메뉴 건너뛰기




Volumn 174, Issue 2, 2017, Pages 154-162

Predicting suicidal behavior from longitudinal electronic health records

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; AGE; AGED; ARTICLE; CHRONIC DISEASE; CLINICAL FEATURE; COHORT ANALYSIS; CONTROLLED STUDY; DEATH; DIAGNOSTIC ACCURACY; DIAGNOSTIC TEST ACCURACY STUDY; DISEASE ASSOCIATION; ELECTRONIC HEALTH RECORD; ETHNIC DIFFERENCE; FEMALE; HOSPITAL PATIENT; HUMAN; ICD-9; LONGITUDINAL STUDY; MAJOR CLINICAL STUDY; MALE; MARRIAGE; MIDDLE AGED; OUTPATIENT; PREDICTION; PREDICTIVE VALUE; RETROSPECTIVE STUDY; RISK ASSESSMENT; RISK FACTOR; SENSITIVITY AND SPECIFICITY; SEX DIFFERENCE; SUBSTANCE ABUSE; SUICIDAL BEHAVIOR; SUICIDE ATTEMPT; YOUNG ADULT; CASE CONTROL STUDY; MASSACHUSETTS; MENTAL DISORDERS; PSYCHOLOGY; REGISTER; STATISTICS AND NUMERICAL DATA; SUBSTANCE-RELATED DISORDERS; SUICIDE;

EID: 85011537373     PISSN: 0002953X     EISSN: 15357228     Source Type: Journal    
DOI: 10.1176/appi.ajp.2016.16010077     Document Type: Article
Times cited : (246)

