메뉴 건너뛰기




Volumn 101, Issue , 2017, Pages 37-43

A Hybrid Latent Class Analysis Modeling Approach to Analyze Urban Expressway Crash Risk

Author keywords

Bayesian random parameter model; Crash risk analysis; Latent class analysis; Unobserved heterogeneity

Indexed keywords

ADVANCED TRAFFIC MANAGEMENT SYSTEMS; CRASHWORTHINESS; LIFE CYCLE; RISK ASSESSMENT; RISK PERCEPTION; TRAFFIC CONTROL;

EID: 85011879617     PISSN: 00014575     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aap.2017.02.002     Document Type: Article
Times cited : (42)

References (28)
  • 2
    • 84861906534 scopus 로고    scopus 로고
    • The Viability of Using Automatic Vehicle Identification Data for Real-Time Crash Prediction
    • Ahmed, M., Abdel-Aty, M., The Viability of Using Automatic Vehicle Identification Data for Real-Time Crash Prediction. IEEE Transactions on Intelligent Transportation Systems 13:2 (2012), 459–468.
    • (2012) IEEE Transactions on Intelligent Transportation Systems , vol.13 , Issue.2 , pp. 459-468
    • Ahmed, M.1    Abdel-Aty, M.2
  • 3
    • 0031070052 scopus 로고    scopus 로고
    • An endogenous segmentation mode choice model with an application to intercity travel
    • Bhat, C., An endogenous segmentation mode choice model with an application to intercity travel. Transportation Science 31:1 (1997), 34–48.
    • (1997) Transportation Science , vol.31 , Issue.1 , pp. 34-48
    • Bhat, C.1
  • 4
    • 84927765551 scopus 로고    scopus 로고
    • A multinomial logit model-Bayesian network hybrid approach for driver injury severity analyses in rear-end crashes
    • Chen, C., Zhang, G., Tarefder, R., Ma, J., Wei, H., Guan, H., A multinomial logit model-Bayesian network hybrid approach for driver injury severity analyses in rear-end crashes. Accident Analysis and Prevention 80 (2015), 76–88.
    • (2015) Accident Analysis and Prevention , vol.80 , pp. 76-88
    • Chen, C.1    Zhang, G.2    Tarefder, R.3    Ma, J.4    Wei, H.5    Guan, H.6
  • 5
    • 84959370130 scopus 로고    scopus 로고
    • An explanatory analysis of driver injury severity in rear-end crashes using a decision table/Naïve Bayes (DTNB) hybrid classifier
    • Chen, C., Zhang, G., Yang, J., Milton, J.C., Alcántara, A. Dely, An explanatory analysis of driver injury severity in rear-end crashes using a decision table/Naïve Bayes (DTNB) hybrid classifier. Accident Analysis and Prevention 90 (2016), 95–107.
    • (2016) Accident Analysis and Prevention , vol.90 , pp. 95-107
    • Chen, C.1    Zhang, G.2    Yang, J.3    Milton, J.C.4    Alcántara, A.D.5
  • 6
    • 46149097412 scopus 로고    scopus 로고
    • Traffic accident segmentation by means of latent class clustering
    • Depaire, B., Wets, G., Vanhoof, K., Traffic accident segmentation by means of latent class clustering. Accident Analysis and Prevention 40:4 (2008), 1257–1266.
    • (2008) Accident Analysis and Prevention , vol.40 , Issue.4 , pp. 1257-1266
    • Depaire, B.1    Wets, G.2    Vanhoof, K.3
  • 7
    • 78650005069 scopus 로고    scopus 로고
    • Analysis of traffic accident injury severity on Spanish rural highways using Bayesian networks
    • de Oña, J., Mujalli, R.O., Calvo, F.J., Analysis of traffic accident injury severity on Spanish rural highways using Bayesian networks. Accident Analysis and Prevention. 43 (2011), 402–411.
    • (2011) Accident Analysis and Prevention. , vol.43 , pp. 402-411
    • de Oña, J.1    Mujalli, R.O.2    Calvo, F.J.3
  • 8
    • 84869867512 scopus 로고    scopus 로고
    • Analysis of traffic accidents on rural highways using Latent Class Clustering and Bayesian Networks
    • de Oña, J., López, G., Mujalli, R., Calvo, F., Analysis of traffic accidents on rural highways using Latent Class Clustering and Bayesian Networks. Accident Analysis and Prevention 51 (2013), 1–10.
