-
1
-
-
85102501714
-
Stable alkali metal ion intercalation compounds as optimized metal oxide nanowire cathodes for lithium batteries
-
[1] Zhao, Y., Han, C., Yang, J., Su, J., Xu, X., Li, S., Xu, L., Fang, R., Jiang, H., Zou, X., Stable alkali metal ion intercalation compounds as optimized metal oxide nanowire cathodes for lithium batteries. Nano Lett. 15 (2015), 2180–2185.
-
(2015)
Nano Lett.
, vol.15
, pp. 2180-2185
-
-
Zhao, Y.1
Han, C.2
Yang, J.3
Su, J.4
Xu, X.5
Li, S.6
Xu, L.7
Fang, R.8
Jiang, H.9
Zou, X.10
-
2
-
-
84941172402
-
3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability
-
3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Adv. Energy Mater., 5, 2015, 1500716.
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1500716
-
-
Wang, X.1
Niu, C.2
Meng, J.3
Hu, P.4
Xu, X.5
Wei, X.6
Zhou, L.7
Zhao, K.8
Luo, W.9
Yan, M.10
-
3
-
-
85011365979
-
Potassium secondary batteries
-
[3] Eftekhari, A., Jian, Z., Ji, X., Potassium secondary batteries. ACS Appl. Mater. Interfaces, 2016, 10.1021/acsami.6b07989.
-
(2016)
ACS Appl. Mater. Interfaces
-
-
Eftekhari, A.1
Jian, Z.2
Ji, X.3
-
4
-
-
84902241202
-
In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers
-
[4] Liu, Y., Fan, F., Wang, J., Liu, Y., Chen, H., Jungjohann, K.L., Xu, Y., Zhu, Y., Bigio, D., Zhu, T., Wang, C., In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers. Nano Lett. 14 (2014), 3445–3452.
-
(2014)
Nano Lett.
, vol.14
, pp. 3445-3452
-
-
Liu, Y.1
Fan, F.2
Wang, J.3
Liu, Y.4
Chen, H.5
Jungjohann, K.L.6
Xu, Y.7
Zhu, Y.8
Bigio, D.9
Zhu, T.10
Wang, C.11
-
5
-
-
84941778021
-
Carbon electrodes for K-ion batteries
-
[5] Jian, Z., Luo, W., Ji, X., Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137 (2015), 11566–11569.
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 11566-11569
-
-
Jian, Z.1
Luo, W.2
Ji, X.3
-
6
-
-
84943255770
-
Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors
-
[6] Komaba, S., Hasegawa, T., Dahbi, M., Kubota, K., Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60 (2015), 172–175.
-
(2015)
Electrochem. Commun.
, vol.60
, pp. 172-175
-
-
Komaba, S.1
Hasegawa, T.2
Dahbi, M.3
Kubota, K.4
-
7
-
-
84946887549
-
Potassium ion batteries with graphitic materials
-
[7] Luo, W., Wan, J., Ozdemir, B., Bao, W., Chen, Y., Dai, J., Lin, H., Xu, Y., Gu, F., Barone, V., Hu, L., Potassium ion batteries with graphitic materials. Nano Lett. 15 (2015), 7671–7677.
-
(2015)
Nano Lett.
, vol.15
, pp. 7671-7677
-
-
Luo, W.1
Wan, J.2
Ozdemir, B.3
Bao, W.4
Chen, Y.5
Dai, J.6
Lin, H.7
Xu, Y.8
Gu, F.9
Barone, V.10
Hu, L.11
-
8
-
-
84988838348
-
Electrochemical intercalation of potassium into graphite
-
[8] Zhao, J., Zou, X., Zhu, Y., Xu, Y., Wang, C., Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 26 (2016), 8103–8110.
-
(2016)
Adv. Funct. Mater.
