-
1
-
-
33747763298
-
The no-reflow phenomenon: a basic mechanism of myocardial ischemia and reperfusion
-
Reffelmann T, Kloner RA. The no-reflow phenomenon: a basic mechanism of myocardial ischemia and reperfusion. Basic Res Cardiol. 2006;101:359–372.
-
(2006)
Basic Res Cardiol
, vol.101
, pp. 359-372
-
-
Reffelmann, T.1
Kloner, R.A.2
-
2
-
-
0019177898
-
The relationship of vascular injury and myocardial hemorrhage to necrosis after reperfusion
-
Fishbein MC, Y-Rit J, Lando U, Kanmatsuse K, Mercier JC, Ganz W. The relationship of vascular injury and myocardial hemorrhage to necrosis after reperfusion. Circulation. 1980;62:1274–1279.
-
(1980)
Circulation
, vol.62
, pp. 1274-1279
-
-
Fishbein, M.C.1
Y-Rit, J.2
Lando, U.3
Kanmatsuse, K.4
Mercier, J.C.5
Ganz, W.6
-
3
-
-
0016315064
-
The “no-reflow” phenomenon after temporary coronary occlusion in the dog
-
Kloner RA, Ganote CE, Jennings RB. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974;54:1496–1508.
-
(1974)
J Clin Invest
, vol.54
, pp. 1496-1508
-
-
Kloner, R.A.1
Ganote, C.E.2
Jennings, R.B.3
-
4
-
-
0037453099
-
The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis
-
Henry TD, Annex BH, McKendall GR et al. The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation. 2003;107:1359–1365.
-
(2003)
Circulation
, vol.107
, pp. 1359-1365
-
-
Henry, T.D.1
Annex, B.H.2
McKendall, G.R.3
-
5
-
-
0037133306
-
Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial
-
Simons M, Annex BH, Laham RJ et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation. 2002;105:788–793.
-
(2002)
Circulation
, vol.105
, pp. 788-793
-
-
Simons, M.1
Annex, B.H.2
Laham, R.J.3
-
6
-
-
33847421319
-
Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine
-
Yla-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J. Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol. 2007;49:1015–1026.
-
(2007)
J Am Coll Cardiol
, vol.49
, pp. 1015-1026
-
-
Yla-Herttuala, S.1
Rissanen, T.T.2
Vajanto, I.3
Hartikainen, J.4
-
7
-
-
84890100613
-
The human coronary collateral circulation: development and clinical importance
-
Seiler C, Stoller M, Pitt B, Meier P. The human coronary collateral circulation: development and clinical importance. Eur Heart J. 2013;34:2674–2682.
-
(2013)
Eur Heart J
, vol.34
, pp. 2674-2682
-
-
Seiler, C.1
Stoller, M.2
Pitt, B.3
Meier, P.4
-
8
-
-
84947997153
-
Anatomy and development of the cardiac lymphatic vasculature: its role in injury and disease
-
Norman S, Riley PR. Anatomy and development of the cardiac lymphatic vasculature: its role in injury and disease. Clin Anat. 2016;29:305–315.
-
(2016)
Clin Anat
, vol.29
, pp. 305-315
-
-
Norman, S.1
Riley, P.R.2
-
9
-
-
84896809185
-
Comparative and developmental anatomy of cardiac lymphatics
-
Ratajska A, Gula G, Flaht-Zabost A et al. Comparative and developmental anatomy of cardiac lymphatics. ScientificWorldJournal. 2014;2014:183170.
-
(2014)
ScientificWorldJournal
, vol.2014
, pp. 183170
-
-
Ratajska, A.1
Gula, G.2
Flaht-Zabost, A.3
-
10
-
-
0034076189
-
Mechanisms of angiogenesis and arteriogenesis
-
Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6:389–395.
-
(2000)
Nat Med
, vol.6
, pp. 389-395
-
-
Carmeliet, P.1
-
11
-
-
84960814509
-
Neuropeptide Y is an angiogenic factor in cardiovascular regeneration
-
Saraf R, Mahmood F, Amir R, Matyal R. Neuropeptide Y is an angiogenic factor in cardiovascular regeneration. Eur J Pharmacol. 2016;776:64–70.
-
(2016)
Eur J Pharmacol
, vol.776
, pp. 64-70
-
-
Saraf, R.1
Mahmood, F.2
Amir, R.3
Matyal, R.4
-
12
-
-
84952001288
-
Cellular and molecular mechanisms of HGF/Met in the cardiovascular system
-
Gallo S, Sala V, Gatti S, Crepaldi T. Cellular and molecular mechanisms of HGF/Met in the cardiovascular system. Clin Sci. 2015;129:1173–1193.
-
(2015)
Clin Sci
, vol.129
, pp. 1173-1193
-
-
Gallo, S.1
Sala, V.2
Gatti, S.3
Crepaldi, T.4
-
13
-
-
0033104847
-
Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha
-
Yu AY, Shimoda LA, Iyer NV et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. J Clin Invest. 1999;103:691–696.
-
(1999)
J Clin Invest
, vol.103
, pp. 691-696
-
-
Yu, A.Y.1
Shimoda, L.A.2
Iyer, N.V.3
-
14
-
-
77954375976
-
Stem cells for myocardial repair
-
Siu CW, Liao SY, Liu Y, Lian Q, Tse HF. Stem cells for myocardial repair. Thromb Haemost. 2010;104:6–12.
-
(2010)
Thromb Haemost
, vol.104
, pp. 6-12
-
-
Siu, C.W.1
Liao, S.Y.2
Liu, Y.3
Lian, Q.4
Tse, H.F.5
-
15
-
-
0344705115
-
VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis
-
Li J, Brown LF, Hibberd MG, Grossman JD, Morgan JP, Simons M. VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol. 1996;270:H1803–H1811.
-
(1996)
Am J Physiol
, vol.270
, pp. H1803-H1811
-
-
Li, J.1
Brown, L.F.2
Hibberd, M.G.3
Grossman, J.D.4
Morgan, J.P.5
Simons, M.6
-
16
-
-
0031685130
-
Hypoxic regulation of VEGF mRNA stability by RNA-binding proteins
-
Levy AP. Hypoxic regulation of VEGF mRNA stability by RNA-binding proteins. Trends Cardiovasc Med. 1998;8:246–250.
-
(1998)
Trends Cardiovasc Med
, vol.8
, pp. 246-250
-
-
Levy, A.P.1
-
17
-
-
49149113289
-
Therapeutic angiogenesis: a new treatment approach for ischemic heart disease—part I
-
Ahn A, Frishman WH, Gutwein A, Passeri J, Nelson M. Therapeutic angiogenesis: a new treatment approach for ischemic heart disease—part I. Cardiol Rev. 2008;16:163–171.
-
(2008)
Cardiol Rev
, vol.16
, pp. 163-171
-
-
Ahn, A.1
Frishman, W.H.2
Gutwein, A.3
Passeri, J.4
Nelson, M.5
-
18
-
-
56149093969
-
Therapeutic angiogenesis: a new treatment approach for ischemic heart disease—Part II
-
Ahn A, Frishman WH, Gutwein A, Passeri J, Nelson M. Therapeutic angiogenesis: a new treatment approach for ischemic heart disease—Part II. Cardiol Rev. 2008;16:219–229.
-
(2008)
Cardiol Rev
, vol.16
, pp. 219-229
-
-
Ahn, A.1
Frishman, W.H.2
Gutwein, A.3
Passeri, J.4
Nelson, M.5
-
19
-
-
0033547805
-
Age-dependent impairment of angiogenesis
-
Rivard A, Fabre JE, Silver M et al. Age-dependent impairment of angiogenesis. Circulation. 1999;99:111–120.
-
(1999)
Circulation
, vol.99
, pp. 111-120
-
-
Rivard, A.1
Fabre, J.E.2
Silver, M.3
-
20
-
-
36049044373
-
Type-2 diabetic Lepr(db/db) mice show a defective microvascular phenotype under basal conditions and an impaired response to angiogenesis gene therapy in the setting of limb ischemia
-
Emanueli C, Caporali A, Krankel N, Cristofaro B, Van LS, Madeddu P. Type-2 diabetic Lepr(db/db) mice show a defective microvascular phenotype under basal conditions and an impaired response to angiogenesis gene therapy in the setting of limb ischemia. Front Biosci. 2007;12:2003–2012.
-
(2007)
Front Biosci
, vol.12
, pp. 2003-2012
-
-
Emanueli, C.1
Caporali, A.2
Krankel, N.3
Cristofaro, B.4
Van, L.S.5
Madeddu, P.6
-
21
-
-
0032965317
-
Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF
-
Rivard A, Silver M, Chen D et al. Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am J Pathol. 1999;154:355–363.
-
(1999)
Am J Pathol
, vol.154
, pp. 355-363
-
-
Rivard, A.1
Silver, M.2
Chen, D.3
-
22
-
-
20244378531
-
Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor
-
Yoon YS, Uchida S, Masuo O et al. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation. 2005;111:2073–2085.
