메뉴 건너뛰기




Volumn , Issue , 2016, Pages

FCCF: Forecasting citywide crowd flows based on big data

Author keywords

Spatio temporal data mining; Urban computing

Indexed keywords

COMPLEX NETWORKS; DATA MINING; FORECASTING; GEOGRAPHIC INFORMATION SYSTEMS; HIGHWAY TRAFFIC CONTROL; INFORMATION SYSTEMS; MARKOV PROCESSES; MOTOR TRANSPORTATION; RISK ASSESSMENT; ROADS AND STREETS; SAFETY ENGINEERING; TRAFFIC CONTROL; TRANSPORTATION;

EID: 85011034343     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2996913.2996934     Document Type: Conference Paper
Times cited : (161)

References (28)
  • 1
    • 84927562466 scopus 로고    scopus 로고
    • Traffic flow prediction for road transportation networks with limited traffic data
    • A. Abadi et al. Traffic flow prediction for road transportation networks with limited traffic data. IEEE Transactions on ITS, 16(2), 2015.
    • (2015) IEEE Transactions on ITS , vol.16 , Issue.2
    • Abadi, A.1
  • 3
    • 84936942761 scopus 로고    scopus 로고
    • Road traffic congestion monitoring in social media with hinge-loss markov random fields
    • P.-T. Chen, F. Chen, and Z. Qian. Road traffic congestion monitoring in social media with hinge-loss markov random fields. In ICDM, 2014.
    • (2014) ICDM
    • Chen, P.-T.1    Chen, F.2    Qian, Z.3
  • 4
    • 84960875209 scopus 로고    scopus 로고
    • CityMomentum: An online approach for crowd behavior prediction at a citywide level
    • Z. Fan et al. CityMomentum: An online approach for crowd behavior prediction at a citywide level. In UbiComp, 2015.
    • (2015) UbiComp
    • Fan, Z.1
  • 9
    • 84865148479 scopus 로고    scopus 로고
    • Real-time road traffic forecasting using regime-switching space-time models and adaptive lasso
    • Y. Kamarianakis, W. Shen, and L. Wynter. Real-time road traffic forecasting using regime-switching space-time models and adaptive lasso. Applied Stochastic Models in Business and Industry, 28(4), 2012.
    • Applied Stochastic Models in Business and Industry , vol.28 , Issue.4 , pp. 2012
    • Kamarianakis, Y.1    Shen, W.2    Wynter, L.3
  • 11
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM review, 51(3), 2009.
    • SIAM Review , vol.51 , Issue.3 , pp. 2009
    • Kolda, T.G.1    Bader, B.W.2
  • 12
    • 84961217211 scopus 로고    scopus 로고
    • Traffic prediction in a bike-sharing system
    • Y. Li, Y. Zheng, H. Zhang, and L. Chen. Traffic prediction in a bike-sharing system. In SIGSPATIAL, 2015.
    • (2015) SIGSPATIAL
    • Li, Y.1    Zheng, Y.2    Zhang, H.3    Chen, L.4
  • 13
    • 80052647853 scopus 로고    scopus 로고
    • Discovering spatio-temporal causal interactions in traffic data streams
    • W. Liu et al. Discovering spatio-temporal causal interactions in traffic data streams. In KDD, 2011.
    • (2011) KDD
    • Liu, W.1
  • 14
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • G. W. Milligan and M. C. Cooper. An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50(2):159-179, 1985.
    • (1985) Psychometrika , vol.50 , Issue.2 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 16
    • 84907029245 scopus 로고    scopus 로고
    • Inferring gas consumption and pollution emission of vehicles throughout a city
    • J. Shang et al. Inferring gas consumption and pollution emission of vehicles throughout a city. In KDD, 2014.
    • (2014) KDD
    • Shang, J.1
  • 17
    • 84928902060 scopus 로고    scopus 로고
    • Predicting traffic volumes and estimating the effects of shocks in massive transportation systems
    • R. Silva, S. M. Kang, and E. M. Airoldi. Predicting traffic volumes and estimating the effects of shocks in massive transportation systems. PNAS, 112(18), 2015.
    • (2015) PNAS , vol.112 , Issue.18
    • Silva, R.1    Kang, S.M.2    Airoldi, E.M.3
  • 18
    • 85011013186 scopus 로고    scopus 로고
    • Modeling and probabilistic reasoning of population evacuation during large-scale disaster
    • X. Song et al. Modeling and probabilistic reasoning of population evacuation during large-scale disaster. In KDD, 2013.
    • (2013) KDD
    • Song, X.1
  • 19
    • 84907030218 scopus 로고    scopus 로고
    • Prediction of human emergency behavior and their mobility following large-scale disaster
    • X. Song et al. Prediction of human emergency behavior and their mobility following large-scale disaster. In KDD, 2014.
    • (2014) KDD
    • Song, X.1
  • 20
    • 33644989492 scopus 로고    scopus 로고
    • A bayesian network approach to traffic flow forecasting
    • S. Sun, C. Zhang, and G. Yu. A bayesian network approach to traffic flow forecasting. IEEE Transactions on ITS, 7(1), 2006.
    • (2006) IEEE Transactions on ITS , vol.7 , Issue.1
    • Sun, S.1    Zhang, C.2    Yu, G.3
  • 21
    • 84907024583 scopus 로고    scopus 로고
    • Travel time estimation of a path using sparse trajectories
    • Y. Wang, Y. Zheng, and Y. Xue. Travel time estimation of a path using sparse trajectories. In KDD, 2014.
    • (2014) KDD
    • Wang, Y.1    Zheng, Y.2    Xue, Y.3
  • 22
    • 84915753270 scopus 로고    scopus 로고
    • Accurate and interpretable bayesian mars for traffic flow prediction
    • Y. Xu et al. Accurate and interpretable bayesian mars for traffic flow prediction. IEEE Transactions on ITS, 15(6), 2014.
    • (2014) IEEE Transactions on ITS , vol.15 , Issue.6
    • Xu, Y.1
  • 24
    • 84866045445 scopus 로고    scopus 로고
    • Discovering regions of different functions in a city using human mobility and POIs
    • J. Yuan et al. Discovering regions of different functions in a city using human mobility and POIs. In KDD, 2012.
    • (2012) KDD
    • Yuan, J.1
  • 25
    • 84884158259 scopus 로고    scopus 로고
    • Segmentation of urban areas using road networks
    • MSR-TR-2012-65
    • N. J. Yuan, Y. Zheng, and X. Xie. Segmentation of urban areas using road networks. Technical report, MSR-TR-2012-65, 2012.
    • (2012) Technical Report
    • Yuan, N.J.1    Zheng, Y.2    Xie, X.3
  • 26
    • 84867439746 scopus 로고    scopus 로고
    • An unsupervised framework for sensing individual and cluster behavior patterns from human mobile data
    • J. Zheng and L. M. Ni. An unsupervised framework for sensing individual and cluster behavior patterns from human mobile data. In UbiComp, 2012.
    • (2012) UbiComp
    • Zheng, J.1    Ni, L.M.2
  • 27
    • 84907023884 scopus 로고    scopus 로고
    • Urban computing: Concepts, methodologies, and applications
    • Y. Zheng et al. Urban computing: Concepts, methodologies, and applications. TIST, 5(3), 2014.
    • (2014) TIST , vol.5 , Issue.3
    • Zheng, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.