-
1
-
-
0035890440
-
Issues and challenges facing rechargeable lithium batteries
-
Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359-367 (2001).
-
(2001)
Nature
, vol.414
, pp. 359-367
-
-
Tarascon, J.-M.1
Armand, M.2
-
2
-
-
83655183076
-
Li-O2 and Li-S batteries with high energy storage
-
Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nature Mater. 11, 19-29 (2012).
-
(2012)
Nature Mater.
, vol.11
, pp. 19-29
-
-
Bruce, P.G.1
Freunberger, S.A.2
Hardwick, L.J.3
Tarascon, J.-M.4
-
3
-
-
7644220712
-
Lithium batteries and cathode materials
-
Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271-4301 (2004).
-
(2004)
Chem. Rev.
, vol.104
, pp. 4271-4301
-
-
Whittingham, M.S.1
-
4
-
-
84873825623
-
The Li-ion rechargeable battery: A perspective
-
Goodenough, J. B. & Park, K.-S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 135, 1167-1176 (2013).
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 1167-1176
-
-
Goodenough, J.B.1
Park, K.-S.2
-
5
-
-
38949102073
-
Building better batteries
-
Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652-657 (2008).
-
(2008)
Nature
, vol.451
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.-M.2
-
6
-
-
77955716717
-
A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
-
Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332-6341 (2010).
-
(2010)
Electrochim. Acta
, vol.55
, pp. 6332-6341
-
-
Verma, P.1
Maire, P.2
Novák, P.3
-
7
-
-
0034207099
-
Effect of graphite particle size on irreversible capacity loss
-
Zaghib, K., Nadeau, G. & Kinoshita, K. effect of graphite particle size on irreversible capacity loss. J. Electrochem. Soc. 147, 2110-2115 (2000).
-
(2000)
J. Electrochem. Soc.
, vol.147
, pp. 2110-2115
-
-
Zaghib, K.1
Nadeau, G.2
Kinoshita, K.3
-
8
-
-
0029373208
-
The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: II. Graphite electrodes
-
Aurbach, D. et al. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: II. Graphite electrodes. J. Electrochem. Soc. 142, 2882-2890 (1995).
-
(1995)
J. Electrochem. Soc.
, vol.142
, pp. 2882-2890
-
-
Aurbach, D.1
-
10
-
-
7644227934
-
Nonaqueous liquid electrolytes for lithium-based rechargeable batteries
-
Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303-4417 (2004).
-
(2004)
Chem. Rev.
, vol.104
, pp. 4303-4417
-
-
Xu, K.1
-
11
-
-
0029373947
-
Mechanism leading to irreversible capacity loss in Li ion rechargeable batteries
-
Matsumura, Y., Wang, S. & Mondori, J. Mechanism leading to irreversible capacity loss in Li ion rechargeable batteries. J. Electrochem. Soc. 142, 2914-2918 (1995).
-
(1995)
J. Electrochem. Soc.
, vol.142
, pp. 2914-2918
-
-
Matsumura, Y.1
Wang, S.2
Mondori, J.3
-
12
-
-
84890845082
-
A systematic study of well-known electrolyte additives in LiCoO2/graphite pouch cells
-
Wang, D. Y., Sinha, N. N., Petibon, R., Burns, J. C. & Dahn, J. R. A systematic study of well-known electrolyte additives in LiCoO2/graphite pouch cells. J. Power Sources 251, 311-318 (2014).
-
(2014)
J. Power Sources
, vol.251
, pp. 311-318
-
-
Wang, D.Y.1
Sinha, N.N.2
Petibon, R.3
Burns, J.C.4
Dahn, J.R.5
-
13
-
-
79952274296
-
An advanced lithium ion battery based on high performance electrode materials
-
Hassoun, J., Lee, K.-S., Sun, Y.-K. & Scrosati, B. An advanced lithium ion battery based on high performance electrode materials. J. Am. Chem. Soc. 133, 3139-3143 (2011).