-
(2005)
Circulation
, vol.111
, pp. 2073-2085
-
-
Yoon, Y.S.1
Uchida, S.2
Masuo, O.3
-
25
-
-
0025994605
-
First steps of tumor-related angiogenesis
-
Paku S, Paweletz N. First steps of tumor-related angiogenesis. Lab Invest. 1991;65:334–346.
-
(1991)
Lab Invest
, vol.65
, pp. 334-346
-
-
Paku, S.1
Paweletz, N.2
-
26
-
-
0029155806
-
Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization
-
Drake CJ, Little CD. Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization. Proc Natl Acad Sci USA. 1995;92:7657–7661.
-
(1995)
Proc Natl Acad Sci USA
, vol.92
, pp. 7657-7661
-
-
Drake, C.J.1
Little, C.D.2
-
27
-
-
17344390961
-
Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor
-
Pettersson A, Nagy JA, Brown LF et al. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Invest. 2000;80:99–115.
-
(2000)
Lab Invest
, vol.80
, pp. 99-115
-
-
Pettersson, A.1
Nagy, J.A.2
Brown, L.F.3
-
28
-
-
0031834239
-
A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF
-
Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development. 1998;125:1591–1598.
-
(1998)
Development
, vol.125
, pp. 1591-1598
-
-
Benjamin, L.E.1
Hemo, I.2
Keshet, E.3
-
29
-
-
0345275943
-
Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair
-
Virag JI, Murry CE. Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. Am J Pathol. 2003;163:2433–2440.
-
(2003)
Am J Pathol
, vol.163
, pp. 2433-2440
-
-
Virag, J.I.1
Murry, C.E.2
-
30
-
-
84888636511
-
The collateral circulation of the heart in coronary total arterial occlusions in man: systematic review of assessment and pathophysiology
-
Khand A, Fisher M, Jones J, Patel B, Perry R, Mitsudo K. The collateral circulation of the heart in coronary total arterial occlusions in man: systematic review of assessment and pathophysiology. Am Heart J. 2013;166:941–952.
-
(2013)
Am Heart J
, vol.166
, pp. 941-952
-
-
Khand, A.1
Fisher, M.2
Jones, J.3
Patel, B.4
Perry, R.5
Mitsudo, K.6
-
31
-
-
84897467021
-
Historical aspects and relevance of the human coronary collateral circulation
-
Seiler C, Meier P. Historical aspects and relevance of the human coronary collateral circulation. Curr Cardiol Rev. 2014;10:2–16.
-
(2014)
Curr Cardiol Rev
, vol.10
, pp. 2-16
-
-
Seiler, C.1
Meier, P.2
-
32
-
-
84959862090
-
Genetic lineage tracing discloses arteriogenesis as the main mechanism for collateral growth in the mouse heart
-
He L, Liu Q, Hu T et al. Genetic lineage tracing discloses arteriogenesis as the main mechanism for collateral growth in the mouse heart. Cardiovasc Res. 2016;109:419–430.
-
(2016)
Cardiovasc Res
, vol.109
, pp. 419-430
-
-
He, L.1
Liu, Q.2
Hu, T.3
-
33
-
-
34250719709
-
Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization
-
Nolan DJ, Ciarrocchi A, Mellick AS et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev. 2007;21:1546–1558.
-
(2007)
Genes Dev
, vol.21
, pp. 1546-1558
-
-
Nolan, D.J.1
Ciarrocchi, A.2
Mellick, A.S.3
-
34
-
-
0033529618
-
Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization
-
Asahara T, Masuda H, Takahashi T et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85:221–228.
-
(1999)
Circ Res
, vol.85
, pp. 221-228
-
-
Asahara, T.1
Masuda, H.2
Takahashi, T.3
-
35
-
-
0035044085
-
Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function
-
Kocher AA, Schuster MD, Szabolcs MJ et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7:430–436.
-
(2001)
Nat Med
, vol.7
, pp. 430-436
-
-
Kocher, A.A.1
Schuster, M.D.2
Szabolcs, M.J.3
-
36
-
-
3242659970
-
Modulation of the vascular response to injury by autologous blood-derived outgrowth endothelial cells
-
Gulati R, Jevremovic D, Witt TA et al. Modulation of the vascular response to injury by autologous blood-derived outgrowth endothelial cells. Am J Physiol Heart Circ Physiol. 2004;287:H512–H517.
-
(2004)
Am J Physiol Heart Circ Physiol
, vol.287
, pp. H512-H517
-
-
Gulati, R.1
Jevremovic, D.2
Witt, T.A.3
-
37
-
-
78649872095
-
Endothelial progenitor cells: quo vadis?
-
Richardson MR, Yoder MC. Endothelial progenitor cells: quo vadis? J Mol Cell Cardiol. 2011;50:266–272.
-
(2011)
J Mol Cell Cardiol
, vol.50
, pp. 266-272
-
-
Richardson, M.R.1
Yoder, M.C.2
-
38
-
-
45149116677
-
The stem cell movement
-
Smart N, Riley PR. The stem cell movement. Circ Res. 2008;102:1155–1168.
-
(2008)
Circ Res
, vol.102
, pp. 1155-1168
-
-
Smart, N.1
Riley, P.R.2
-
39
-
-
84930788256
-
Vascular wall progenitor cells in health and disease
-
Psaltis PJ, Simari RD. Vascular wall progenitor cells in health and disease. Circ Res. 2015;116:1392–1412.
-
(2015)
Circ Res
, vol.116
, pp. 1392-1412
-
-
Psaltis, P.J.1
Simari, R.D.2
-
40
-
-
79957562794
-
Vascular wall-resident CD44 + multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation
-
Klein D, Weisshardt P, Kleff V, Jastrow H, Jakob HG, Ergun S. Vascular wall-resident CD44 + multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One. 2011;6:e20540.
-
(2011)
PLoS One
, vol.6
-
-
Klein, D.1
Weisshardt, P.2
Kleff, V.3
Jastrow, H.4
Jakob, H.G.5
Ergun, S.6
-
41
-
-
34547187823
-
Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells
-
Pasquinelli G, Tazzari PL, Vaselli C et al. Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells. 2007;25:1627–1634.
-
(2007)
Stem Cells
, vol.25
, pp. 1627-1634
-
-
Pasquinelli, G.1
Tazzari, P.L.2
Vaselli, C.3
-
42
-
-
84863306840
-
Differentiation of multipotent vascular stem cells contributes to vascular diseases
-
Tang Z, Wang A, Yuan F et al. Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nat Commun. 2012;3:875.
-
(2012)
Nat Commun
, vol.3
, pp. 875
-
-
Tang, Z.1
Wang, A.2
Yuan, F.3
-
43
-
-
84904753091
-
Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature
-
Psaltis PJ, Puranik AS, Spoon DB et al. Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature. Circ Res. 2014;115:364–375.
-
(2014)
Circ Res
, vol.115
, pp. 364-375
-
-
Psaltis, P.J.1
Puranik, A.S.2
Spoon, D.B.3
-
44
-
-
15944381205
-
Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells
-
Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood. 2005;105:2783–2786.
-
(2005)
Blood
, vol.105
, pp. 2783-2786
-
-
Ingram, D.A.1
Mead, L.E.2
Moore, D.B.3
Woodard, W.4
Fenoglio, A.5
Yoder, M.C.6
-
45
-
-
84900889870
-
Pericyte dynamics during angiogenesis: new insights from new identities
-
Stapor PC, Sweat RS, Dashti DC, Betancourt AM, Murfee WL. Pericyte dynamics during angiogenesis: new insights from new identities. J Vasc Res. 2014;51:163–174.
-
(2014)
J Vasc Res
, vol.51
, pp. 163-174
-
-
Stapor, P.C.1
Sweat, R.S.2
Dashti, D.C.3
Betancourt, A.M.4
Murfee, W.L.5
-
46
-
-
85047694430
-
Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice
-
Hu Y, Zhang Z, Torsney E et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest. 2004;113:1258–1265.
-
(2004)
J Clin Invest
, vol.113
, pp. 1258-1265
-
-
Hu, Y.1
Zhang, Z.2
Torsney, E.3
-
47
-
-
79959763975
-
The adventitia: a dynamic interface containing resident progenitor cells
-
Majesky MW, Dong XR, Hoglund V, Mahoney WM Jr, Daum G. The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol. 2011;31:1530–1539.
-
(2011)
Arterioscler Thromb Vasc Biol
, vol.31
, pp. 1530-1539
-
-
Majesky, M.W.1
Dong, X.R.2
Hoglund, V.3
Mahoney, W.M.4
Daum, G.5
-
48
-
-
79751515787
-
Vascular smooth muscle progenitor cells: building and repairing blood vessels
-
Majesky MW, Dong XR, Regan JN, Hoglund VJ. Vascular smooth muscle progenitor cells: building and repairing blood vessels. Circ Res. 2011;108:365–377.