References (30)
  • 3
    • 39449096606 scopus 로고    scopus 로고
    • Cross-national prevalence and risk factors for suicidal ideation, plans and attempts
    • Nock MK, Borges G, Bromet EJ, et al: Cross-national prevalence and risk factors for suicidal ideation, plans and attempts. Br J Psychiatry 2008; 192:98-105
    • (2008) Br J Psychiatry , vol.192 , pp. 98-105
    • Nock, M.K.1    Borges, G.2    Bromet, E.J.3
  • 4
    • 77951229584 scopus 로고    scopus 로고
    • Measuring the suicidal mind: Implicit cognition predicts suicidal behavior
    • Nock MK, Park JM, Finn CT, et al: Measuring the suicidal mind: implicit cognition predicts suicidal behavior. Psychol Sci 2010; 21: 511-517
    • (2010) Psychol Sci , vol.21 , pp. 511-517
    • Nock, M.K.1    Park, J.M.2    Finn, C.T.3
  • 5
    • 84906315065 scopus 로고    scopus 로고
    • Improving the short-termprediction of suicidal behavior
    • GlennCR, NockMK:Improving the short-termprediction of suicidal behavior. Am J Prev Med 2014; 47(suppl 2):S176-S180
    • (2014) Am J Prev Med , vol.47 , pp. S176-S180
    • Glenn, C.R.1    Nock, M.K.2
  • 6
    • 34347232000 scopus 로고    scopus 로고
    • An epidemiological network model for disease outbreak detection
    • Reis BY, Kohane IS, Mandl KD: An epidemiological network model for disease outbreak detection. PLoS Med 2007; 4:e210
    • (2007) PLoS Med , vol.4 , pp. e210
    • Reis, B.Y.1    Kohane, I.S.2    Mandl, K.D.3
  • 7
    • 80051988080 scopus 로고    scopus 로고
    • Area disease estimation based on sentinel hospital records
    • Wang JF, Reis BY, Hu MG, et al: Area disease estimation based on sentinel hospital records. PLoS One 2011; 6:e23428
    • (2011) PLoS One , vol.6 , pp. e23428
    • Wang, J.F.1    Reis, B.Y.2    Hu, M.G.3
  • 8
    • 84908508159 scopus 로고    scopus 로고
    • Concordance and predictive value of two adverse drug event data sets
    • Cami A, Reis BY: Concordance and predictive value of two adverse drug event data sets. BMC Med Inform Decis Mak 2014; 14:74
    • (2014) BMC Med Inform Decis Mak , vol.14 , pp. 74
    • Cami, A.1    Reis, B.Y.2
  • 9
    • 77955831988 scopus 로고    scopus 로고
    • Measuring the impact of health policies using Internet search patterns: The case of abortion
    • Reis BY, Brownstein JS: Measuring the impact of health policies using Internet search patterns: the case of abortion. BMC Public Health 2010; 10:514
    • (2010) BMC Public Health , vol.10 , pp. 514
    • Reis, B.Y.1    Brownstein, J.S.2
  • 10
    • 4344665027 scopus 로고    scopus 로고
    • Syndromic surveillance: The effects of syndrome grouping on model accuracy and outbreak detection
    • Reis BY, Mandl KD: Syndromic surveillance: the effects of syndrome grouping on model accuracy and outbreak detection. Ann Emerg Med 2004; 44:235-241
    • (2004) Ann Emerg Med , vol.44 , pp. 235-241
    • Reis, B.Y.1    Mandl, K.D.2
  • 11
    • 84860902913 scopus 로고    scopus 로고
    • Incident user cohort study of risk for gastrointestinal bleed and stroke in individuals with major depressive disorder treated with antidepressants
    • Castro VM, Gallagher PJ, Clements CC, et al: Incident user cohort study of risk for gastrointestinal bleed and stroke in individuals with major depressive disorder treated with antidepressants. BMJ Open 2012; 2:e000544
    • (2012) BMJ Open , vol.2 , pp. e000544
    • Castro, V.M.1    Gallagher, P.J.2    Clements, C.C.3
  • 12
    • 84929863817 scopus 로고    scopus 로고
    • Prenatal antidepressant exposure is associated with risk for attention-deficit hyperactivity disorder but not autism spectrum disorder in a large health system
    • Clements CC, Castro VM, Blumenthal SR, et al: Prenatal antidepressant exposure is associated with risk for attention-deficit hyperactivity disorder but not autism spectrum disorder in a large health system. Mol Psychiatry 2015; 20:727-734.
    • (2015) Mol Psychiatry , vol.20 , pp. 727-734
    • Clements, C.C.1    Castro, V.M.2    Blumenthal, S.R.3
  • 13
    • 70349869210 scopus 로고    scopus 로고
    • Longitudinal histories as predictors of future diagnoses of domestic abuse: Modelling study
    • Reis BY, Kohane IS, Mandl KD: Longitudinal histories as predictors of future diagnoses of domestic abuse: modelling study. BMJ 2009; 339:b3677
    • (2009) BMJ , vol.339 , pp. b3677
    • Reis, B.Y.1    Kohane, I.S.2    Mandl, K.D.3
  • 14
    • 33747161011 scopus 로고    scopus 로고
    • Using data mining to explore complex clinical decisions: A study of hospitalization after a suicide attempt
    • Baca-García E, Perez-Rodriguez MM, Basurte-Villamor I, et al: Using data mining to explore complex clinical decisions: a study of hospitalization after a suicide attempt. J Clin Psychiatry 2006; 67: 1124-1132
    • (2006) J Clin Psychiatry , vol.67 , pp. 1124-1132
    • Baca-García, E.1    Perez-Rodriguez, M.M.2    Basurte-Villamor, I.3
  • 15
    • 84900300097 scopus 로고    scopus 로고
    • Predicting the risk of suicide by analyzing the text of clinical notes
    • Poulin C, Shiner B, Thompson P, et al: Predicting the risk of suicide by analyzing the text of clinical notes. PLoS One 2014; 9:e85733
    • (2014) PLoS One , vol.9 , pp. e85733
    • Poulin, C.1    Shiner, B.2    Thompson, P.3
  • 16
    • 72849143581 scopus 로고    scopus 로고
    • Exploratory data mining analysis identifying subgroups of patients with depressionwhoare at high risk for suicide