, vol.26
, pp. 8103-8110
-
-
Zhao, J.1
Zou, X.2
Zhu, Y.3
Xu, Y.4
Wang, C.5
-
9
-
-
84993965300
-
Role of nitrogen doped graphene for improved high capacity potassium ion battery anodes
-
[9] Share, K., Cohn, A.P., Carter, R., Rogers, B., Pint, C.L., Role of nitrogen doped graphene for improved high capacity potassium ion battery anodes. ACS Nano 10 (2016), 9738–9744.
-
(2016)
ACS Nano
, vol.10
, pp. 9738-9744
-
-
Share, K.1
Cohn, A.P.2
Carter, R.3
Rogers, B.4
Pint, C.L.5
-
10
-
-
84958753782
-
Hard carbon microspheres: potassium-ion anode versus sodium-ion anode
-
[10] Jian, Z., Xing, Z., Bommier, C., Li, Z., Ji, X., Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6 (2016), 150874–150878.
-
(2016)
Adv. Energy Mater.
, vol.6
, pp. 150874-150878
-
-
Jian, Z.1
Xing, Z.2
Bommier, C.3
Li, Z.4
Ji, X.5
-
11
-
-
84988371754
-
Mechanism of potassium ion intercalation staging in few layered graphene from in situ Raman spectroscopy
-
[11] Share, K., Cohn, A.P., Carter, R.E., Pint, C.L., Mechanism of potassium ion intercalation staging in few layered graphene from in situ Raman spectroscopy. Nanoscale 8 (2016), 16435–16439.
-
(2016)
Nanoscale
, vol.8
, pp. 16435-16439
-
-
Share, K.1
Cohn, A.P.2
Carter, R.E.3
Pint, C.L.4
-
12
-
-
84978763323
-
Tin-based composite anodes for potassium-ion batteries
-
[12] Sultana, I., Ramireddy, T., Rahman, M.M., Chen, Y., Glushenkov, A.M., Tin-based composite anodes for potassium-ion batteries. Chem. Commun. 52 (2016), 9279–9282.
-
(2016)
Chem. Commun.
, vol.52
, pp. 9279-9282
-
-
Sultana, I.1
Ramireddy, T.2
Rahman, M.M.3
Chen, Y.4
Glushenkov, A.M.5
-
13
-
-
84987904890
-
17 as an anode material for potassium-ion batteries
-
17 as an anode material for potassium-ion batteries. Chem. Commun. 52 (2016), 11274–11276.
-
(2016)
Chem. Commun.
, vol.52
, pp. 11274-11276
-
-
Han, J.1
Xu, M.2
Niu, Y.3
Li, G.-N.4
Wang, M.5
Zhang, Y.6
Jia, M.7
Ming Li, C.8
-
15
-
-
0742302984
-
Potassium secondary cell based on Prussian blue cathode
-
[15] Eftekhari, A., Potassium secondary cell based on Prussian blue cathode. J. Power Sources 126 (2004), 221–228.
-
(2004)
J. Power Sources
, vol.126
, pp. 221-228
-
-
Eftekhari, A.1
-
16
-
-
83655190544
-
Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries
-
[16] Wessells, C.D., Peddada, S.V., Huggins, R.A., Cui, Y., Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11 (2011), 5421–5425.
-
(2011)
Nano Lett.
, vol.11
, pp. 5421-5425
-
-
Wessells, C.D.1
Peddada, S.V.2
Huggins, R.A.3
Cui, Y.4
-
17
-
-
82555195041
-
Copper hexacyanoferrate battery electrodes with long cycle life and high power
-
[17] Wessells, C.D., Huggins, R.A., Cui, Y., Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun., 2, 2011, 550.
-
(2011)
Nat. Commun.
, vol.2
, pp. 550
-
-
Wessells, C.D.1
Huggins, R.A.2
Cui, Y.3
-
19
-
-
85016327541
-
Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries
-
[19] Wang, X., Xu, X., Niu, C., Meng, J., Huang, M., Liu, X., Liu, Z., Mai, L., Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries. Nano Lett., 2016, 10.1021/acs.nanolett.6b04611.