-
(2011)
Circ Res
, vol.108
, pp. 365-377
-
-
Majesky, M.W.1
Dong, X.R.2
Regan, J.N.3
Hoglund, V.J.4
-
49
-
-
79956368558
-
Resident vascular progenitor cells–diverse origins, phenotype, and function
-
Psaltis PJ, Harbuzariu A, Delacroix S, Holroyd EW, Simari RD. Resident vascular progenitor cells–diverse origins, phenotype, and function. J Cardiovasc Transl Res. 2011;4:161–176.
-
(2011)
J Cardiovasc Transl Res
, vol.4
, pp. 161-176
-
-
Psaltis, P.J.1
Harbuzariu, A.2
Delacroix, S.3
Holroyd, E.W.4
Simari, R.D.5
-
50
-
-
79961230399
-
Pericytes: developmental, physiological, and pathological perspectives, problems, and promises
-
Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21:193–215.
-
(2011)
Dev Cell
, vol.21
, pp. 193-215
-
-
Armulik, A.1
Genove, G.2
Betsholtz, C.3
-
51
-
-
0242405617
-
Endothelial-pericyte interactions in angiogenesis
-
Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 2003;314:15–23.
-
(2003)
Cell Tissue Res
, vol.314
, pp. 15-23
-
-
Gerhardt, H.1
Betsholtz, C.2
-
52
-
-
84901047040
-
Targeting pericytes for angiogenic therapies
-
Kelly-Goss MR, Sweat RS, Stapor PC, Peirce SM, Murfee WL. Targeting pericytes for angiogenic therapies. Microcirculation. 2014;21:345–357.
-
(2014)
Microcirculation
, vol.21
, pp. 345-357
-
-
Kelly-Goss, M.R.1
Sweat, R.S.2
Stapor, P.C.3
Peirce, S.M.4
Murfee, W.L.5
-
53
-
-
80053561101
-
Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132
-
Katare R, Riu F, Mitchell K et al. Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ Res. 2011;109:894–906.
-
(2011)
Circ Res
, vol.109
, pp. 894-906
-
-
Katare, R.1
Riu, F.2
Mitchell, K.3
-
54
-
-
84874337055
-
Human pericytes for ischemic heart repair
-
Chen CW, Okada M, Proto JD et al. Human pericytes for ischemic heart repair. Stem Cells. 2013;31:305–316.
-
(2013)
Stem Cells
, vol.31
, pp. 305-316
-
-
Chen, C.W.1
Okada, M.2
Proto, J.D.3
-
55
-
-
84904225888
-
Immune cells as a source and target of angiogenic and lymphangiogenic factors
-
Loffredo S, Staiano RI, Granata F, Genovese A, Marone G. Immune cells as a source and target of angiogenic and lymphangiogenic factors. Chem Immunol Allergy. 2014;99:15–36.
-
(2014)
Chem Immunol Allergy
, vol.99
, pp. 15-36
-
-
Loffredo, S.1
Staiano, R.I.2
Granata, F.3
Genovese, A.4
Marone, G.5
-
56
-
-
84961664602
-
Primitive embryonic macrophages are required for coronary development and maturation
-
Leid J, Carrelha J, Boukarabila H, Epelman S, Jacobsen SE, Lavine KJ. Primitive embryonic macrophages are required for coronary development and maturation. Circ Res. 2016;118:1498–1511.
-
(2016)
Circ Res
, vol.118
, pp. 1498-1511
-
-
Leid, J.1
Carrelha, J.2
Boukarabila, H.3
Epelman, S.4
Jacobsen, S.E.5
Lavine, K.J.6
-
57
-
-
84938811415
-
De-novo collateral formation following acute myocardial infarction: dependence on CCR2(+) bone marrow cells
-
Zhang H, Faber JE. De-novo collateral formation following acute myocardial infarction: dependence on CCR2(+) bone marrow cells. J Mol Cell Cardiol. 2015;87:4–16.
-
(2015)
J Mol Cell Cardiol
, vol.87
, pp. 4-16
-
-
Zhang, H.1
Faber, J.E.2
-
58
-
-
84884132158
-
The role of immune-related myeloid cells in angiogenesis
-
Chambers SE, O'Neill CL, O'Doherty TM, Medina RJ, Stitt AW. The role of immune-related myeloid cells in angiogenesis. Immunobiology. 2013;218:1370–1375.
-
(2013)
Immunobiology
, vol.218
, pp. 1370-1375
-
-
Chambers, S.E.1
O'Neill, C.L.2
O'Doherty, T.M.3
Medina, R.J.4
Stitt, A.W.5
-
59
-
-
79959944642
-
Vascularizing the heart
-
Riley PR, Smart N. Vascularizing the heart. Cardiovasc Res. 2011;91:260–268.
-
(2011)
Cardiovasc Res
, vol.91
, pp. 260-268
-
-
Riley, P.R.1
Smart, N.2
-
60
-
-
84927169682
-
Cellular origin and developmental program of coronary angiogenesis
-
Tian X, Pu WT, Zhou B. Cellular origin and developmental program of coronary angiogenesis. Circ Res. 2015;116:515–530.
-
(2015)
Circ Res
, vol.116
, pp. 515-530
-
-
Tian, X.1
Pu, W.T.2
Zhou, B.3
-
61
-
-
28744445970
-
Formation of the coronary vasculature during development
-
Tomanek RJ. Formation of the coronary vasculature during development. Angiogenesis. 2005;8:273–284.
-
(2005)
Angiogenesis
, vol.8
, pp. 273-284
-
-
Tomanek, R.J.1
-
62
-
-
0026701709
-
Coronary artery development in the chick: origin and deployment of smooth muscle cells, and the effects of neural crest ablation
-
Hood LC, Rosenquist TH. Coronary artery development in the chick: origin and deployment of smooth muscle cells, and the effects of neural crest ablation. Anat Rec. 1992;234:291–300.
-
(1992)
Anat Rec
, vol.234
, pp. 291-300
-
-
Hood, L.C.1
Rosenquist, T.H.2
-
63
-
-
84930639373
-
Cardiac lymphatics are heterogeneous in origin and respond to injury
-
Klotz L, Norman S, Vieira JM et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature. 2015;522:62–67.
-
(2015)
Nature
, vol.522
, pp. 62-67
-
-
Klotz, L.1
Norman, S.2
Vieira, J.M.3
-
64
-
-
46449089721
-
A myocardial lineage derives from Tbx18 epicardial cells
-
Cai CL, Martin JC, Sun Y et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature. 2008;454:104–108.
-
(2008)
Nature
, vol.454
, pp. 104-108
-
-
Cai, C.L.1
Martin, J.C.2
Sun, Y.3
-
65
-
-
0037447925
-
Inhibition of a4-integrin stimulates epicardial-mesenchymal transformation and alters migration and cell fate of epicardially derived mesenchyme
-
Dettman RW, Pae S, Morabito C, Bristow J. Inhibition of a4-integrin stimulates epicardial-mesenchymal transformation and alters migration and cell fate of epicardially derived mesenchyme. Dev Biol. 2003;257:315–328.
-
(2003)
Dev Biol
, vol.257
, pp. 315-328
-
-
Dettman, R.W.1
Pae, S.2
Morabito, C.3
Bristow, J.4
-
66
-
-
0345516018
-
Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions
-
Gittenberger-de Groot AC, Vrancken Peeters MP, Mentink MMT, Gourdie RG, Poelmann RE. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res. 1998;82:1043–1052.
-
(1998)
Circ Res
, vol.82
, pp. 1043-1052
-
-
Gittenberger-de Groot, A.C.1
Vrancken Peeters, M.P.2
Mentink, M.M.T.3
Gourdie, R.G.4
Poelmann, R.E.5
-
67
-
-
84863229669
-
Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells
-
Katz TC, Singh MK, Degenhardt K et al. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev Cell. 2012;22:639–650.
-
(2012)
Dev Cell
, vol.22
, pp. 639-650
-
-
Katz, T.C.1
Singh, M.K.2
Degenhardt, K.3
-
68
-
-
0029133086
-
Retroviral targeting of FGF and FGFR in cardiomyocytes and coronary vascular cells during heart development
-
Mikawa T. Retroviral targeting of FGF and FGFR in cardiomyocytes and coronary vascular cells during heart development. Ann N Y Acad Sci. 1995;752:506–516.
-
(1995)
Ann N Y Acad Sci
, vol.752
, pp. 506-516
-
-
Mikawa, T.1
-
69
-
-
0029964385
-
Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ
-
Mikawa T, Gourdie RG. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol. 1996;174:221–232.
-
(1996)
Dev Biol
, vol.174
, pp. 221-232
-
-
Mikawa, T.1
Gourdie, R.G.2
-
70
-
-
84955286490
-
Pericytes are progenitors for coronary artery smooth muscle
-
Volz KS, Jacobs AH, Chen HI et al. Pericytes are progenitors for coronary artery smooth muscle. Elife. 2015;4. e10036.