    • (2013) Accident Analysis and Prevention , vol.51 , pp. 1-10
    • de Oña, J.1    López, G.2    Mujalli, R.3    Calvo, F.4
  • 9
    • 84862780872 scopus 로고    scopus 로고
    • LCA Bootstrap SAS macro users’ guide (version 1.1.0)
    • University Park: The Methodology Center Penn State
    • Dziak, J.J., Lanza, S.T., Xu, S., LCA Bootstrap SAS macro users’ guide (version 1.1.0). 2011, University Park: The Methodology Center, Penn State http://methodology.psu.edu.
    • (2011)
    • Dziak, J.J.1    Lanza, S.T.2    Xu, S.3
  • 10
    • 84857010071 scopus 로고    scopus 로고
    • A latent class modeling approach for identifying vehicle driver injury severity factors at highway-railway crossings
    • Eluru, N., Bagheri, M., Miranda-Moreno, L., Fu, L., A latent class modeling approach for identifying vehicle driver injury severity factors at highway-railway crossings. Accident Analysis and Prevention 47 (2012), 119–127.
    • (2012) Accident Analysis and Prevention , vol.47 , pp. 119-127
    • Eluru, N.1    Bagheri, M.2    Miranda-Moreno, L.3    Fu, L.4
  • 11
    • 84972492387 scopus 로고
    • Inference from Iterative Simulation Using Multiple Sequences
    • Gelman, A., Rubin, D., Inference from Iterative Simulation Using Multiple Sequences. Statistical Science 7 (1992), 457–511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.2
  • 12
    • 36849023141 scopus 로고    scopus 로고
    • Fitting mixed logit models by using maximum simulated likelihood
    • Hole, A., Fitting mixed logit models by using maximum simulated likelihood. The Stata Journal 7 (2007), 388–401.
    • (2007) The Stata Journal , vol.7 , pp. 388-401
    • Hole, A.1
  • 14
    • 84889672828 scopus 로고    scopus 로고
    • A hybrid Bayesian Network approach to detect driver cognitive distraction
    • Liang, Y., Lee, J., A hybrid Bayesian Network approach to detect driver cognitive distraction. Transportation Research Part C: Emerging Technologies 28 (2014), 146–155.
    • (2014) Transportation Research Part C: Emerging Technologies , vol.28 , pp. 146-155
    • Liang, Y.1    Lee, J.2
  • 15
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility
    • Lunn, D., Thomas, A., Best, N., Spiegelhalter, D., WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 10:4 (2000), 325–337.
    • (2000) Statistics and Computing , vol.10 , Issue.4 , pp. 325-337
    • Lunn, D.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4
  • 16
    • 41849086697 scopus 로고    scopus 로고
    • Crash frequency and severity modeling using clustered data from Washington State
    • Ma, J., Kockelman, K., Crash frequency and severity modeling using clustered data from Washington State. Intelligent Transportation Systems Conference, 2006, 1621–1626.
    • (2006) Intelligent Transportation Systems Conference , pp. 1621-1626
    • Ma, J.1    Kockelman, K.2
  • 17
    • 84893489445 scopus 로고    scopus 로고
    • Analytic methods in accident research: Methodological frontier and future directions
    • Mannering, F., Bhat, C., Analytic methods in accident research: Methodological frontier and future directions. Analytic Methods in Accident Research 1 (2013), 1–22.
    • (2013) Analytic Methods in Accident Research , vol.1 , pp. 1-22
    • Mannering, F.1    Bhat, C.2
  • 18
    • 0036784494 scopus 로고    scopus 로고
    • An algorithm for assessing the risk of traffic accident
    • Ng, K., Hung, W., Wong, W., An algorithm for assessing the risk of traffic accident. Journal of Safety Research 33:3 (2002), 387–410.
    • (2002) Journal of Safety Research , vol.33 , Issue.3 , pp. 387-410
    • Ng, K.1    Hung, W.2    Wong, W.3
  • 20
    • 33845317881 scopus 로고    scopus 로고
    • Comprehensive analysis of the relationship between real-time traffic surveillance data and rear-end crashes on freeways
