메뉴 건너뛰기




Volumn 0, Issue , 2016, Pages 336-343

Animation rendering on multimedia fog computing platforms

Author keywords

animation rendering; Edge computing; fog computing; prediction; volunteer computing

Indexed keywords

ANIMATION; DISTRIBUTED DATABASE SYSTEMS; EDGE COMPUTING; FOG; FORECASTING; LEARNING ALGORITHMS; MACHINE LEARNING; MULTIMEDIA SERVICES; MULTIMEDIA SYSTEMS; SIMULATION PLATFORM; WEB SERVICES;

EID: 85012980528     PISSN: 23302194     EISSN: 23302186     Source Type: Conference Proceeding    
DOI: 10.1109/CloudCom.2016.0060     Document Type: Conference Paper
Times cited : (21)

References (30)
  • 1
    • 85080670694 scopus 로고    scopus 로고
    • Bitbrains. http://www.bitbrains.nl/solvinity-en
    • Bitbrains
  • 3
    • 85080669361 scopus 로고    scopus 로고
    • Renderstorm. http://www.render-storm.com/index.html
    • Renderstorm
  • 4
    • 84893461507 scopus 로고    scopus 로고
    • Scikit-learn. http://scikit-learn.org
    • Scikit-learn
  • 5
    • 85080738148 scopus 로고    scopus 로고
    • Shaderlight. http://limitlesscomputing.com/Shaderlight
    • Shaderlight
  • 6
    • 85080680303 scopus 로고    scopus 로고
    • XGBoost. https://github.com/dmlc/xgboost
    • XGBoost
  • 7
    • 85080711117 scopus 로고    scopus 로고
    • Zync. https://www.zyncrender.com/
    • Zync
  • 9
    • 10444272266 scopus 로고    scopus 로고
    • Boinc a system for public-resource computing, and storage
    • Pittsburgh, PA November
    • D. Anderson. Boinc: A system for public-resource computing, and storage. In Proc. of IEEE/ACM Grid Computing (GC), pages 4-10, Pittsburgh, PA, November 2004
    • (2004) Proc. of IEEE/ACM Grid Computing (GC , pp. 4-10
    • Anderson, D.1
  • 22
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • January
    • J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61: 85-117, January 2015
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 26
    • 79955825330 scopus 로고    scopus 로고
    • A multi-strategy collaborative prediction model for the runtime of online tasks in computing cluster/grid
    • June
    • M. Tao, S. Dong, and L. Zhang. A multi-strategy collaborative prediction model for the runtime of online tasks in computing Cluster/Grid. Cluster Computing, 14(2): 199-210, June 2011
    • (2011) Cluster Computing , vol.14 , Issue.2 , pp. 199-210
    • Tao, M.1    Dong, S.2    Zhang, L.3
  • 27
    • 84996757871 scopus 로고    scopus 로고
    • Finding your way in the fog: Towards a comprehensive definition of fog computing
    • October
    • L. Vaquero, and L. Merino. Finding your way in the fog: Towards a comprehensive definition of fog computing. ACM SIGCOMM Computer Communication Review, 44(5): 27-32, October 2014
    • (2014) ACM SIGCOMM Computer Communication Review , vol.44 , Issue.5 , pp. 27-32
    • Vaquero, L.1    Merino, L.2
  • 29


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.