-
(2015)
Elife
, vol.4
-
-
Volz, K.S.1
Jacobs, A.H.2
Chen, H.I.3
-
71
-
-
0033020504
-
Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium
-
Vrancken Peeters MP, Gittenberger-de Groot AC, Mentink MMT, Poelmann RE. Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anat Embryol. 1999;199:367–378.
-
(1999)
Anat Embryol
, vol.199
, pp. 367-378
-
-
Vrancken Peeters, M.P.1
Gittenberger-de Groot, A.C.2
Mentink, M.M.T.3
Poelmann, R.E.4
-
72
-
-
46449138664
-
Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart
-
Zhou B, Ma Q, Rajagopal S et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008;454:109–113.
-
(2008)
Nature
, vol.454
, pp. 109-113
-
-
Zhou, B.1
Ma, Q.2
Rajagopal, S.3
-
73
-
-
0030801279
-
Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos
-
Perez-Pomares JM, Macias D, Garcia-Garrido L, Munoz-Chapuli R. Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos. Dev Dyn. 1997;210:96–105.
-
(1997)
Dev Dyn
, vol.210
, pp. 96-105
-
-
Perez-Pomares, J.M.1
Macias, D.2
Garcia-Garrido, L.3
Munoz-Chapuli, R.4
-
74
-
-
0345019793
-
The origin of the subepicardial mesenchyme in the avian embryo: an immunohistochemical and quail-chick chimera study
-
Perez-Pomares JM, Macias D, Garcia-Garrido L, Munoz-Chapuli R. The origin of the subepicardial mesenchyme in the avian embryo: an immunohistochemical and quail-chick chimera study. Dev Biol. 1998;200:57–68.
-
(1998)
Dev Biol
, vol.200
, pp. 57-68
-
-
Perez-Pomares, J.M.1
Macias, D.2
Garcia-Garrido, L.3
Munoz-Chapuli, R.4
-
75
-
-
84963705843
-
Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls
-
Zhang H, Pu W, Li G et al. Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. Circ Res. 2016;118:1880–1893.
-
(2016)
Circ Res
, vol.118
, pp. 1880-1893
-
-
Zhang, H.1
Pu, W.2
Li, G.3
-
76
-
-
13544259652
-
Myocardial heterogeneity in permissiveness for epicardium-derived cells and endothelial precursor cells along the developing heart tube at the onset of coronary vascularization
-
Lie-Venema H, Eralp I, Maas S, Gittenberger-de Groot AC, Poelmann RE, DeRuiter MC. Myocardial heterogeneity in permissiveness for epicardium-derived cells and endothelial precursor cells along the developing heart tube at the onset of coronary vascularization. Anat Rec A Discov Mol Cell Evol Biol. 2005;282A:120–129.
-
(2005)
Anat Rec A Discov Mol Cell Evol Biol
, vol.282A
, pp. 120-129
-
-
Lie-Venema, H.1
Eralp, I.2
Maas, S.3
Gittenberger-de Groot, A.C.4
Poelmann, R.E.5
DeRuiter, M.C.6
-
77
-
-
0027227849
-
Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras
-
Poelmann RE, Gittenberger-de Groot AC, Mentink MM, Bokenkamp R, Hogers B. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res. 1993;73:559–568.
-
(1993)
Circ Res
, vol.73
, pp. 559-568
-
-
Poelmann, R.E.1
Gittenberger-de Groot, A.C.2
Mentink, M.M.3
Bokenkamp, R.4
Hogers, B.5
-
78
-
-
0026767366
-
Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels
-
Mikawa T, Fischman DA. Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. Proc Natl Acad Sci USA. 1992;89:9504–9508.
-
(1992)
Proc Natl Acad Sci USA
, vol.89
, pp. 9504-9508
-
-
Mikawa, T.1
Fischman, D.A.2
-
79
-
-
84870043996
-
Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling
-
Wu B, Zhang Z, Lui W et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell. 2012;151:1083–1096.
-
(2012)
Cell
, vol.151
, pp. 1083-1096
-
-
Wu, B.1
Zhang, Z.2
Lui, W.3
-
80
-
-
68349157530
-
Endocardial cells are a distinct endothelial lineage derived from Flk1+ multipotent cardiovascular progenitors
-
Misfeldt AM, Boyle SC, Tompkins KL, Bautch VL, Labosky PA, Baldwin HS. Endocardial cells are a distinct endothelial lineage derived from Flk1+ multipotent cardiovascular progenitors. Dev Biol. 2009;333:78–89.
-
(2009)
Dev Biol
, vol.333
, pp. 78-89
-
-
Misfeldt, A.M.1
Boyle, S.C.2
Tompkins, K.L.3
Bautch, V.L.4
Labosky, P.A.5
Baldwin, H.S.6
-
81
-
-
79955402796
-
NFATC1 promotes epicardium-derived cell invasion into myocardium
-
Combs MD, Braitsch CM, Lange AW, James JF, Yutzey KE. NFATC1 promotes epicardium-derived cell invasion into myocardium. Development. 2011;138:1747–1757.
-
(2011)
Development
, vol.138
, pp. 1747-1757
-
-
Combs, M.D.1
Braitsch, C.M.2
Lange, A.W.3
James, J.F.4
Yutzey, K.E.5
-
82
-
-
84923220418
-
Cardiac endothelial cells express Wilms’ tumor-1: Wt1 expression in the developing, adult and infarcted heart
-
Duim SN, Kurakula K, Goumans MJ, Kruithof BP. Cardiac endothelial cells express Wilms’ tumor-1: Wt1 expression in the developing, adult and infarcted heart. J Mol Cell Cardiol. 2015;81:127–135.
-
(2015)
J Mol Cell Cardiol
, vol.81
, pp. 127-135
-
-
Duim, S.N.1
Kurakula, K.2
Goumans, M.J.3
Kruithof, B.P.4
-
83
-
-
0036636107
-
The Wilms’ tumor suppressor Wt1 is expressed in the coronary vasculature after myocardial infarction
-
Wagner KD, Wagner N, Bondke A et al. The Wilms’ tumor suppressor Wt1 is expressed in the coronary vasculature after myocardial infarction. FASEB J. 2002;16:1117–1119.
-
(2002)
FASEB J
, vol.16
, pp. 1117-1119
-
-
Wagner, K.D.1
Wagner, N.2
Bondke, A.3
-
84
-
-
65249137151
-
Tbx18 and the fate of epicardial progenitors
-
Christoffels VM, Grieskamp T, Norden J, Mommersteeg MT, Rudat C, Kispert A. Tbx18 and the fate of epicardial progenitors. Nature. 2009;458:E8–E9.
-
(2009)
Nature
, vol.458
, pp. E8-E9
-
-
Christoffels, V.M.1
Grieskamp, T.2
Norden, J.3
Mommersteeg, M.T.4
Rudat, C.5
Kispert, A.6
-
85
-
-
29444451293
-
Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation
-
Merki E, Zamora M, Raya A et al. Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc Natl Acad Sci USA. 2005;102:18455–18460.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 18455-18460
-
-
Merki, E.1
Zamora, M.2
Raya, A.3
-
86
-
-
84887962527
-
Epicardial function of canonical Wnt-, Hedgehog-, Fgfr1/2-, and Pdgfra-signalling
-
Rudat C, Norden J, Taketo MM, Kispert A. Epicardial function of canonical Wnt-, Hedgehog-, Fgfr1/2-, and Pdgfra-signalling. Cardiovasc Res. 2013;100:411–421.
-
(2013)
Cardiovasc Res
, vol.100
, pp. 411-421
-
-
Rudat, C.1
Norden, J.2
Taketo, M.M.3
Kispert, A.4
-
87
-
-
84858775764
-
An epicardial floor plan for building and rebuilding the mammalian heart
-
Riley PR. An epicardial floor plan for building and rebuilding the mammalian heart. Curr Top Dev Biol. 2012;100:233–251.
-
(2012)
Curr Top Dev Biol
, vol.100
, pp. 233-251
-
-
Riley, P.R.1
-
88
-
-
77950237662
-
Coronary arteries form by developmental reprogramming of venous cells
-
Red-Horse K, Ueno H, Weissman IL, Krasnow MA. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010;464:549–553.
-
(2010)
Nature
, vol.464
, pp. 549-553
-
-
Red-Horse, K.1
Ueno, H.2
Weissman, I.L.3
Krasnow, M.A.4
-
89
-
-
84911489742
-
The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis
-
Chen HI, Sharma B, Akerberg BN et al. The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development. 2014;141:4500–4512.