    • Pande, A., Abdel-Aty, M., Comprehensive analysis of the relationship between real-time traffic surveillance data and rear-end crashes on freeways. Transportation Research Record: Journal of the Transportation Research Board. 1953 (2006), 31–40.
    • (2006) Transportation Research Record: Journal of the Transportation Research Board. , vol.1953 , pp. 31-40
    • Pande, A.1    Abdel-Aty, M.2
  • 21
    • 84926165122 scopus 로고    scopus 로고
    • Impact of real-time traffic characteristics on freeway crash occurrence: systematic review and meta-analysis
    • Roshandel, S., Zheng, Z., Washington, S., Impact of real-time traffic characteristics on freeway crash occurrence: systematic review and meta-analysis. Accident Analysis and Prevention 79 (2015), 198–211.
    • (2015) Accident Analysis and Prevention , vol.79 , pp. 198-211
    • Roshandel, S.1    Zheng, Z.2    Washington, S.3
  • 22
    • 79958186110 scopus 로고    scopus 로고
    • The statistical analysis of highway crash-injury severities: a review and assessment of methodological alternatives
    • Savolainen, P., Mannering, F., Lord, D., Quddus, M., The statistical analysis of highway crash-injury severities: a review and assessment of methodological alternatives. Accident Analysis and Prevention 43 (2011), 1666–1676.
    • (2011) Accident Analysis and Prevention , vol.43 , pp. 1666-1676
    • Savolainen, P.1    Mannering, F.2    Lord, D.3    Quddus, M.4
  • 23
    • 84898932497 scopus 로고    scopus 로고
    • A latent class analysis of single-vehicle motorcycle crash severity outcomes
    • Shaheed, M., Gkritza, K., A latent class analysis of single-vehicle motorcycle crash severity outcomes. Analytic Methods in Accident Research 2 (2014), 30–38.
    • (2014) Analytic Methods in Accident Research , vol.2 , pp. 30-38
    • Shaheed, M.1    Gkritza, K.2
  • 24
    • 37349019755 scopus 로고    scopus 로고
    • Boa: An r package for MCMC output convergence assessment and posterior inference
    • Smith, B., Boa: An r package for MCMC output convergence assessment and posterior inference. Journal of Statistical Software 21 (2007), 1–37.
    • (2007) Journal of Statistical Software , vol.21 , pp. 1-37
    • Smith, B.1
  • 25
    • 84925068967 scopus 로고    scopus 로고
    • Discrete Choice Methods with Simulation
    • Cambridge University Press New York, NY
    • Train, K., Discrete Choice Methods with Simulation. 2009, Cambridge University Press, New York, NY.
    • (2009)
    • Train, K.1
  • 26
    • 84930944172 scopus 로고    scopus 로고
    • Identification of freeway crash-prone traffic conditions for traffic flow at different levels of service
    • Xu, C., Liu, P., Wang, W., Li, Z., Identification of freeway crash-prone traffic conditions for traffic flow at different levels of service. Transportation Research Part A: Policy and Practice 69 (2014), 58–70.
    • (2014) Transportation Research Part A: Policy and Practice , vol.69 , pp. 58-70
    • Xu, C.1    Liu, P.2    Wang, W.3    Li, Z.4
  • 27
    • 84879097852 scopus 로고    scopus 로고
    • Investigating the different characteristics of weekday and weekend crashes
    • Yu, R., Abdel-Aty, M., Investigating the different characteristics of weekday and weekend crashes. Journal of Safety Research 46 (2013), 91–97.
    • (2013) Journal of Safety Research , vol.46 , pp. 91-97
    • Yu, R.1    Abdel-Aty, M.2
  • 28
    • 84878444033 scopus 로고    scopus 로고
    • Multi-level Bayesian analyses for single-and multi-vehicle freeway crashes
    • Yu, R., Abdel-Aty, M., Multi-level Bayesian analyses for single-and multi-vehicle freeway crashes. Accident Analysis and Prevention 58 (2013), 97–105.
    • (2013) Accident Analysis and Prevention , vol.58 , pp. 97-105
    • Yu, R.1    Abdel-Aty, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.