메뉴 건너뛰기




Volumn 24, Issue 1, 2017, Pages

Prospects for improving neovascularization of the ischemic heart: Lessons from development

Author keywords

coronary vasculature; endocardium; epicardium; neovascularization; sinus venosus

Indexed keywords

ANGIOGENESIS; BLOOD VESSEL WALL; CAPILLARY DENSITY; CAUSAL ATTRIBUTION; CELL EXPANSION; CELL MATURATION; CELL POPULATION; CORONARY SMOOTH MUSCLE CELL; EMBRYO DEVELOPMENT; ENDOCARDIUM; EPICARDIUM; FIBROBLAST; HEART MUSCLE REVASCULARIZATION; HUMAN; ISCHEMIC HEART DISEASE; MACROPHAGE; MOLECULAR DYNAMICS; NONHUMAN; PERICYTE; REVIEW; STEM CELL; TREATMENT PLANNING; VASCULAR SMOOTH MUSCLE CELL; ANIMAL; CORONARY BLOOD VESSEL; EMBRYOLOGY; GROWTH, DEVELOPMENT AND AGING; HEART MUSCLE ISCHEMIA; REGENERATION;

EID: 85010908786     PISSN: 10739688     EISSN: 15498719     Source Type: Journal    
DOI: 10.1111/micc.12335     Document Type: Review
Times cited : (15)