-
(2014)
Development
, vol.141
, pp. 4500-4512
-
-
Chen, H.I.1
Sharma, B.2
Akerberg, B.N.3
-
90
-
-
84875061404
-
Embryological origin of the endocardium and derived valve progenitor cells: from developmental biology to stem cell-based valve repair
-
Puceat M. Embryological origin of the endocardium and derived valve progenitor cells: from developmental biology to stem cell-based valve repair. Biochim Biophys Acta. 1833;917–922:2013.
-
(1833)
Biochim Biophys Acta
, vol.917-922
, pp. 2013
-
-
Puceat, M.1
-
91
-
-
84883318758
-
Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries
-
Tian X, Hu T, Zhang H et al. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res. 2013;23:1075–1090.
-
(2013)
Cell Res
, vol.23
, pp. 1075-1090
-
-
Tian, X.1
Hu, T.2
Zhang, H.3
-
92
-
-
65549111271
-
Coronary vessel development and insight towards neovascular therapy
-
Smart N, Dube KN, Riley PR. Coronary vessel development and insight towards neovascular therapy. Int J Exp Pathol. 2009;90:262–283.
-
(2009)
Int J Exp Pathol
, vol.90
, pp. 262-283
-
-
Smart, N.1
Dube, K.N.2
Riley, P.R.3
-
93
-
-
84964997228
-
Hippo signaling mediators Yap and Taz Are required in the epicardium for coronary vasculature development
-
Singh A, Ramesh S, Cibi DM et al. Hippo signaling mediators Yap and Taz Are required in the epicardium for coronary vasculature development. Cell Rep. 2016;15:1384–1393.
-
(2016)
Cell Rep
, vol.15
, pp. 1384-1393
-
-
Singh, A.1
Ramesh, S.2
Cibi, D.M.3
-
94
-
-
0035827727
-
Vascular endothelial growth factor and basic fibroblast growth factor differentially modulate early postnatal coronary angiogenesis
-
Tomanek RJ, Sandra A, Zheng W, Brock T, Bjercke RJ, Holifield JS. Vascular endothelial growth factor and basic fibroblast growth factor differentially modulate early postnatal coronary angiogenesis. Circ Res. 2001;88:1135–1141.
-
(2001)
Circ Res
, vol.88
, pp. 1135-1141
-
-
Tomanek, R.J.1
Sandra, A.2
Zheng, W.3
Brock, T.4
Bjercke, R.J.5
Holifield, J.S.6
-
95
-
-
0025797684
-
Myocardial capillaries: increase in number by splitting of existing vessels
-
van Groningen JP, Wenink AC, Testers LH. Myocardial capillaries: increase in number by splitting of existing vessels. Anat Embryol. 1991;184:65–70.
-
(1991)
Anat Embryol
, vol.184
, pp. 65-70
-
-
van Groningen, J.P.1
Wenink, A.C.2
Testers, L.H.3
-
96
-
-
84903703870
-
Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart
-
Tian X, Hu T, Zhang H et al. Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science. 2014;345:90–94.
-
(2014)
Science
, vol.345
, pp. 90-94
-
-
Tian, X.1
Hu, T.2
Zhang, H.3
-
97
-
-
84907487533
-
Connecting the coronaries: how the coronary plexus develops and is functionalized
-
Dyer L, Pi X, Patterson C. Connecting the coronaries: how the coronary plexus develops and is functionalized. Dev Biol. 2014;395:111–119.
-
(2014)
Dev Biol
, vol.395
, pp. 111-119
-
-
Dyer, L.1
Pi, X.2
Patterson, C.3
-
98
-
-
2142650739
-
Formation and remodeling of the coronary vascular bed in the embryonic avian heart
-
Kattan J, Dettman RW, Bristow J. Formation and remodeling of the coronary vascular bed in the embryonic avian heart. Dev Dyn. 2004;230:34–43.
-
(2004)
Dev Dyn
, vol.230
, pp. 34-43
-
-
Kattan, J.1
Dettman, R.W.2
Bristow, J.3
-
99
-
-
0036449067
-
The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development
-
Poelmann RE, Lie-Venema H, Gittenberger-de Groot AC. The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development. Tex Heart Inst J. 2002;29:255–261.
-
(2002)
Tex Heart Inst J
, vol.29
, pp. 255-261
-
-
Poelmann, R.E.1
Lie-Venema, H.2
Gittenberger-de Groot, A.C.3
-
100
-
-
58149392309
-
Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations
-
Mellgren AM, Smith CL, Olsen GS et al. Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circ Res. 2008;103:1393–1401.
-
(2008)
Circ Res
, vol.103
, pp. 1393-1401
-
-
Mellgren, A.M.1
Smith, C.L.2
Olsen, G.S.3
-
101
-
-
79958799319
-
Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling/novelty and significance
-
Smith CL, Baek ST, Sung CY, Tallquist MD. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling/novelty and significance. Circ Res. 2011;108:e15–e26.
-
(2011)
Circ Res
, vol.108
, pp. e15-e26
-
-
Smith, C.L.1
Baek, S.T.2
Sung, C.Y.3
Tallquist, M.D.4
-
102
-
-
84938877573
-
Developmental origin of age-related coronary artery disease
-
Wei K, Diaz-Trelles R, Liu Q et al. Developmental origin of age-related coronary artery disease. Cardiovasc Res. 2015;107:287–294.
-
(2015)
Cardiovasc Res
, vol.107
, pp. 287-294
-
-
Wei, K.1
Diaz-Trelles, R.2
Liu, Q.3
-
103
-
-
84960364577
-
Smooth muscle origin of postnatal 2nd CVP is pre-determined in early embryo
-
Liu Q, Zhang H, Tian X et al. Smooth muscle origin of postnatal 2nd CVP is pre-determined in early embryo. Biochem Biophys Res Commun. 2016;471:430–436.
-
(2016)
Biochem Biophys Res Commun
, vol.471
, pp. 430-436
-
-
Liu, Q.1
Zhang, H.2
Tian, X.3
-
104
-
-
0036392163
-
Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor
-
Chen TH, Chang TC, Kang JO et al. Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. Dev Biol. 2002;250:198–207.
-
(2002)
Dev Biol
, vol.250
, pp. 198-207
-
-
Chen, T.H.1
Chang, T.C.2
Kang, J.O.3
-
105
-
-
79959819263
-
De novo cardiomyocytes from within the activated adult heart after injury
-
Smart N, Bollini S, Dube KN et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature. 2011;474:640–644.
-
(2011)
Nature
, vol.474
, pp. 640-644
-
-
Smart, N.1
Bollini, S.2
Dube, K.N.3
-
106
-
-
79955498411
-
Adult mouse epicardium modulates myocardial injury by secreting paracrine factors
-
Zhou B, Honor LB, He H et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Invest. 2011;121:1894–1904.
-
(2011)
J Clin Invest
, vol.121
, pp. 1894-1904
-
-
Zhou, B.1
Honor, L.B.2
He, H.3
-
107
-
-
82455186684
-
Epicardial epithelial to mesenchymal transition in injured heart
-
Zhou B, Pu WT. Epicardial epithelial to mesenchymal transition in injured heart. J Cell Mol Med. 2011;15:2781–2786.
-
(2011)
J Cell Mol Med
, vol.15
, pp. 2781-2786
-
-
Zhou, B.1
Pu, W.T.2
-
108
-
-
84938501945
-
Endothelial plasticity drives arterial remodeling within the endocardium after myocardial infarction
-
Miquerol L, Thireau J, Bideaux P, Sturny R, Richard S, Kelly RG. Endothelial plasticity drives arterial remodeling within the endocardium after myocardial infarction. Circ Res. 2015;116:1765–1771.
-
(2015)
Circ Res
, vol.116
, pp. 1765-1771
-
-
Miquerol, L.1
Thireau, J.2
Bideaux, P.3
Sturny, R.4
Richard, S.5
Kelly, R.G.6
-
110
-
-
33750483609
-
A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration
-
Lepilina A, Coon AN, Kikuchi K et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell. 2006;127:607–619.
-
(2006)
Cell
, vol.127
, pp. 607-619
-
-
Lepilina, A.1
Coon, A.N.2
Kikuchi, K.3
-
111
-
-
79959427955
-
tcf21 + epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration
-
Kikuchi K, Gupta V, Wang J et al. tcf21 + epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development. 2011;138:2895–2902.
-
(2011)
Development
, vol.138
, pp. 2895-2902
-
-
Kikuchi, K.1
Gupta, V.2
Wang, J.3
-
112
-
-
77954729235
-
Epicardium-derived cells (EPDCs) in development, cardiac disease and repair of ischemia
-
Gittenberger-de Groot AC, Winter EM, Poelmann RE. Epicardium-derived cells (EPDCs) in development, cardiac disease and repair of ischemia. J Cell Mol Med. 2010;14:1056–1060.
-
(2010)
J Cell Mol Med
, vol.14
, pp. 1056-1060
-
-
Gittenberger-de Groot, A.C.1
Winter, E.M.2
Poelmann, R.E.3
-
113
-
-
84055214880
-
Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes
-
Zhou B, Honor LB, Ma Q et al. Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. J Mol Cell Cardiol. 2011;52:43–47.