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 3139-3143
-
-
Hassoun, J.1
Lee, K.-S.2
Sun, Y.-K.3
Scrosati, B.4
-
14
-
-
80052063686
-
Prelithiated silicon nanowires as an anode for lithium ion batteries
-
Liu, N., Hu, L. B., McDowell, M. T., Jackson, A. & Cui, Y. Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5, 6487-6493 (2011).
-
(2011)
ACS Nano
, vol.5
, pp. 6487-6493
-
-
Liu, N.1
Hu, L.B.2
McDowell, M.T.3
Jackson, A.4
Cui, Y.5
-
15
-
-
33750936896
-
A prelithiated carbon anode for lithium-ion battery applications
-
Jarvis, C. R., Lain, M. J., Yakovleva, M. V. & Gao, Y. A prelithiated carbon anode for lithium-ion battery applications. J. Power Sources 162, 800-802 (2006).
-
(2006)
J. Power Sources
, vol.162
, pp. 800-802
-
-
Jarvis, C.R.1
Lain, M.J.2
Yakovleva, M.V.3
Gao, Y.4
-
16
-
-
84896986100
-
Application of stabilized lithium metal powder (SLMP®) in graphite anode A high Effcient prelithiation method for lithium-ion batteries
-
Wang, Z. H. et al. Application of stabilized lithium metal powder (SLMP®) in graphite anode A high Effcient prelithiation method for lithium-ion batteries. J. Power Sources 260, 57-61 (2014).
-
(2014)
J. Power Sources
, vol.260
, pp. 57-61
-
-
Wang, Z.H.1
-
17
-
-
84923378266
-
Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents
-
Zhao, J. et al. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents. Nature Commun. 5, 5088 (2014).
-
(2014)
Nature Commun.
, vol.5
, pp. 5088
-
-
Zhao, J.1
-
18
-
-
77958025078
-
Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries
-
Shanmukaraj, D. et al. Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries. Electrochem. Commun. 12, 1344-1347 (2010).
-
(2010)
Electrochem. Commun.
, vol.12
, pp. 1344-1347
-
-
Shanmukaraj, D.1
-
19
-
-
84886499064
-
An approach to overcome first cycle irreversible capacity in P2-Na2=3[Fe1=2Mn1=2]O2
-
Singh, G. et al. An approach to overcome first cycle irreversible capacity in P2-Na2=3[Fe1=2Mn1=2]O2. Electrochem. Commun. 37, 61-63 (2013).
-
(2013)
Electrochem. Commun.
, vol.37
, pp. 61-63
-
-
Singh, G.1
-
20
-
-
57349198409
-
Air stable Al2O3-coated Li2NiO2 cathode additive as a surplus current consumer in a Li-ion cell
-
Kim, M. G. & Cho, J. Air stable Al2O3-coated Li2NiO2 cathode additive as a surplus current consumer in a Li-ion cell. J. Mater. Chem. 18, 5880-5887 (2008).
-
(2008)
J. Mater. Chem.
, vol.18
, pp. 5880-5887
-
-
Kim, M.G.1
Cho, J.2
-
21
-
-
84958226410
-
Role of Li6CoO4 cathode additive in Li-ion cells containing low coulombic effciency anode material
-
Noh, M. & Cho, J. Role of Li6CoO4 cathode additive in Li-ion cells containing low coulombic effciency anode material. J. Electrochem. Soc. 159, A1329-A1334 (2012).
-
(2012)
J. Electrochem. Soc.
, vol.159
, pp. A1329-A1334
-
-
Noh, M.1
Cho, J.2
-
22
-
-
0034727086
-
Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
-
Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496-499 (2000).
-
(2000)
Nature
, vol.407
, pp. 496-499
-
-
Poizot, P.1
Laruelle, S.2
Grugeon, S.3
Dupont, L.4
Tarascon, J.M.5
-
23
-
-
33745713659
-
High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications
-
Taberna, P. L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater. 5, 567-573 (2006).
-
(2006)
Nature Mater.
