메뉴 건너뛰기




Volumn , Issue , 1995, Pages 21-29

Theory and Applications of Agnostic PAC-Learning with Small Decision Trees

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTATION THEORY; LEARNING ALGORITHMS; MACHINE LEARNING;

EID: 85013576689     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (63)

References (34)
  • 1
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • [AL88]
    • [AL88] D. Angluin, P. Laird, Learning from noisy examples, Machine Learning, vol. 2, 1988,343 - 370.
    • (1988) Machine Learning , vol.2 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 2
    • 0028443644 scopus 로고
    • Trading Accuracy for Simplicity in Decision Trees
    • [BB94]
    • [BB94] M. Bohanec, I. Bratko, Trading Accuracy for Simplicity in Decision Trees, Machine Learning, vol. 15, no. 3, 1994,223-250.
    • (1994) Machine Learning , vol.15 , Issue.3 , pp. 223-250
    • Bohanec, M.1    Bratko, I.2
  • 3
    • 0024750852 scopus 로고
    • Learnability and the Vapnik-Chervonenkis dimension
    • [BEHW89]
    • [BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussier, M. K. Warmuth, Learnability and the Vapnik-Chervonenkis dimension, JACM 36(4), 1989,929 - 965.
    • (1989) JACM , vol.36 , Issue.4 , pp. 929-965
    • Blumer, A.1    Ehrenfeucht, A.2    Haussier, D.3    Warmuth, M. K.4
  • 5
    • 0002117591 scopus 로고
    • A further comparison of splitting rules for decision-tree induction
    • [BN92]
    • [BN92] W. Buntine, T. Niblett, A further comparison of splitting rules for decision-tree induction, Machine Learning, vol. 8, 1992, 75 - 82.
    • (1992) Machine Learning , vol.8 , pp. 75-82
    • Buntine, W.1    Niblett, T.2
  • 6
    • 0000539898 scopus 로고
    • How tight are the Vapnik- Chervonenkis bounds
    • [CT92]
    • [CT92] D. Cohn, G. Tesauro, How tight are the Vapnik- Chervonenkis bounds, Neural Computation 4, 1992, 249 - 269.
    • (1992) Neural Computation , vol.4 , pp. 249-269
    • Cohn, D.1    Tesauro, G.2
  • 10
    • 85152623456 scopus 로고
    • Small Disjuncts in Action: Learning to Diagnose Errors in the Local Loop of the Telephone Network
    • [DP93] Morgan Kaufmann
    • [DP93] A. Danyluk, F. Provost, Small Disjuncts in Action: Learning to Diagnose Errors in the Local Loop of the Telephone Network, Proc. 10th International Conf. Machine Learning (ML'93), Morgan Kaufmann, 1993,81 - 88.
    • (1993) Proc. 10th International Conf. Machine Learning (ML'93) , pp. 81-88
    • Danyluk, A.1    Provost, F.2
  • 11
    • 0002552358 scopus 로고
    • Improving performance in neural networks using a boosting algorithm
    • [DSS93] Morgan Kaufmann
    • [DSS93] H. Druker, R. Schapire, P. Simard, Improving performance in neural networks using a boosting algorithm, Advances in Neural Information Processing Systems, vol. 5, Morgan Kaufmann, 1993,42-49.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 42-49
    • Druker, H.1    Schapire, R.2    Simard, P.3
  • 13
    • 85152625430 scopus 로고
    • [Elo92] Report C-1992-61, Dept. of Computer Science, University of Helsinki
    • [Elo92] T. Elomaa, A hybrid approach to decision tree learning, Report C-1992-61, Dept. of Computer Science, University of Helsinki (1992).
    • (1992) A hybrid approach to decision tree learning
    • Elomaa, T.1
  • 14
    • 85152531997 scopus 로고
    • In defense of C4.5: Notes on learning one-level decision trees
    • [Elo94] Morgan Kaufmann
    • [Elo94] T. Elomaa, In defense of C4.5: Notes on learning one-level decision trees, Proc. of the 11th Int. Conf. on Machine Learning, Morgan Kaufmann, 1994, 62 -69.
    • (1994) Proc. of the 11th Int. Conf. on Machine Learning , pp. 62-69
    • Elomaa, T.1
  • 15
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the PAC-modelfor neural nets and other learning applications
    • [Hau92]