-
(2011)
J Mol Cell Cardiol
, vol.52
, pp. 43-47
-
-
Zhou, B.1
Honor, L.B.2
Ma, Q.3
-
114
-
-
77950871039
-
Epicardial-myocardial signaling directing coronary vasculogenesis
-
Olivey HE, Svensson EC. Epicardial-myocardial signaling directing coronary vasculogenesis. Circ Res. 2010;106:818–832.
-
(2010)
Circ Res
, vol.106
, pp. 818-832
-
-
Olivey, H.E.1
Svensson, E.C.2
-
115
-
-
84555190764
-
The epicardium as a candidate for heart regeneration
-
Smart N, Riley PR. The epicardium as a candidate for heart regeneration. Future Cardiol. 2012;8:53–69.
-
(2012)
Future Cardiol
, vol.8
, pp. 53-69
-
-
Smart, N.1
Riley, P.R.2
-
117
-
-
33745129425
-
Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development
-
Lavine KJ, White AC, Park C et al. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev. 2006;20:1651–1666.
-
(2006)
Genes Dev
, vol.20
, pp. 1651-1666
-
-
Lavine, K.J.1
White, A.C.2
Park, C.3
-
118
-
-
0032964554
-
Vascular endothelial growth factor expression coincides with coronary vasculogenesis and angiogenesis
-
Tomanek RJ, Ratajska A, Kitten GT, Yue X, Sandra A. Vascular endothelial growth factor expression coincides with coronary vasculogenesis and angiogenesis. Dev Dyn. 1999;215:54–61.
-
(1999)
Dev Dyn
, vol.215
, pp. 54-61
-
-
Tomanek, R.J.1
Ratajska, A.2
Kitten, G.T.3
Yue, X.4
Sandra, A.5
-
119
-
-
84961964289
-
Genetic lineage tracing identifies endocardial origin of liver vasculature
-
Zhang H, Pu W, Tian X et al. Genetic lineage tracing identifies endocardial origin of liver vasculature. Nat Genet. 2016;48:537–543.
-
(2016)
Nat Genet
, vol.48
, pp. 537-543
-
-
Zhang, H.1
Pu, W.2
Tian, X.3
-
120
-
-
84880780215
-
Accelerated coronary angiogenesis by vegfr1-knockout endocardial cells
-
Zhang Z, Zhou B. Accelerated coronary angiogenesis by vegfr1-knockout endocardial cells. PLoS One. 2013;8:e70570.
-
(2013)
PLoS One
, vol.8
-
-
Zhang, Z.1
Zhou, B.2
-
121
-
-
0034951436
-
Multiple growth factors regulate coronary embryonic vasculogenesis
-
Tomanek RJ, Zheng W, Peters KG, Lin P, Holifield JS, Suvarna PR. Multiple growth factors regulate coronary embryonic vasculogenesis. Dev Dyn. 2001;221:265–273.
-
(2001)
Dev Dyn
, vol.221
, pp. 265-273
-
-
Tomanek, R.J.1
Zheng, W.2
Peters, K.G.3
Lin, P.4
Holifield, J.S.5
Suvarna, P.R.6
-
122
-
-
77955426828
-
Vascular endothelial growth factor (VEGF)-A: role on cardiac angiogenesis following myocardial infarction
-
Zhao T, Zhao W, Chen Y, Ahokas RA, Sun Y. Vascular endothelial growth factor (VEGF)-A: role on cardiac angiogenesis following myocardial infarction. Microvasc Res. 2010;80:188–194.
-
(2010)
Microvasc Res
, vol.80
, pp. 188-194
-
-
Zhao, T.1
Zhao, W.2
Chen, Y.3
Ahokas, R.A.4
Sun, Y.5
-
123
-
-
77954313786
-
Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells
-
Yang Z, von Ballmoos MW, Faessler D et al. Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells. Atherosclerosis. 2010;211:103–109.
-
(2010)
Atherosclerosis
, vol.211
, pp. 103-109
-
-
Yang, Z.1
von Ballmoos, M.W.2
Faessler, D.3
-
124
-
-
33746836891
-
Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury
-
Takahashi M, Li TS, Suzuki R et al. Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am J Physiol Heart Circ Physiol. 2006;291:H886–H893.
-
(2006)
Am J Physiol Heart Circ Physiol
, vol.291
, pp. H886-H893
-
-
Takahashi, M.1
Li, T.S.2
Suzuki, R.3
-
125
-
-
84958050716
-
Study on the expression of VEGF and HIF-1alpha in infarct area of rats with AMI
-
Cheng C, Li P, Wang YG, Bi MH, Wu PS. Study on the expression of VEGF and HIF-1alpha in infarct area of rats with AMI. Eur Rev Med Pharmacol Sci. 2016;20:115–119.
-
(2016)
Eur Rev Med Pharmacol Sci
, vol.20
, pp. 115-119
-
-
Cheng, C.1
Li, P.2
Wang, Y.G.3
Bi, M.H.4
Wu, P.S.5
-
126
-
-
1542378240
-
Angiopoietin 1 expression levels in the myocardium direct coronary vessel development
-
Ward NL, Van SP, Sturk C, Cruz M, Dumont DJ. Angiopoietin 1 expression levels in the myocardium direct coronary vessel development. Dev Dyn. 2004;229:500–509.
-
(2004)
Dev Dyn
, vol.229
, pp. 500-509
-
-
Ward, N.L.1
Van, S.P.2
Sturk, C.3
Cruz, M.4
Dumont, D.J.5
-
127
-
-
0037062491
-
Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF)
-
Visconti RP, Richardson CD, Sato TN. Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc Natl Acad Sci USA. 2002;99:8219–8224.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 8219-8224
-
-
Visconti, R.P.1
Richardson, C.D.2
Sato, T.N.3
-
128
-
-
0041374212
-
Increased expression of angiopoietin-2 and Tie2 receptor in a rat model of myocardial ischaemia/reperfusion
-
Shyu KG, Chang CC, Wang BW, Kuan P, Chang H. Increased expression of angiopoietin-2 and Tie2 receptor in a rat model of myocardial ischaemia/reperfusion. Clin Sci. 2003;105:287–294.
-
(2003)
Clin Sci
, vol.105
, pp. 287-294
-
-
Shyu, K.G.1
Chang, C.C.2
Wang, B.W.3
Kuan, P.4
Chang, H.5
-
129
-
-
79958269792
-
Circulating angiopoietins-1 and -2, angiopoietin receptor Tie-2 and vascular endothelial growth factor-A as biomarkers of acute myocardial infarction: a prospective nested case-control study
-
Iribarren C, Phelps BH, Darbinian JA et al. Circulating angiopoietins-1 and -2, angiopoietin receptor Tie-2 and vascular endothelial growth factor-A as biomarkers of acute myocardial infarction: a prospective nested case-control study. BMC Cardiovasc Disord. 2011;11:31.
-
(2011)
BMC Cardiovasc Disord
, vol.11
, pp. 31
-
-
Iribarren, C.1
Phelps, B.H.2
Darbinian, J.A.3
-
131
-
-
85006778840
-
Fibroblast growth factor 2 is an essential cardioprotective factor in a closed-chest model of cardiac ischemia-reperfusion injury
-
House SL, Wang J, Castro AM, Weinheimer C, Kovacs A, Ornitz DM. Fibroblast growth factor 2 is an essential cardioprotective factor in a closed-chest model of cardiac ischemia-reperfusion injury. Physiol Rep. 2015;3.
-
(2015)
Physiol Rep
, vol.3
-
-
House, S.L.1
Wang, J.2
Castro, A.M.3
Weinheimer, C.4
Kovacs, A.5
Ornitz, D.M.6
-
132
-
-
80055044236
-
Acidic and basic fibroblast growth factors involved in cardiac angiogenesis following infarction
-
Zhao T, Zhao W, Chen Y, Ahokas RA, Sun Y. Acidic and basic fibroblast growth factors involved in cardiac angiogenesis following infarction. Int J Cardiol. 2010;152:307–313.
-
(2010)
Int J Cardiol
, vol.152
, pp. 307-313
-
-
Zhao, T.1
Zhao, W.2
Chen, Y.3
Ahokas, R.A.4
Sun, Y.5
-
133
-
-
84983609840
-
Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury
-
House SL, Castro AM, Lupu TS et al. Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2016;310:H559–H571.
-
(2016)
Am J Physiol Heart Circ Physiol
, vol.310
, pp. H559-H571
-
-
House, S.L.1
Castro, A.M.2
Lupu, T.S.3
-
134
-
-
78649872745
-
Metformin against TGFbeta-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis
-
Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Martin-Castillo B, Joven J, Menendez JA. Metformin against TGFbeta-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis. Cell Cycle. 2010;9:4461–4468.