, vol.5
, pp. 567-573
-
-
Taberna, P.L.1
Mitra, S.2
Poizot, P.3
Simon, P.4
Tarascon, J.M.5
-
24
-
-
77956958084
-
Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions
-
Cabana, J., Monconduit, L., Larcher, D. & Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170-E192 (2010).
-
(2010)
Adv. Mater.
, vol.22
, pp. E170-E192
-
-
Cabana, J.1
Monconduit, L.2
Larcher, D.3
Palacín, M.R.4
-
25
-
-
84877687451
-
Metal oxides and oxysalts as anode materials for Li ion batteries
-
Reddy, M. V., Subba Rao, G. V. & Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364-5457 (2013).
-
(2013)
Chem. Rev.
, vol.113
, pp. 5364-5457
-
-
Reddy, M.V.1
Subba Rao, G.V.2
Chowdari, B.V.R.3
-
26
-
-
38849087974
-
Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes
-
Lou, X. W., Deng, D., Lee, J. Y., Feng, J. & Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 20, 258-262 (2008).
-
(2008)
Adv. Mater.
, vol.20
, pp. 258-262
-
-
Lou, X.W.1
Deng, D.2
Lee, J.Y.3
Feng, J.4
Archer, L.A.5
-
27
-
-
77957714684
-
Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries
-
Wang, H. L. et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132, 13978-13980 (2010).
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 13978-13980
-
-
Wang, H.L.1
-
28
-
-
10944228053
-
Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides
-
Li, H., Balaya, P. & Maier, J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 151, A1878-A1885 (2004).
-
(2004)
J. Electrochem. Soc.
, vol.151
, pp. A1878-A1885
-
-
Li, H.1
Balaya, P.2
Maier, J.3
-
29
-
-
57849129803
-
Overpotential and electrochemical impedance analysis on Cr2O3 thin film and powder electrode in rechargeable lithium batteries
-
Sun, J. P. et al. Overpotential and electrochemical impedance analysis on Cr2O3 thin film and powder electrode in rechargeable lithium batteries. Solid State Ion. 179, 2390-2395 (2008).
-
(2008)
Solid State Ion.
, vol.179
, pp. 2390-2395
-
-
Sun, J.P.1
-
30
-
-
84939230640
-
Prelithiation activates Li(Ni0. 5Mn0. 3Co0. 2)O2 for high capacity and excellent cycling stability
-
Wu, Z. Z. et al. Prelithiation activates Li(Ni0. 5Mn0. 3Co0. 2)O2 for high capacity and excellent cycling stability. Nano Lett. 15, 5590-5596 (2015).
-
(2015)
Nano Lett.
, vol.15
, pp. 5590-5596
-
-
Wu, Z.Z.1
-
31
-
-
0038780804
-
Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries
-
Li, H., Richter, G. & Maier, J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv. Mater. 15, 736-739 (2003).
-
(2003)
Adv. Mater.
, vol.15
, pp. 736-739
-
-
Li, H.1
Richter, G.2
Maier, J.3
-
32
-
-
33748258858
-
Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity
-
Hu, Y.-S. et al. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nature Mater. 5, 713-717 (2006).
-
(2006)
Nature Mater.
, vol.5
, pp. 713-717
-
-
Hu, Y.-S.1
-
33
-
-
78650103818
-
In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode
-
Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515-1520 (2010).
-
(2010)
Science
, vol.330
, pp. 1515-1520
-
-
Huang, J.Y.1
-
34
-
-
84873669437
-
In situ TEM of two-phase lithiation of amorphous silicon nanospheres
-
McDowell, M. T. et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758-764 (2013).
-
(2013)
Nano Lett.
, vol.13
, pp. 758-764
-
-
McDowell, M.T.1
-
35
-
-
80054030179
-
Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries
-
Zheng, G. Y., Yang, Y., Cha, J. J., Hong, S. S. & Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11, 4462-4467 (2011).
-
(2011)
Nano Lett.
, vol.11
, pp. 4462-4467
-
-
Zheng, G.Y.1
Yang, Y.2
Cha, J.J.3
Hong, S.S.4
Cui, Y.5
|