853 scopus 로고    scopus 로고
    • A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research
    • Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89-100.
    • (2016) Remote Sens. Environ , vol.177 , pp. 89-100
    • Khatami, R.1    Mountrakis, G.2    Stehman, S.V.3
  • 9
    • 84961815144 scopus 로고    scopus 로고
    • Optical remotely sensed time series data for land cover classification: A review
    • Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55-72.
    • (2016) ISPRS J. Photogramm. Remote Sens , vol.116 , pp. 55-72
    • Gómez, C.1    White, J.C.2    Wulder, M.A.3
  • 10
    • 84971489739 scopus 로고    scopus 로고
    • Production of the Japan 30-m land cover map of 2013-2015 using a Random Forests-based feature optimization approach
    • Sharma, R.C.; Tateishi, R.; Hara, K.; Iizuka, K. Production of the Japan 30-m land cover map of 2013-2015 using a Random Forests-based feature optimization approach. Remote Sens. 2016, 8, 429.
    • (2016) Remote Sens , vol.8 , pp. 429
    • Sharma, R.C.1    Tateishi, R.2    Hara, K.3    Iizuka, K.4
  • 11
    • 84942518161 scopus 로고    scopus 로고
    • Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery
    • Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; et al. Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery. Remote Sens. 2015, 7, 12356-12379.
    • (2015) Remote Sens , vol.7 , pp. 12356-12379
    • Inglada, J.1    Arias, M.2    Tardy, B.3    Hagolle, O.4    Valero, S.5    Morin, D.6    Dedieu, G.7    Sepulcre, G.8    Bontemps, S.9    Defourny, P.10
  • 12
    • 84961834117 scopus 로고    scopus 로고
    • Random Forest in remote sensing: A review of applications and future directions
    • Belgiu, M.; Drăguţ, L. Random Forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24-31.
    • (2016) ISPRS J. Photogramm. Remote Sens , vol.114 , pp. 24-31
    • Belgiu, M.1    Drăguţ, L.2
  • 13
    • 84931270718 scopus 로고    scopus 로고
    • Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data
    • Tatsumi, K.; Yamashiki, Y.; Torres, M.A.C.; Taipe, C.L.R. Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data. Comput. Electron. Agric. 2015, 115, 171-179.
    • (2015) Comput. Electron. Agric , vol.115 , pp. 171-179
    • Tatsumi, K.1    Yamashiki, Y.2    Torres, M.A.C.3    Taipe, C.L.R.4
  • 15
    • 13344278660 scopus 로고    scopus 로고
    • Random Forest classifier for remote sensing classification
    • Pal, M. Random Forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217-222.
    • (2005) Int. J. Remote Sens , vol.26 , pp. 217-222
    • Pal, M.1
  • 16
    • 84954105449 scopus 로고    scopus 로고
    • Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals
    • Meyer, H.; Kühnlein, M.; Appelhans, T.; Nauss, T. Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals. Atmos. Res. 2016, 169, 424-433.
    • (2016) Atmos. Res , vol.169 , pp. 424-433
    • Meyer, H.1    Kühnlein, M.2    Appelhans, T.3    Nauss, T.4
  • 18
    • 79952041537 scopus 로고    scopus 로고
    • Batch-Mode active-learning methods for the interactive classification of remote sensing images
    • Demir, B.; Persello, C.; Bruzzone, L. Batch-Mode active-learning methods for the interactive classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1014-1031.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , pp. 1014-1031
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 19
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M.; Munoz-Mari, J. A survey of active learning algorithms for supervised remote sensing image classification. IEEE J. Sel. Top. Signal Process. 2011, 5, 606-617.
    • (2011) IEEE J. Sel. Top. Signal Process , vol.5 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Munoz-Mari, J.5
  • 22
    • 0036213079 scopus 로고    scopus 로고
    • Status of land cover classification accuracy assessment
    • Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185-201.
    • (2002) Remote Sens. Environ , vol.80 , pp. 185-201
    • Foody, G.M.1
  • 23
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs. attribute noise: A quantitative study
    • Zhu, X.;Wu, X. Class noise vs. attribute noise: A quantitative study. Artif. Intell. Rev. 2004, 22, 177-210.
    • (2004) Artif. Intell. Rev , vol.22 , pp. 177-210
    • Zhu, X.1    Wu, X.2
  • 24
    • 84898030282 scopus 로고    scopus 로고
    • A study of the effect of different types of noise on the precision of supervised learning techniques
    • Nettleton, D.F.; Orriols-Puig, A.; Fornells, A. A study of the effect of different types of noise on the precision of supervised learning techniques. Artif. Intell. Rev. 2010, 33, 275-306.
    • (2010) Artif. Intell. Rev , vol.33 , pp. 275-306
    • Nettleton, D.F.1    Orriols-Puig, A.2    Fornells, A.3
  • 31
  • 32
    • 84928328671 scopus 로고    scopus 로고
    • Exploring issues of training data imbalance and mislabelling on Random Forest performance for large area land cover classification using the ensemble margin
    • Mellor, A.; Boukir, S.; Haywood, A.; Jones, S. Exploring issues of training data imbalance and mislabelling on Random Forest performance for large area land cover classification using the ensemble margin. ISPRS J. Photogramm. Remote Sens. 2015, 105, 155-168.