-
(2010)
Cell Cycle
, vol.9
, pp. 4461-4468
-
-
Cufi, S.1
Vazquez-Martin, A.2
Oliveras-Ferraros, C.3
Martin-Castillo, B.4
Joven, J.5
Menendez, J.A.6
-
135
-
-
78650018824
-
Conversion of vascular endothelial cells into multipotent stem-like cells
-
Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 2010;16:1400–1406.
-
(2010)
Nat Med
, vol.16
, pp. 1400-1406
-
-
Medici, D.1
Shore, E.M.2
Lounev, V.Y.3
Kaplan, F.S.4
Kalluri, R.5
Olsen, B.R.6
-
136
-
-
0037007226
-
Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors
-
Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke DP. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J. 2002;21:1743–1753.
-
(2002)
EMBO J
, vol.21
, pp. 1743-1753
-
-
Goumans, M.J.1
Valdimarsdottir, G.2
Itoh, S.3
Rosendahl, A.4
Sideras, P.5
ten Dijke, D.P.6
-
137
-
-
77949915371
-
Involvement of the MEKK1 signaling pathway in the regulation of epicardial cell behavior by hyaluronan
-
Craig EA, Parker P, Austin AF, Barnett JV, Camenisch TD. Involvement of the MEKK1 signaling pathway in the regulation of epicardial cell behavior by hyaluronan. Cell Signal. 2010;22:968–976.
-
(2010)
Cell Signal
, vol.22
, pp. 968-976
-
-
Craig, E.A.1
Parker, P.2
Austin, A.F.3
Barnett, J.V.4
Camenisch, T.D.5
-
138
-
-
33644989417
-
Transforming growth factor-beta stimulates epithelial-mesenchymal transformation in the proepicardium
-
Olivey HE, Mundell NA, Austin AF, Barnett JV. Transforming growth factor-beta stimulates epithelial-mesenchymal transformation in the proepicardium. Dev Dyn. 2006;235:50–59.
-
(2006)
Dev Dyn
, vol.235
, pp. 50-59
-
-
Olivey, H.E.1
Mundell, N.A.2
Austin, A.F.3
Barnett, J.V.4
-
139
-
-
34047148354
-
The role of TGF-beta signaling in myocardial infarction and cardiac remodeling
-
Bujak M, Frangogiannis NG. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res. 2007;74:184–195.
-
(2007)
Cardiovasc Res
, vol.74
, pp. 184-195
-
-
Bujak, M.1
Frangogiannis, N.G.2
-
140
-
-
79551614815
-
Molecular and cellular mechanisms involved in cardiac remodeling after acute myocardial infarction
-
Vilahur G, Juan-Babot O, Pena E, Onate B, Casani L, Badimon L. Molecular and cellular mechanisms involved in cardiac remodeling after acute myocardial infarction. J Mol Cell Cardiol. 2011;50:522–533.
-
(2011)
J Mol Cell Cardiol
, vol.50
, pp. 522-533
-
-
Vilahur, G.1
Juan-Babot, O.2
Pena, E.3
Onate, B.4
Casani, L.5
Badimon, L.6
-
141
-
-
77954979362
-
Cardiac malformations in Pdgfralpha mutant embryos are associated with increased expression of WT1 and Nkx2.5 in the second heart field
-
Bax NA, Bleyl SB, Gallini R et al. Cardiac malformations in Pdgfralpha mutant embryos are associated with increased expression of WT1 and Nkx2.5 in the second heart field. Dev Dyn. 2010;239:2307–2317.
-
(2010)
Dev Dyn
, vol.239
, pp. 2307-2317
-
-
Bax, N.A.1
Bleyl, S.B.2
Gallini, R.3
-
142
-
-
0035894383
-
Coronary smooth muscle differentiation from proepicardial cells requires rhoA-mediated actin reorganization and p160 rho-kinase activity
-
Lu J, Landerholm TE, Wei JS et al. Coronary smooth muscle differentiation from proepicardial cells requires rhoA-mediated actin reorganization and p160 rho-kinase activity. Dev Biol. 2001;240:404–418.
-
(2001)
Dev Biol
, vol.240
, pp. 404-418
-
-
Lu, J.1
Landerholm, T.E.2
Wei, J.S.3
-
143
-
-
33845220020
-
The role of platelet-derived growth factor signaling in healing myocardial infarcts
-
Zymek P, Bujak M, Chatila K et al. The role of platelet-derived growth factor signaling in healing myocardial infarcts. J Am Coll Cardiol. 2006;48:2315–2323.
-
(2006)
J Am Coll Cardiol
, vol.48
, pp. 2315-2323
-
-
Zymek, P.1
Bujak, M.2
Chatila, K.3
-
144
-
-
0032824560
-
Inactivation of erythropoietin leads to defects in cardiac morphogenesis
-
Wu H, Lee SH, Gao J, Liu X, Iruela-Arispe ML. Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development. 1999;126:3597–3605.
-
(1999)
Development
, vol.126
, pp. 3597-3605
-
-
Wu, H.1
Lee, S.H.2
Gao, J.3
Liu, X.4
Iruela-Arispe, M.L.5
-
145
-
-
77953223654
-
Sonic hedgehog is a critical mediator of erythropoietin-induced cardiac protection in mice
-
Ueda K, Takano H, Niitsuma Y et al. Sonic hedgehog is a critical mediator of erythropoietin-induced cardiac protection in mice. J Clin Invest. 2010;120:2016–2029.
-
(2010)
J Clin Invest
, vol.120
, pp. 2016-2029
-
-
Ueda, K.1
Takano, H.2
Niitsuma, Y.3
-
146
-
-
77955136355
-
Vascular endothelial growth factor is crucial for erythropoietin-induced improvement of cardiac function in heart failure
-
Westenbrink BD, Ruifrok WP, Voors AA et al. Vascular endothelial growth factor is crucial for erythropoietin-induced improvement of cardiac function in heart failure. Cardiovasc Res. 2010;87:30–39.
-
(2010)
Cardiovasc Res
, vol.87
, pp. 30-39
-
-
Westenbrink, B.D.1
Ruifrok, W.P.2
Voors, A.A.3
-
147
-
-
84878128660
-
Serum erythropoietin: a useful biomarker for coronary collateral development and potential target for therapeutic angiogenesis among the patients with coronary chronic total occlusion
-
Xu W, Guo Z, Mi L, Wang G. Serum erythropoietin: a useful biomarker for coronary collateral development and potential target for therapeutic angiogenesis among the patients with coronary chronic total occlusion. Biomarkers. 2013;18:343–348.
-
(2013)
Biomarkers
, vol.18
, pp. 343-348
-
-
Xu, W.1
Guo, Z.2
Mi, L.3
Wang, G.4
-
148
-
-
84992107946
-
Erythropoietin stimulates the coronary collateral development in patients with coronary chronic total occlusion
-
Yuksel IO, Cagirci G, Koklu E et al. Erythropoietin stimulates the coronary collateral development in patients with coronary chronic total occlusion. Neth Heart J. 2016;24:609–616.
-
(2016)
Neth Heart J
, vol.24
, pp. 609-616
-
-
Yuksel, I.O.1
Cagirci, G.2
Koklu, E.3
-
149
-
-
41049085948
-
Regulation of angiogenesis by homotypic and heterotypic notch signalling in endothelial cells and pericytes: from basic research to potential therapies
-
Sainson RC, Harris AL. Regulation of angiogenesis by homotypic and heterotypic notch signalling in endothelial cells and pericytes: from basic research to potential therapies. Angiogenesis. 2008;11:41–51.
-
(2008)
Angiogenesis
, vol.11
, pp. 41-51
-
-
Sainson, R.C.1
Harris, A.L.2
-
150
-
-
80052015813
-
Molecular control of endothelial cell behaviour during blood vessel morphogenesis
-
Herbert SP, Stainier DY. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol. 2011;12:551–564.
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, pp. 551-564
-
-
Herbert, S.P.1
Stainier, D.Y.2
-
151
-
-
79954797681
-
Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis
-
del Monte G, Casanova JC, Guadix JA et al. Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res. 2011;108:824–836.
-
(2011)
Circ Res
, vol.108
, pp. 824-836
-
-
del Monte, G.1
Casanova, J.C.2
Guadix, J.A.3
-
152
-
-
20244378183
-
Activation of Notch signaling pathway precedes heart regeneration in zebrafish
-
Raya A, Koth CM, Buscher D et al. Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proc Natl Acad Sci USA. 2003;100(Suppl 1):11889–11895.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 11889-11895
-
-
Raya, A.1
Koth, C.M.2
Buscher, D.3
-
153
-
-
59649083972
-
Control of the adaptive response of the heart to stress via the Notch1 receptor pathway
-
Croquelois A, Domenighetti AA, Nemir M et al. Control of the adaptive response of the heart to stress via the Notch1 receptor pathway. J Exp Med. 2008;205:3173–3185.
