메뉴 건너뛰기




Volumn , Issue , 2007, Pages 471-482

A Bayesian method for guessing the extreme values in a data set

Author keywords

[No Author keywords available]

Indexed keywords

INFORMATION MANAGEMENT; QUERY PROCESSING;

EID: 85011028436     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (14)

References (18)
  • 2
    • 77952380096 scopus 로고    scopus 로고
    • Mining distance-based outliers in near linear time with randomization and a simple pruning rule
    • S. D. Bay and M. Schwabacher. Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In KDD, pages 29-38, 2003.
    • (2003) KDD , pp. 29-38
    • Bay, S.D.1    Schwabacher, M.2
  • 4
    • 0003857778 scopus 로고    scopus 로고
    • A gentle tutorial on the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models
    • ICSI-TR-97-021
    • J. Bilmes. A gentle tutorial on the em algorithm and its application to parameter estimation for gaussian mixture and hidden markov models. Technical Report University of Berkeley, ICSI-TR-97-021, 1997.
    • (1997) Technical Report University of Berkeley
    • Bilmes, J.1
  • 5
    • 0027621672 scopus 로고
    • Efficient processing of spatial joins using r-trees
    • T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of spatial joins using r-trees. In SIGMOD, pages 237-246, 1993.
    • (1993) SIGMOD , pp. 237-246
    • Brinkhoff, T.1    Kriegel, H.-P.2    Seeger, B.3
  • 6
    • 3042782981 scopus 로고    scopus 로고
    • Probabilistic optimization of top n queries
    • D. Donjerkovic and R. Ramakrishnan. Probabilistic optimization of top n queries. In VLDB, pages 411-422, 1999.
    • (1999) VLDB , pp. 411-422
    • Donjerkovic, D.1    Ramakrishnan, R.2
  • 7
    • 0346501106 scopus 로고    scopus 로고
    • Ripple joins for online aggregation
    • P. J. Haas and J. M. Hellerstein. Ripple joins for online aggregation. In SIGMOD Conference, pages 287-298, 1999.
    • (1999) SIGMOD Conference , pp. 287-298
    • Haas, P.J.1    Hellerstein, J.M.2
  • 9
    • 0032089982 scopus 로고    scopus 로고
    • Incremental distance join algorithms for spatial databases
    • G. R. Hjaltason and H. Samet. Incremental distance join algorithms for spatial databases. In SIGMOD, pages 237-248, 1998.
    • (1998) SIGMOD , pp. 237-248
    • Hjaltason, G.R.1    Samet, H.2
  • 10
    • 0026274506 scopus 로고
    • Statistical estimators for aggregate relational algebra queries
    • W.-C. Hou and G. Özsoyoglu. Statistical estimators for aggregate relational algebra queries. ACM Trans. Database Syst., 16(4):600-654, 1991.
    • (1991) ACM Trans. Database Syst. , vol.16 , Issue.4 , pp. 600-654
    • Hou, W.-C.1    Özsoyoglu, G.2
  • 11
    • 0034133513 scopus 로고    scopus 로고
    • Distance-based outliers: Algorithms and applications
    • Feburary
    • E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-based outliers: Algorithms and applications. VLDB Journal, 8(3-4):237-253, Feburary 2000.
    • (2000) VLDB Journal , vol.8 , Issue.3-4 , pp. 237-253
    • Knorr, E.M.1    Ng, R.T.2    Tucakov, V.3
  • 14
    • 0030156982 scopus 로고    scopus 로고
    • Spatial hash-joins
    • M.-L. Lo and C. V. Ravishankar. Spatial hash-joins. In SIGMOD, pages 247-258, 1996.
    • (1996) SIGMOD , pp. 247-258
    • Lo, M.-L.1    Ravishankar, C.V.2
  • 16
    • 0039845384 scopus 로고    scopus 로고
    • Efficient algorithms for mining outliers from large data sets
    • May
    • S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large data sets. In SIGMOD, pages 427-438, May 2000.
    • (2000) SIGMOD , pp. 427-438
    • Ramaswamy, S.1    Rastogi, R.2    Shim, K.3
  • 18
    • 0040438346 scopus 로고    scopus 로고
    • Adaptive multi-stage distance join processing
    • H. Shin, B. Moon, and S. Lee. Adaptive multi-stage distance join processing. In SIGMOD, pages 343-354, 2000.
    • (2000) SIGMOD , pp. 343-354
    • Shin, H.1    Moon, B.2    Lee, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.