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.105 , pp. 155-168
    • Mellor, A.1    Boukir, S.2    Haywood, A.3    Jones, S.4
  • 34
    • 84867112504 scopus 로고    scopus 로고
    • Support Vector Machines under adversarial label noise
    • Biggio, B.; Nelson, B.; Laskov, P. Support Vector Machines under adversarial label noise. ACML 2011, 20, 97-112.
    • (2011) ACML , vol.20 , pp. 97-112
    • Biggio, B.1    Nelson, B.2    Laskov, P.3
  • 38
    • 84927970970 scopus 로고    scopus 로고
    • Effect of label noise in the complexity of classification problems
    • Garcia, L.P.; de Carvalho, A.C.; Lorena, A.C. Effect of label noise in the complexity of classification problems. Neurocomputing 2015, 160, 108-119.
    • (2015) Neurocomputing , vol.160 , pp. 108-119
    • Garcia, L.P.1    de Carvalho, A.C.2    Lorena, A.C.3
  • 40
    • 70449372975 scopus 로고    scopus 로고
    • Effect of errors in ground truth on classification accuracy
    • Carlotto, M.J. Effect of errors in ground truth on classification accuracy. Int. J. Remote Sens. 2009, 30, 4831-4849.
    • (2009) Int. J. Remote Sens , vol.30 , pp. 4831-4849
    • Carlotto, M.J.1
  • 42
  • 43
    • 33746932125 scopus 로고    scopus 로고
    • On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance
    • Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207-2218.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , pp. 2207-2218
    • Gao, F.1    Masek, J.2    Schwaller, M.3    Hall, F.4
  • 44
    • 0028582679 scopus 로고
    • NDVI-derived land cover classifications at a global scale
    • DeFries, R.; Townshend, J. NDVI-derived land cover classifications at a global scale. Int. J. Remote Sens. 1994, 15, 3567-3586.
    • (1994) Int. J. Remote Sens , vol.15 , pp. 3567-3586
    • DeFries, R.1    Townshend, J.2
  • 45
    • 84922219472 scopus 로고    scopus 로고
    • Mapping land cover in complex Mediterranean landscapes using Landsat: Improved classification accuracies from integrating multi-seasonal and synthetic imagery
    • Senf, C.; Leitão, P.J.; Pflugmacher, D.; van der Linden, S.; Hostert, P. Mapping land cover in complex Mediterranean landscapes using Landsat: Improved classification accuracies from integrating multi-seasonal and synthetic imagery. Remote Sens. Environ. 2015, 156, 527-536.
    • (2015) Remote Sens. Environ , vol.156 , pp. 527-536
    • Senf, C.1    Leitão, P.J.2    Pflugmacher, D.3    van der Linden, S.4    Hostert, P.5
  • 46
    • 5144233854 scopus 로고    scopus 로고
    • TIMESAT-A program for analyzing time-series of satellite sensor data
    • Jönsson, P.; Eklundh, L. TIMESAT-A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833-845.
    • (2004) Comput. Geosci , vol.30 , pp. 833-845
    • Jönsson, P.1    Eklundh, L.2
  • 48
    • 30544439121 scopus 로고    scopus 로고
    • Green leaf phenology at Landsat resolution: Scaling from the field to the satellite
    • Fisher, J.I.; Mustard, J.F.; Vadeboncoeur, M.A. Green leaf phenology at Landsat resolution: Scaling from the field to the satellite. Remote Sens. Environ. 2006, 100, 265-279.
    • (2006) Remote Sens. Environ , vol.100 , pp. 265-279
    • Fisher, J.I.1    Mustard, J.F.2    Vadeboncoeur, M.A.3
  • 49
    • 31344451662 scopus 로고    scopus 로고
    • Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI
    • Beck, P.S.; Atzberger, C.; Høgda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ. 2006, 100, 321-334.
    • (2006) Remote Sens. Environ , vol.100 , pp. 321-334
    • Beck, P.S.1    Atzberger, C.2    Høgda, K.A.3    Johansen, B.4    Skidmore, A.K.5
  • 52
    • 84926382691 scopus 로고    scopus 로고
    • A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENμS and Sentinel-2 images
    • Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENμS and Sentinel-2 images. Remote Sens. 2015, 7, 2668.
    • (2015) Remote Sens , vol.7 , pp. 2668
    • Hagolle, O.1    Huc, M.2    Villa Pascual, D.3    Dedieu, G.4
  • 54
    • 84992151859 scopus 로고    scopus 로고
    • Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas
    • Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156-168.
    • (2016) Remote Sens. Environ , vol.187 , pp. 156-168
    • Pelletier, C.1    Valero, S.2    Inglada, J.3    Champion, N.4    Dedieu, G.5
  • 55
    • 80054718586 scopus 로고    scopus 로고
    • Improving classification accuracy by identifying and removing instances that should be misclassified
    • San Jose, CA, USA, 31 July-5 August
    • Smith, M.R.; Martinez, T. Improving classification accuracy by identifying and removing instances that should be misclassified. In Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN), San Jose, CA, USA, 31 July-5 August 2011; pp. 2690-2697.