-
(2008)
J Exp Med
, vol.205
, pp. 3173-3185
-
-
Croquelois, A.1
Domenighetti, A.A.2
Nemir, M.3
-
154
-
-
79251625088
-
A dynamic notch injury response activates epicardium and contributes to fibrosis repair
-
Russell JL, Goetsch SC, Gaiano NR, Hill JA, Olson EN, Schneider JW. A dynamic notch injury response activates epicardium and contributes to fibrosis repair. Circ Res. 2011;108:51–59.
-
(2011)
Circ Res
, vol.108
, pp. 51-59
-
-
Russell, J.L.1
Goetsch, S.C.2
Gaiano, N.R.3
Hill, J.A.4
Olson, E.N.5
Schneider, J.W.6
-
155
-
-
84926455846
-
Sequential delivery of angiogenic growth factors improves revascularization and heart function after myocardial infarction
-
Awada HK, Johnson NR, Wang Y. Sequential delivery of angiogenic growth factors improves revascularization and heart function after myocardial infarction. J Control Release. 2015;207:7–17.
-
(2015)
J Control Release
, vol.207
, pp. 7-17
-
-
Awada, H.K.1
Johnson, N.R.2
Wang, Y.3
-
156
-
-
1942437406
-
DITPA stimulates arteriolar growth and modifies myocardial postinfarction remodeling
-
Zheng W, Weiss RM, Wang X et al. DITPA stimulates arteriolar growth and modifies myocardial postinfarction remodeling. Am J Physiol Heart Circ Physiol. 2004;286:H1994–H2000.
-
(2004)
Am J Physiol Heart Circ Physiol
, vol.286
, pp. H1994-H2000
-
-
Zheng, W.1
Weiss, R.M.2
Wang, X.3
-
158
-
-
84945921247
-
Role of microRNAs in vascular remodeling
-
Fang YC, Yeh CH. Role of microRNAs in vascular remodeling. Curr Mol Med. 2015;15:684–696.
-
(2015)
Curr Mol Med
, vol.15
, pp. 684-696
-
-
Fang, Y.C.1
Yeh, C.H.2
-
159
-
-
85018214575
-
Functional long non-coding RNAs in vascular smooth muscle cells
-
Leung A, Stapleton K, Natarajan R. Functional long non-coding RNAs in vascular smooth muscle cells. Curr Top Microbiol Immunol. 2016;394:127–141.
-
(2016)
Curr Top Microbiol Immunol
, vol.394
, pp. 127-141
-
-
Leung, A.1
Stapleton, K.2
Natarajan, R.3
-
160
-
-
84905668188
-
miRNAs and lncRNAs in vascular injury and remodeling
-
Song X, Shan D, Chen J, Jing Q. miRNAs and lncRNAs in vascular injury and remodeling. Sci China Life Sci. 2014;57:826–835.
-
(2014)
Sci China Life Sci
, vol.57
, pp. 826-835
-
-
Song, X.1
Shan, D.2
Chen, J.3
Jing, Q.4
-
161
-
-
84924134321
-
Long noncoding RNAs in cardiovascular diseases
-
Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res. 2015;116:737–750.
-
(2015)
Circ Res
, vol.116
, pp. 737-750
-
-
Uchida, S.1
Dimmeler, S.2
-
162
-
-
84967223701
-
The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease
-
Chistiakov DA, Orekhov AN, Bobryshev YV. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J Mol Cell Cardiol. 2016;97:47–55.
-
(2016)
J Mol Cell Cardiol
, vol.97
, pp. 47-55
-
-
Chistiakov, D.A.1
Orekhov, A.N.2
Bobryshev, Y.V.3
-
163
-
-
33846243239
-
Thymosin b4 induces adult epicardial progenitor mobilization and neovascularization
-
Smart N, Risebro CA, Melville AAD et al. Thymosin b4 induces adult epicardial progenitor mobilization and neovascularization. Nature. 2007;445:177–182.
-
(2007)
Nature
, vol.445
, pp. 177-182
-
-
Smart, N.1
Risebro, C.A.2
Melville, A.A.D.3
-
164
-
-
84867342938
-
Myocardial regeneration: expanding the repertoire of thymosin beta4 in the ischemic heart
-
Smart N, Bollini S, Dube KN et al. Myocardial regeneration: expanding the repertoire of thymosin beta4 in the ischemic heart. Ann N Y Acad Sci. 2012;1269:92–101.
-
(2012)
Ann N Y Acad Sci
, vol.1269
, pp. 92-101
-
-
Smart, N.1
Bollini, S.2
Dube, K.N.3
-
165
-
-
77951782307
-
Thymosin beta4 facilitates epicardial neovascularization of the injured adult heart
-
Smart N, Risebro CA, Clark JE et al. Thymosin beta4 facilitates epicardial neovascularization of the injured adult heart. Ann N Y Acad Sci. 2010;1194:97–104.
-
(2010)
Ann N Y Acad Sci
, vol.1194
, pp. 97-104
-
-
Smart, N.1
Risebro, C.A.2
Clark, J.E.3
-
166
-
-
84904640712
-
Re-activated adult epicardial progenitor cells are a heterogeneous population molecularly distinct from their embryonic counterparts
-
Bollini S, Vieira JM, Howard S et al. Re-activated adult epicardial progenitor cells are a heterogeneous population molecularly distinct from their embryonic counterparts. Stem Cells Dev. 2014;23:1719–1730.
-
(2014)
Stem Cells Dev
, vol.23
, pp. 1719-1730
-
-
Bollini, S.1
Vieira, J.M.2
Howard, S.3
-
167
-
-
33845457194
-
Multipotent embryonic isl1 + progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification
-
Moretti A, Caron L, Nakano A et al. Multipotent embryonic isl1 + progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006;127:1151–1165.
-
(2006)
Cell
, vol.127
, pp. 1151-1165
-
-
Moretti, A.1
Caron, L.2
Nakano, A.3
-
168
-
-
42149109739
-
Prokineticin receptor-1 induces neovascularization and epicardial-derived progenitor cell differentiation
-
Urayama K, Guilini C, Turkeri G et al. Prokineticin receptor-1 induces neovascularization and epicardial-derived progenitor cell differentiation. Arterioscler Thromb Vasc Biol. 2008;28:841–849.
-
(2008)
Arterioscler Thromb Vasc Biol
, vol.28
, pp. 841-849
-
-
Urayama, K.1
Guilini, C.2
Turkeri, G.3
-
169
-
-
80054092076
-
Prokineticin receptor-1 (PKR1) signaling in cardiovascular and kidney functions
-
Boulberdaa M, Urayama K, Nebigil CG. Prokineticin receptor-1 (PKR1) signaling in cardiovascular and kidney functions. Cardiovasc Res. 2011;92:191–198.
-
(2011)
Cardiovasc Res
, vol.92
, pp. 191-198
-
-
Boulberdaa, M.1
Urayama, K.2
Nebigil, C.G.3
-
170
-
-
84885172335
-
Driving vascular endothelial cell fate of human multipotent Isl1(+) heart progenitors with VEGF modified mRNA
-
Lui KO, Zangi L, Silva EA et al. Driving vascular endothelial cell fate of human multipotent Isl1(+) heart progenitors with VEGF modified mRNA. Cell Res. 2013;23:1172–1186.
-
(2013)
Cell Res
, vol.23
, pp. 1172-1186
-
-
Lui, K.O.1
Zangi, L.2
Silva, E.A.3
-
171
-
-
84885676364
-
Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction
-
Zangi L, Lui KO, von Gise A et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol. 2013;31:898–907.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 898-907
-
-
Zangi, L.1
Lui, K.O.2
von Gise, A.3
-
172
-
-
84922153362
-
Cardiac-specific overexpression of human stem cell factor promotes epicardial activation and arteriogenesis after myocardial infarction
-
Xiang FL, Liu Y, Lu X, Jones DL, Feng Q. Cardiac-specific overexpression of human stem cell factor promotes epicardial activation and arteriogenesis after myocardial infarction. Circ Heart Fail. 2014;7:831–842.
-
(2014)
Circ Heart Fail
, vol.7
, pp. 831-842
-
-
Xiang, F.L.1
Liu, Y.2
Lu, X.3
Jones, D.L.4
Feng, Q.5
-
173
-
-
77649272521
-
Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: role of the pericardial fluid
-
Limana F, Bertolami C, Mangoni A et al. Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: role of the pericardial fluid. J Mol Cell Cardiol. 2010;48:609–618.
-
(2010)
J Mol Cell Cardiol
, vol.48
, pp. 609-618
-
-
Limana, F.1
Bertolami, C.2
Mangoni, A.3
-
174
-
-
37349012572
-
Identification of myocardial and vascular precursor cells in human and mouse epicardium
-
Limana F, Zacheo A, Mocini D et al. Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res. 2007;101:1255–1265.
-
(2007)
Circ Res
, vol.101
, pp. 1255-1265
-
-
Limana, F.1
Zacheo, A.2
Mocini, D.3
|