    • [Hau92] D. Haussler, Decision theoretic generalizations of the PAC-modelfor neural nets and other learning applications, Inf. and Comp., vol. 100,1992,78 - 150.
    • (1992) Inf. and Comp , vol.100 , pp. 78-150
    • Haussler, D.1
  • 17
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly useddatasets
    • [Hol93]
    • [Hol93] R. C. Holte, Very simple classification rules perform well on most commonly useddatasets, Machine Learning, vol. 11, 1993, 63 - 91.
    • (1993) Machine Learning , vol.11 , pp. 63-91
    • Holte, R. C.1
  • 20
    • 0027640858 scopus 로고
    • Learning in the presence of malicious errors
    • [KL93]
    • [KL93] M. Kearns, M. Li, Learning in the presence of malicious errors, SIAM J. Comput., vol. 22, 1993, 807 - 837.
    • (1993) SIAM J. Comput , vol.22 , pp. 807-837
    • Kearns, M.1    Li, M.2
  • 22
    • 11544315228 scopus 로고
    • Bivariate Splits and Consistent Split Criteria in Dichotomous Classification Trees
    • [Lub94] Rutgers University
    • [Lub94] D. J. Lubinsky, Bivariate Splits and Consistent Split Criteria in Dichotomous Classification Trees, HDDissertation in Computer Science, Rutgers University (1994).
    • (1994) HDDissertation in Computer Science
    • Lubinsky, D. J.1
  • 23
    • 0004767539 scopus 로고
    • Agnostic PAC-learning of functions on analog neural nets
    • [Maa93] Morgan Kaufmann, journal version to appear in Neural Computation
    • [Maa93] W. Maass, Agnostic PAC-learning of functions on analog neural nets, Advances in Neural Information Processing Systems, vol. 6, Morgan Kaufmann, 1994,311-318; journal version to appear in Neural Computation.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 311-318
    • Maass, W.1
  • 25
    • 79952785777 scopus 로고
    • An empirical comparison of pruning methods for decision tree induction
    • [Min89]
    • [Min89] J. Mingers, An empirical comparison of pruning methods for decision tree induction, Machine Learning, vol. 4, 1989, 227 - 243.
    • (1989) Machine Learning , vol.4 , pp. 227-243
    • Mingers, J.1
  • 28
    • 0001957366 scopus 로고
    • Sharper bounds for Gaussian and empirical processes
    • [Tal94]
    • [Tal94] M. Talagrand, Sharper bounds for Gaussian and empirical processes, Annals of Probability, vol. 22, 1994, 28-76.
    • (1994) Annals of Probability , vol.22 , pp. 28-76
    • Talagrand, M.1
  • 29
    • 0024940401 scopus 로고
    • Consistent inference of probabilities in layered networks: Predictions and generalizations
    • [TLS89]
    • [TLS89] N. Tishby, E. Lavin, S. A. Solla, Consistent inference of probabilities in layered networks: Predictions and generalizations, Proc. of IJCNN 1989, Vol. II, 403 - 409.
    • (1989) Proc. of IJCNN , vol.II , pp. 403-409
    • Tishby, N.1    Lavin, E.2    Solla, S. A.3
  • 30
    • 0021518106 scopus 로고
    • Ë theory of the learnable
    • [Val84]
    • [Val84] L. G. Valiant, Ë theory of the learnable, Comm. of the ACM, vol. 27, 1984,1134 - 1142.
    • (1984) Comm. of the ACM , vol.27 , pp. 1134-1142
    • Valiant, L. G.1
  • 32
    • 0025492125 scopus 로고
    • Maximizing the predictive value of production rules
    • [WGT90]
    • [WGT90] S. M. Weiss, R. Galen, P. V Tadepalli, Maximizing the predictive value of production rules, Art. Int., vol. 45,1990,47-71.
    • (1990) Art. Int , vol.45 , pp. 47-71
    • Weiss, S. M.1    Galen, R.2    Tadepalli, P. V3
  • 33
    • 0001512820 scopus 로고
    • An empirical comparison of pattern recognition, neural nets, and machine learning classification methods
    • [WK90] Morgan Kaufmann
    • [WK90] S. M. Weiss, I. Kapouleas, An empirical comparison of pattern recognition, neural nets, and machine learning classification methods, Proc. of the 11th Int. Joint Conf. on Art. Int. 1990, Morgan Kaufmann, 781-787.
    • (1990) Proc. of the 11th Int. Joint Conf. on Art. Int , pp. 781-787
    • Weiss, S. M.1    Kapouleas, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.