-
(2016)
Nano Lett.
-
-
Wang, X.1
Xu, X.2
Niu, C.3
Meng, J.4
Huang, M.5
Liu, X.6
Liu, Z.7
Mai, L.8
-
20
-
-
84955452407
-
A perylene anhydride crystal as a reversible electrode for K-ion batteries
-
[20] Xing, Z., Jian, Z., Luo, W., Qi, Y., Bommier, C., Chong, E.S., Li, Z., Hu, L., Ji, X., A perylene anhydride crystal as a reversible electrode for K-ion batteries. Energy Storage Mater. 2 (2016), 63–68.
-
(2016)
Energy Storage Mater.
, vol.2
, pp. 63-68
-
-
Xing, Z.1
Jian, Z.2
Luo, W.3
Qi, Y.4
Bommier, C.5
Chong, E.S.6
Li, Z.7
Hu, L.8
Ji, X.9
-
21
-
-
84979681459
-
Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries
-
[21] Jian, Z., Liang, Y., Rodríguez-Pérez, I.A., Yao, Y., Ji, X., Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries. Electrochem. Commun. 71 (2016), 5–8.
-
(2016)
Electrochem. Commun.
, vol.71
, pp. 5-8
-
-
Jian, Z.1
Liang, Y.2
Rodríguez-Pérez, I.A.3
Yao, Y.4
Ji, X.5
-
22
-
-
85011357366
-
3/C nanocomposites as high-potential cathode materials for potassium-ion batteries
-
3/C nanocomposites as high-potential cathode materials for potassium-ion batteries. Chem. Commun. 53 (2017), 1805–1808.
-
(2017)
Chem. Commun.
, vol.53
, pp. 1805-1808
-
-
Han, J.1
Li, G.-N.2
Liu, F.3
Wang, M.4
Zhang, Y.5
Hu, L.6
Dai, C.7
Xu, M.8
-
23
-
-
84944648082
-
Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
-
[23] Shannon, R.T., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Cryst. Phys., Diffr, Theor. Gen. Crystallogr. 32 (1976), 751–767.
-
(1976)
Acta Crystallogr. Sect. A: Cryst. Phys., Diffr, Theor. Gen. Crystallogr.
, vol.32
, pp. 751-767
-
-
Shannon, R.T.1
-
24
-
-
85006934206
-
Potassium Prussian blue nanoparticles: a low-cost cathode material for potassium-ion batteries
-
[24] Zhang, C., Xu, Y., Zhou, M., Liang, L., Dong, H., Wu, M., Yang, Y., Lei, Y., Potassium Prussian blue nanoparticles: a low-cost cathode material for potassium-ion batteries. Adv. Funct. Mater., 1604307, 2016.
-
(2016)
Adv. Funct. Mater.
-
-
Zhang, C.1
Xu, Y.2
Zhou, M.3
Liang, L.4
Dong, H.5
Wu, M.6
Yang, Y.7
Lei, Y.8
-
25
-
-
85013035835
-
A low-cost high-energy potassium cathode
-
[25] Xue, L., Li, Y., Gao, H., Zhou, W., Lü, X., Kaveevivitchai, W., Manthiram, A., Goodenough, J.B., A low-cost high-energy potassium cathode. J. Am. Chem. Soc., 2017, 10.1021/jacs.6b12598.
-
(2017)
J. Am. Chem. Soc.
-
-
Xue, L.1
Li, Y.2
Gao, H.3
Zhou, W.4
Lü, X.5
Kaveevivitchai, W.6
Manthiram, A.7
Goodenough, J.B.8
-
26
-
-
84997096299
-
High-capacity aqueous potassium-ion batteries for large-scale energy storage
-
[26] Su, D., McDonagh, A., Qiao, S.Z., Wang, G., High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater., 29, 2017, 10.1002/adma.201604007.