    • (2011) Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN) , pp. 2690-2697
    • Smith, M.R.1    Martinez, T.2
  • 57
    • 79954739964 scopus 로고    scopus 로고
    • On the suitability of MODIS time series metrics to map vegetation types in dry savanna ecosystems: A case study in the Kalahari of NE Namibia
    • Hüttich, C.; Gessner, U.; Herold, M.; Strohbach, B.J.; Schmidt, M.; Keil, M.; Dech, S. On the suitability of MODIS time series metrics to map vegetation types in dry savanna ecosystems: A case study in the Kalahari of NE Namibia. Remote Sens. 2009, 1, 620-643.
    • (2009) Remote Sens , vol.1 , pp. 620-643
    • Hüttich, C.1    Gessner, U.2    Herold, M.3    Strohbach, B.J.4    Schmidt, M.5    Keil, M.6    Dech, S.7
  • 58
    • 84883234670 scopus 로고    scopus 로고
    • Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of Random Forest classification of wetlands in Northern Minnesota
    • Corcoran, J.M.; Knight, J.F.; Gallant, A.L. Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of Random Forest classification of wetlands in Northern Minnesota. Remote Sens. 2013, 5, 3212-3238.
    • (2013) Remote Sens , vol.5 , pp. 3212-3238
    • Corcoran, J.M.1    Knight, J.F.2    Gallant, A.L.3
  • 59
    • 84962488348 scopus 로고    scopus 로고
    • First experience with Sentinel-2 data for crop and tree species classifications in Central Europe
    • Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in Central Europe. Remote Sens. 2016, 8, 166.
    • (2016) Remote Sens , vol.8 , pp. 166
    • Immitzer, M.1    Vuolo, F.2    Atzberger, C.3
  • 60
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of Support Vector Machines for land cover classification
    • Huang, C.; Davis, L.S.; Townshend, J. An assessment of Support Vector Machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725-749.
    • (2002) Int. J. Remote Sens , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.3
  • 61
    • 84912086651 scopus 로고    scopus 로고
    • Land cover classification of Landsat data with phenological features extracted from time series MODIS NDVI data
    • Jia, K.; Liang, S.;Wei, X.; Yao, Y.; Su, Y.; Jiang, B.;Wang, X. Land cover classification of Landsat data with phenological features extracted from time series MODIS NDVI data. Remote Sens. 2014, 6, 11518-11532.
    • (2014) Remote Sens , vol.6 , pp. 11518-11532
    • Jia, K.1    Liang, S.2    Wei, X.3    Yao, Y.4    Su, Y.5    Jiang, B.6    Wang, X.7
  • 62
    • 84904489362 scopus 로고    scopus 로고
    • Combined use of multi-temporal optical and radar satellite images for grassland monitoring
    • Dusseux, P.; Corpetti, T.; Hubert-Moy, L.; Corgne, S. Combined use of multi-temporal optical and radar satellite images for grassland monitoring. Remote Sens. 2014, 6, 6163-6182.
    • (2014) Remote Sens , vol.6 , pp. 6163-6182
    • Dusseux, P.1    Corpetti, T.2    Hubert-Moy, L.3    Corgne, S.4
  • 65
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273-297.
    • (1995) Mach. Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 69
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5-32.
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 70
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123-140.
    • (1996) Mach. Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 71
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by Random Forest
    • Liaw, A.;Wiener, M. Classification and regression by Random Forest. R News 2002, 2, 18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 73
    • 84873187093 scopus 로고    scopus 로고
    • Overview of Random Forest methodology and practical guidance with emphasis on computational biology and bioinformatics
    • Boulesteix, A.L.; Janitza, S.; Kruppa, J.; König, I.R. Overview of Random Forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2012, 2, 493-507.
    • (2012) Wiley Interdiscip. Rev. Data Min. Knowl. Discov , vol.2 , pp. 493-507
    • Boulesteix, A.L.1    Janitza, S.2    Kruppa, J.3    König, I.R.4
  • 75
    • 33749554766 scopus 로고    scopus 로고
    • Technical report; Center for Bioinformatics and Molecular Biostatistics, UC San Fransisco: San Fransisco, CA, USA
    • Segal, M.R. Machine Learning Benchmarks and Random Forest Regression; Technical report; Center for Bioinformatics and Molecular Biostatistics, UC San Fransisco: San Fransisco, CA, USA, 2004.
    • (2004) Machine Learning Benchmarks and Random Forest Regression
    • Segal, M.R.1
  • 76
    • 77956907243 scopus 로고    scopus 로고
    • On over-fitting in model selection and subsequent selection bias in performance evaluation
    • Cawley, G.C.; Talbot, N.L. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 2010, 11, 2079-2107.
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 2079-2107
    • Cawley, G.C.1    Talbot, N.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.