메뉴 건너뛰기




Volumn , Issue , 2007, Pages 1435-1436

Probabilistic graphical models and their role in databases

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85011043639     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (14)

References (27)
  • 1
    • 33745600025 scopus 로고    scopus 로고
    • Automatic text segmentation for extracting structured records
    • V. R. Borkar, K. Deshmukh, and S. Sarawagi. Automatic text segmentation for extracting structured records. In SIGMOD, 2001.
    • (2001) SIGMOD
    • Borkar, V.R.1    Deshmukh, K.2    Sarawagi, S.3
  • 2
    • 33749644725 scopus 로고    scopus 로고
    • Approximate data collection in sensor networks using probabilistic models
    • D. Chu, A. Deshpande, J. Hellerstein, and W. Hong. Approximate data collection in sensor networks using probabilistic models. In ICDE, 2006.
    • (2006) ICDE
    • Chu, D.1    Deshpande, A.2    Hellerstein, J.3    Hong, W.4
  • 3
    • 12244290581 scopus 로고    scopus 로고
    • Exploiting dictionaries in named entity extraction: Combining Semi-Markov extraction processes and data integration methods
    • W. W. Cohen and S. Sarawagi. Exploiting dictionaries in named entity extraction: Combining semi-markov extraction processes and data integration methods. In SIGKDD, 2004.
    • (2004) SIGKDD
    • Cohen, W.W.1    Sarawagi, S.2
  • 4
    • 35448996115 scopus 로고    scopus 로고
    • Management of probabilistic data: Foundations and challenges
    • N. Dalvi and D. Suciu. Management of probabilistic data: Foundations and challenges. In PODS, 2007.
    • (2007) PODS
    • Dalvi, N.1    Suciu, D.2
  • 5
    • 0039562903 scopus 로고    scopus 로고
    • Independence is good: Dependency-based histogram synopses for high-dimensional data
    • A. Deshpande, M. Garofalakis, and R. Rastogi. Independence is good: Dependency-based histogram synopses for high-dimensional data. In SIGMOD, 2001.
    • (2001) SIGMOD
    • Deshpande, A.1    Garofalakis, M.2    Rastogi, R.3
  • 7
    • 84943738891 scopus 로고    scopus 로고
    • Information extraction with HMM structures learned by stochastic optimization
    • D. Freitag, A. McCallum. Information extraction with HMM structures learned by stochastic optimization. In AAAI, 2000.
    • (2000) AAAI
    • Freitag, D.1    McCallum, A.2
  • 10
    • 0039561484 scopus 로고    scopus 로고
    • Selectivity estimation using probabilistic models
    • L. Getoor, B. Taskar, and D. Koller. Selectivity estimation using probabilistic models. In SIGMOD, 2001.
    • (2001) SIGMOD
    • Getoor, L.1    Taskar, B.2    Koller, D.3
  • 11
    • 85027780074 scopus 로고    scopus 로고
    • Creating probabilistic databases from information extraction models
    • R. Gupta and S. Sarawagi. Creating probabilistic databases from information extraction models. In VLDB, 2006.
    • (2006) VLDB
    • Gupta, R.1    Sarawagi, S.2
  • 12
    • 3142708793 scopus 로고    scopus 로고
    • Cords: Automatic discovery of correlations and soft functional dependencies
    • I. F. Ilyas et al. Cords: automatic discovery of correlations and soft functional dependencies. In SIGMOD, 2004.
    • (2004) SIGMOD
    • Ilyas, I.F.1
  • 13
    • 3142770653 scopus 로고    scopus 로고
    • Adaptive stream resource management using Kalman filters
    • A. Jain, E. Chang, and Y.-F. Wang. Adaptive stream resource management using Kalman Filters. In SIGMOD, 2004.
    • (2004) SIGMOD
    • Jain, A.1    Chang, E.2    Wang, Y.-F.3
  • 16
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 17
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review - Part 1: Statistical approaches
    • M. Markou and S. Singh. Novelty detection: a review - part 1: statistical approaches. Signal Processing, 83(12), 2003.
    • (2003) Signal Processing , vol.83 , Issue.12
    • Markou, M.1    Singh, S.2
  • 18
    • 0000747663 scopus 로고    scopus 로고
    • Maximum entropy Markov models for information extraction and segmentation
    • A. McCallum, D. Freitag, and F. Pereira. Maximum entropy markov models for information extraction and segmentation. In ICML, 2000.
    • (2000) ICML
    • McCallum, A.1    Freitag, D.2    Pereira, F.3
  • 21
    • 85011112772 scopus 로고    scopus 로고
    • Beyond independence: Probabilistic models for query approximation on binary transaction data
    • D. Pavlov, H. Mannila, and P. Smyth. Beyond independence: Probabilistic models for query approximation on binary transaction data. IEEE TKDE, 2003.
    • (2003) IEEE TKDE
    • Pavlov, D.1    Mannila, H.2    Smyth, P.3
  • 23
    • 33749236253 scopus 로고    scopus 로고
    • Efficient inference on sequence segmentation models
    • S. Sarawagi. Efficient inference on sequence segmentation models. In ICML, 2006.
    • (2006) ICML
    • Sarawagi, S.1
  • 24
    • 34047192804 scopus 로고    scopus 로고
    • Semi-Markov conditional random fields for information extraction
    • S. Sarawagi and W. W. Cohen. Semi-markov conditional random fields for information extraction. In NIPS, 2004.
    • (2004) NIPS
    • Sarawagi, S.1    Cohen, W.W.2
  • 25
    • 34548772330 scopus 로고    scopus 로고
    • Representing and querying correlated tuples in probabilistic databases
    • P. Sen and A. Deshpande. Representing and querying correlated tuples in probabilistic databases. In ICDE, 2007.
    • (2007) ICDE
    • Sen, P.1    Deshpande, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.