    • Ilgen MA, Downing K, Zivin K, et al: Exploratory data mining analysis identifying subgroups of patients with depressionwhoare at high risk for suicide. J Clin Psychiatry 2009; 70:1495-1500
    • (2009) J Clin Psychiatry , vol.70 , pp. 1495-1500
    • Ilgen, M.A.1    Downing, K.2    Zivin, K.3
  • 17
    • 34547881660 scopus 로고    scopus 로고
    • Calculating the benefits of a Research PatientData Repository
    • Nalichowski R, Keogh D, Chueh HC, et al: Calculating the benefits of a Research PatientData Repository. AMIA Annu Symp Proc 2006; 1044
    • (2006) AMIA Annu Symp Proc , vol.1044
    • Nalichowski, R.1    Keogh, D.2    Chueh, H.C.3
  • 18
    • 84865374319 scopus 로고    scopus 로고
    • Trends in US emergency department visits for attempted suicide and self-inflicted injury 1993-2008
    • Ting SA, Sullivan AF, Boudreaux ED, et al: Trends in US emergency department visits for attempted suicide and self-inflicted injury, 1993-2008. Gen Hosp Psychiatry 2012; 34:557-565
    • (2012) Gen Hosp Psychiatry , vol.34 , pp. 557-565
    • Ting, S.A.1    Sullivan, A.F.2    Boudreaux, E.D.3
  • 19
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: History, state of the art and perspective
    • Kononenko I: Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med 2001; 23:89-109
    • (2001) Artif Intell Med , vol.23 , pp. 89-109
    • Kononenko, I.1
  • 20
    • 32944455324 scopus 로고    scopus 로고
    • US Public Health Service, Atlanta Centers for Disease Control and Prevention
    • US Public Health Service: Suicide: Risk and Protective Factors. Atlanta, Centers for Disease Control and Prevention, 1999. http:// www.cdc.gov/violenceprevention/suicide/riskprotectivefactors.html
    • (1999) Suicide: Risk and Protective Factors
  • 22
    • 0034048057 scopus 로고    scopus 로고
    • Clinical versus mechanical prediction: A meta-analysis
    • Grove WM, Zald DH, Lebow BS, et al: Clinical versus mechanical prediction: a meta-analysis. Psychol Assess 2000; 12:19-30
    • (2000) Psychol Assess , vol.12 , pp. 19-30
    • Grove, W.M.1    Zald, D.H.2    Lebow, B.S.3
  • 23
    • 84899564545 scopus 로고    scopus 로고
    • Risk stratification using data from electronic medical records better predicts suicide risks than clinician assessments
    • Tran T, Luo W, Phung D, et al: Risk stratification using data from electronic medical records better predicts suicide risks than clinician assessments. BMC Psychiatry 2014; 14:76
    • (2014) BMC Psychiatry , vol.14 , pp. 76
    • Tran, T.1    Luo, W.2    Phung, D.3
  • 24
    • 84920842240 scopus 로고    scopus 로고
    • Predicting suicides after psychiatric hospitalization in US Army soldiers: The Army Study to Assess Risk and rEsilience in Servicemembers (Army STARRS)
    • Kessler RC, Warner CH, Ivany C, et al: Predicting suicides after psychiatric hospitalization in US Army soldiers: the Army Study To Assess Risk and rEsilience in Servicemembers (Army STARRS). JAMA Psychiatry 2015; 72:49-57
    • (2015) JAMA Psychiatry , vol.72 , pp. 49-57
    • Kessler, R.C.1    Warner, C.H.2    Ivany, C.3
  • 25
    • 78649510122 scopus 로고    scopus 로고
    • Identification of hospitalizations for intentional self-harm when E-codes are incompletely recorded
    • Patrick AR, Miller M, Barber CW, et al: Identification of hospitalizations for intentional self-harm when E-codes are incompletely recorded. Pharmacoepidemiol Drug Saf 2010; 19:1263-1275
    • (2010) Pharmacoepidemiol Drug Saf , vol.19 , pp. 1263-1275
    • Patrick, A.R.1    Miller, M.2    Barber, C.W.3
  • 26
    • 84880037797 scopus 로고    scopus 로고
    • Identifying suicidal behavior among adolescents using administrative claims data
    • Callahan ST, Fuchs DC, Shelton RC, et al: Identifying suicidal behavior among adolescents using administrative claims data. Pharmacoepidemiol Drug Saf 2013; 22:769-775
    • (2013) Pharmacoepidemiol Drug Saf , vol.22 , pp. 769-775
    • Callahan, S.T.1    Fuchs, D.C.2    Shelton, R.C.3
  • 27
    • 84856039801 scopus 로고    scopus 로고
    • Asystematic review of validated methods for identifying suicide or suicidal ideation using administrative or claims data
    • Walkup JT, Townsend L, Crystal S, et al: Asystematic review of validated methods for identifying suicide or suicidal ideation using administrative or claims data. Pharmacoepidemiol Drug Saf 2012; 21(suppl 1):174-182
    • (2012) Pharmacoepidemiol Drug Saf , vol.21 , pp. 174-182
    • Walkup, J.T.1    Townsend, L.2    Crystal, S.3
  • 28
    • 84880829218 scopus 로고    scopus 로고
    • Methods for identifying suicide or suicidal ideation in EHRs
    • Haerian K, Salmasian H, Friedman C: Methods for identifying suicide or suicidal ideation in EHRs. AMIA Annu Symp Proc 2012; 2012:1244-1253
    • (2012) AMIA Annu Symp Proc , vol.2012 , pp. 1244-1253
    • Haerian, K.1    Salmasian, H.2    Friedman, C.3
  • 29
    • 84892836306 scopus 로고    scopus 로고
    • How complete are E-codes in commercial plan claims databases?
    • Lu CY, Stewart C, Ahmed AT, et al: How complete are E-codes in commercial plan claims databases? Pharmacoepidemiol Drug Saf 2014; 23:218-220
    • (2014) Pharmacoepidemiol Drug Saf , vol.23 , pp. 218-220
    • Lu, C.Y.1    Stewart, C.2    Ahmed, A.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.