-
(2017)
Adv. Mater.
, vol.29
-
-
Su, D.1
McDonagh, A.2
Qiao, S.Z.3
Wang, G.4
-
27
-
-
84862175135
-
Prussian blue: a new framework of electrode materials for sodium batteries
-
[27] Lu, Y., Wang, L., Cheng, J., Goodenough, J.B., Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun. 48 (2012), 6544–6546.
-
(2012)
Chem. Commun.
, vol.48
, pp. 6544-6546
-
-
Lu, Y.1
Wang, L.2
Cheng, J.3
Goodenough, J.B.4
-
29
-
-
84898796136
-
High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries
-
[29] You, Y., Wu, X.-L., Yin, Y.-X., Guo, Y.-G., High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 7 (2014), 1643–1647.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 1643-1647
-
-
You, Y.1
Wu, X.-L.2
Yin, Y.-X.3
Guo, Y.-G.4
-
30
-
-
84944732649
-
Nickel hexacyanoferrate nanoparticles as a low cost cathode material for lithium-ion batteries
-
[30] Omarova, M., Koishybay, A., Yesibolati, N., Mentbayeva, A., Umirov, N., Ismailov, K., Adair, D., Babaa, M.-R., Kurmanbayeva, I., Bakenov, Z., Nickel hexacyanoferrate nanoparticles as a low cost cathode material for lithium-ion batteries. Electrochim. Acta 184 (2015), 58–63.
-
(2015)
Electrochim. Acta
, vol.184
, pp. 58-63
-
-
Omarova, M.1
Koishybay, A.2
Yesibolati, N.3
Mentbayeva, A.4
Umirov, N.5
Ismailov, K.6
Adair, D.7
Babaa, M.-R.8
Kurmanbayeva, I.9
Bakenov, Z.10
-
31
-
-
77953385498
-
Standard potentials of alkali metals, silver, and thallium metal/ion couples in N,N′-dimethylformamide, dimethyl sulfoxide, and propylene carbonate
-
[31] Matsuura, N., Umemoto, K., Takeuchi, Z.I., Standard potentials of alkali metals, silver, and thallium metal/ion couples in N,N′-dimethylformamide, dimethyl sulfoxide, and propylene carbonate. Bull. Chem. Soc. Jpn. 47 (1974), 813–817.
-
(1974)
Bull. Chem. Soc. Jpn.
, vol.47
, pp. 813-817
-
-
Matsuura, N.1
Umemoto, K.2
Takeuchi, Z.I.3
-
32
-
-
84885997191
-
First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: the important role of ionic radius
-
[32] Ling, C., Chen, J., Mizuno, F., First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: the important role of ionic radius. J. Phys. Chem. C 117 (2013), 21158–21165.
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 21158-21165
-
-
Ling, C.1
Chen, J.2
Mizuno, F.3
-
33
-
-
84959572957
-
Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries
-
[33] Wu, X., Sun, M., Guo, S., Qian, J., Liu, Y., Cao, Y., Ai, X., Yang, H., Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries. ChemNanoMat 1 (2015), 188–193.
-
(2015)
ChemNanoMat
, vol.1
, pp. 188-193
-
-
Wu, X.1
Sun, M.2
Guo, S.3
Qian, J.4
Liu, Y.5
Cao, Y.6
Ai, X.7
Yang, H.8
-
34
-
-
77956235629
-
Symmetry switch of cobalt ferrocyanide framework by alkaline cation exchange
-
[34] Matsuda, T., Kim, J., Moritomo, Y., Symmetry switch of cobalt ferrocyanide framework by alkaline cation exchange. J. Am. Chem. Soc. 132 (2010), 12206–12207.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 12206-12207
-
-
Matsuda, T.1
Kim, J.2
Moritomo, Y.3
|