References (174)
  • 1
    • 33747763298 scopus 로고    scopus 로고
    • The no-reflow phenomenon: a basic mechanism of myocardial ischemia and reperfusion
    • Reffelmann T, Kloner RA. The no-reflow phenomenon: a basic mechanism of myocardial ischemia and reperfusion. Basic Res Cardiol. 2006;101:359–372.
    • (2006) Basic Res Cardiol , vol.101 , pp. 359-372
    • Reffelmann, T.1    Kloner, R.A.2
  • 2
    • 0019177898 scopus 로고
    • The relationship of vascular injury and myocardial hemorrhage to necrosis after reperfusion
    • Fishbein MC, Y-Rit J, Lando U, Kanmatsuse K, Mercier JC, Ganz W. The relationship of vascular injury and myocardial hemorrhage to necrosis after reperfusion. Circulation. 1980;62:1274–1279.
    • (1980) Circulation , vol.62 , pp. 1274-1279
    • Fishbein, M.C.1    Y-Rit, J.2    Lando, U.3    Kanmatsuse, K.4    Mercier, J.C.5    Ganz, W.6
  • 3
    • 0016315064 scopus 로고
    • The “no-reflow” phenomenon after temporary coronary occlusion in the dog
    • Kloner RA, Ganote CE, Jennings RB. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974;54:1496–1508.
    • (1974) J Clin Invest , vol.54 , pp. 1496-1508
    • Kloner, R.A.1    Ganote, C.E.2    Jennings, R.B.3
  • 4
    • 0037453099 scopus 로고    scopus 로고
    • The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis
    • Henry TD, Annex BH, McKendall GR et al. The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation. 2003;107:1359–1365.
    • (2003) Circulation , vol.107 , pp. 1359-1365
    • Henry, T.D.1    Annex, B.H.2    McKendall, G.R.3
  • 5
    • 0037133306 scopus 로고    scopus 로고
    • Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial
    • Simons M, Annex BH, Laham RJ et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation. 2002;105:788–793.
    • (2002) Circulation , vol.105 , pp. 788-793
    • Simons, M.1    Annex, B.H.2    Laham, R.J.3
  • 6
    • 33847421319 scopus 로고    scopus 로고
    • Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine
    • Yla-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J. Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol. 2007;49:1015–1026.
    • (2007) J Am Coll Cardiol , vol.49 , pp. 1015-1026
    • Yla-Herttuala, S.1    Rissanen, T.T.2    Vajanto, I.3    Hartikainen, J.4
  • 7
    • 84890100613 scopus 로고    scopus 로고
    • The human coronary collateral circulation: development and clinical importance
    • Seiler C, Stoller M, Pitt B, Meier P. The human coronary collateral circulation: development and clinical importance. Eur Heart J. 2013;34:2674–2682.
    • (2013) Eur Heart J , vol.34 , pp. 2674-2682
    • Seiler, C.1    Stoller, M.2    Pitt, B.3    Meier, P.4
  • 8
    • 84947997153 scopus 로고    scopus 로고
    • Anatomy and development of the cardiac lymphatic vasculature: its role in injury and disease
    • Norman S, Riley PR. Anatomy and development of the cardiac lymphatic vasculature: its role in injury and disease. Clin Anat. 2016;29:305–315.
    • (2016) Clin Anat , vol.29 , pp. 305-315
    • Norman, S.1    Riley, P.R.2
  • 9
    • 84896809185 scopus 로고    scopus 로고
    • Comparative and developmental anatomy of cardiac lymphatics
    • Ratajska A, Gula G, Flaht-Zabost A et al. Comparative and developmental anatomy of cardiac lymphatics. ScientificWorldJournal. 2014;2014:183170.
    • (2014) ScientificWorldJournal , vol.2014 , pp. 183170
    • Ratajska, A.1    Gula, G.2    Flaht-Zabost, A.3
  • 10
    • 0034076189 scopus 로고    scopus 로고
    • Mechanisms of angiogenesis and arteriogenesis
    • Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6:389–395.
    • (2000) Nat Med , vol.6 , pp. 389-395
    • Carmeliet, P.1
  • 11
    • 84960814509 scopus 로고    scopus 로고
    • Neuropeptide Y is an angiogenic factor in cardiovascular regeneration
    • Saraf R, Mahmood F, Amir R, Matyal R. Neuropeptide Y is an angiogenic factor in cardiovascular regeneration. Eur J Pharmacol. 2016;776:64–70.
    • (2016) Eur J Pharmacol , vol.776 , pp. 64-70
    • Saraf, R.1    Mahmood, F.2    Amir, R.3    Matyal, R.4
  • 12
    • 84952001288 scopus 로고    scopus 로고
    • Cellular and molecular mechanisms of HGF/Met in the cardiovascular system
    • Gallo S, Sala V, Gatti S, Crepaldi T. Cellular and molecular mechanisms of HGF/Met in the cardiovascular system. Clin Sci. 2015;129:1173–1193.
    • (2015) Clin Sci , vol.129 , pp. 1173-1193
    • Gallo, S.1    Sala, V.2    Gatti, S.3    Crepaldi, T.4
  • 13
    • 0033104847 scopus 로고    scopus 로고
    • Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha
    • Yu AY, Shimoda LA, Iyer NV et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. J Clin Invest. 1999;103:691–696.
    • (1999) J Clin Invest , vol.103 , pp. 691-696
    • Yu, A.Y.1    Shimoda, L.A.2    Iyer, N.V.3
  • 15
    • 0344705115 scopus 로고    scopus 로고
    • VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis
    • Li J, Brown LF, Hibberd MG, Grossman JD, Morgan JP, Simons M. VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol. 1996;270:H1803–H1811.
    • (1996) Am J Physiol , vol.270 , pp. H1803-H1811
    • Li, J.1    Brown, L.F.2    Hibberd, M.G.3    Grossman, J.D.4    Morgan, J.P.5    Simons, M.6
  • 16
    • 0031685130 scopus 로고    scopus 로고
    • Hypoxic regulation of VEGF mRNA stability by RNA-binding proteins
    • Levy AP. Hypoxic regulation of VEGF mRNA stability by RNA-binding proteins. Trends Cardiovasc Med. 1998;8:246–250.
    • (1998) Trends Cardiovasc Med , vol.8 , pp. 246-250
    • Levy, A.P.1
  • 17
    • 49149113289 scopus 로고    scopus 로고
    • Therapeutic angiogenesis: a new treatment approach for ischemic heart disease—part I
    • Ahn A, Frishman WH, Gutwein A, Passeri J, Nelson M. Therapeutic angiogenesis: a new treatment approach for ischemic heart disease—part I. Cardiol Rev. 2008;16:163–171.
    • (2008) Cardiol Rev , vol.16 , pp. 163-171
    • Ahn, A.1    Frishman, W.H.2    Gutwein, A.3    Passeri, J.4    Nelson, M.5
  • 18
    • 56149093969 scopus 로고    scopus 로고
    • Therapeutic angiogenesis: a new treatment approach for ischemic heart disease—Part II
    • Ahn A, Frishman WH, Gutwein A, Passeri J, Nelson M. Therapeutic angiogenesis: a new treatment approach for ischemic heart disease—Part II. Cardiol Rev. 2008;16:219–229.
    • (2008) Cardiol Rev , vol.16 , pp. 219-229
    • Ahn, A.1    Frishman, W.H.2    Gutwein, A.3    Passeri, J.4    Nelson, M.5
  • 19
    • 0033547805 scopus 로고    scopus 로고
    • Age-dependent impairment of angiogenesis
    • Rivard A, Fabre JE, Silver M et al. Age-dependent impairment of angiogenesis. Circulation. 1999;99:111–120.
    • (1999) Circulation , vol.99 , pp. 111-120
    • Rivard, A.1    Fabre, J.E.2    Silver, M.3
  • 20
    • 36049044373 scopus 로고    scopus 로고
    • Type-2 diabetic Lepr(db/db) mice show a defective microvascular phenotype under basal conditions and an impaired response to angiogenesis gene therapy in the setting of limb ischemia
    • Emanueli C, Caporali A, Krankel N, Cristofaro B, Van LS, Madeddu P. Type-2 diabetic Lepr(db/db) mice show a defective microvascular phenotype under basal conditions and an impaired response to angiogenesis gene therapy in the setting of limb ischemia. Front Biosci. 2007;12:2003–2012.
    • (2007) Front Biosci , vol.12 , pp. 2003-2012
    • Emanueli, C.1    Caporali, A.2    Krankel, N.3    Cristofaro, B.4    Van, L.S.5    Madeddu, P.6
  • 21
    • 0032965317 scopus 로고    scopus 로고
    • Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF
    • Rivard A, Silver M, Chen D et al. Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am J Pathol. 1999;154:355–363.
    • (1999) Am J Pathol , vol.154 , pp. 355-363
    • Rivard, A.1    Silver, M.2    Chen, D.3
  • 22
    • 20244378531 scopus 로고    scopus 로고
    • Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor
    • Yoon YS, Uchida S, Masuo O et al. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation. 2005;111:2073–2085.
    • (2005) Circulation , vol.111 , pp. 2073-2085
    • Yoon, Y.S.1    Uchida, S.2    Masuo, O.3
  • 24
    • 0036143406 scopus 로고    scopus 로고
    • Morphological characteristics of the microvasculature in healing myocardial infarcts
    • Ren G, Michael LH, Entman ML, Frangogiannis NG. Morphological characteristics of the microvasculature in healing myocardial infarcts. J Histochem Cytochem. 2002;50:71–79.
    • (2002) J Histochem Cytochem , vol.50 , pp. 71-79
    • Ren, G.1    Michael, L.H.2    Entman, M.L.3    Frangogiannis, N.G.4
  • 25
    • 0025994605 scopus 로고
    • First steps of tumor-related angiogenesis
    • Paku S, Paweletz N. First steps of tumor-related angiogenesis. Lab Invest. 1991;65:334–346.
    • (1991) Lab Invest , vol.65 , pp. 334-346
    • Paku, S.1    Paweletz, N.2
  • 26
    • 0029155806 scopus 로고
    • Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization
    • Drake CJ, Little CD. Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization. Proc Natl Acad Sci USA. 1995;92:7657–7661.
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 7657-7661
    • Drake, C.J.1    Little, C.D.2
  • 27
    • 17344390961 scopus 로고    scopus 로고
    • Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor
    • Pettersson A, Nagy JA, Brown LF et al. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Invest. 2000;80:99–115.
    • (2000) Lab Invest , vol.80 , pp. 99-115
    • Pettersson, A.1    Nagy, J.A.2    Brown, L.F.3
  • 28
    • 0031834239 scopus 로고    scopus 로고
    • A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF
    • Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development. 1998;125:1591–1598.
    • (1998) Development , vol.125 , pp. 1591-1598
    • Benjamin, L.E.1    Hemo, I.2    Keshet, E.3
  • 29
    • 0345275943 scopus 로고    scopus 로고
    • Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair
    • Virag JI, Murry CE. Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. Am J Pathol. 2003;163:2433–2440.
    • (2003) Am J Pathol , vol.163 , pp. 2433-2440
    • Virag, J.I.1    Murry, C.E.2
  • 30
    • 84888636511 scopus 로고    scopus 로고
    • The collateral circulation of the heart in coronary total arterial occlusions in man: systematic review of assessment and pathophysiology
    • Khand A, Fisher M, Jones J, Patel B, Perry R, Mitsudo K. The collateral circulation of the heart in coronary total arterial occlusions in man: systematic review of assessment and pathophysiology. Am Heart J. 2013;166:941–952.
    • (2013) Am Heart J , vol.166 , pp. 941-952
    • Khand, A.1    Fisher, M.2    Jones, J.3    Patel, B.4    Perry, R.5    Mitsudo, K.6
  • 31
    • 84897467021 scopus 로고    scopus 로고
    • Historical aspects and relevance of the human coronary collateral circulation
    • Seiler C, Meier P. Historical aspects and relevance of the human coronary collateral circulation. Curr Cardiol Rev. 2014;10:2–16.
    • (2014) Curr Cardiol Rev , vol.10 , pp. 2-16
    • Seiler, C.1    Meier, P.2
  • 32
    • 84959862090 scopus 로고    scopus 로고
    • Genetic lineage tracing discloses arteriogenesis as the main mechanism for collateral growth in the mouse heart
    • He L, Liu Q, Hu T et al. Genetic lineage tracing discloses arteriogenesis as the main mechanism for collateral growth in the mouse heart. Cardiovasc Res. 2016;109:419–430.
    • (2016) Cardiovasc Res , vol.109 , pp. 419-430
    • He, L.1    Liu, Q.2    Hu, T.3
  • 33
    • 34250719709 scopus 로고    scopus 로고
    • Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization
    • Nolan DJ, Ciarrocchi A, Mellick AS et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev. 2007;21:1546–1558.
    • (2007) Genes Dev , vol.21 , pp. 1546-1558
    • Nolan, D.J.1    Ciarrocchi, A.2    Mellick, A.S.3
  • 34
    • 0033529618 scopus 로고    scopus 로고
    • Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization
    • Asahara T, Masuda H, Takahashi T et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85:221–228.
    • (1999) Circ Res , vol.85 , pp. 221-228
    • Asahara, T.1    Masuda, H.2    Takahashi, T.3
  • 35
    • 0035044085 scopus 로고    scopus 로고
    • Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function
    • Kocher AA, Schuster MD, Szabolcs MJ et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7:430–436.
    • (2001) Nat Med , vol.7 , pp. 430-436
    • Kocher, A.A.1    Schuster, M.D.2    Szabolcs, M.J.3
  • 36
    • 3242659970 scopus 로고    scopus 로고
    • Modulation of the vascular response to injury by autologous blood-derived outgrowth endothelial cells
    • Gulati R, Jevremovic D, Witt TA et al. Modulation of the vascular response to injury by autologous blood-derived outgrowth endothelial cells. Am J Physiol Heart Circ Physiol. 2004;287:H512–H517.
    • (2004) Am J Physiol Heart Circ Physiol , vol.287 , pp. H512-H517
    • Gulati, R.1    Jevremovic, D.2    Witt, T.A.3
  • 37
    • 78649872095 scopus 로고    scopus 로고
    • Endothelial progenitor cells: quo vadis?
    • Richardson MR, Yoder MC. Endothelial progenitor cells: quo vadis? J Mol Cell Cardiol. 2011;50:266–272.
    • (2011) J Mol Cell Cardiol , vol.50 , pp. 266-272
    • Richardson, M.R.1    Yoder, M.C.2
  • 38
    • 45149116677 scopus 로고    scopus 로고
    • The stem cell movement
    • Smart N, Riley PR. The stem cell movement. Circ Res. 2008;102:1155–1168.
    • (2008) Circ Res , vol.102 , pp. 1155-1168
    • Smart, N.1    Riley, P.R.2
  • 39
    • 84930788256 scopus 로고    scopus 로고
    • Vascular wall progenitor cells in health and disease
    • Psaltis PJ, Simari RD. Vascular wall progenitor cells in health and disease. Circ Res. 2015;116:1392–1412.
    • (2015) Circ Res , vol.116 , pp. 1392-1412
    • Psaltis, P.J.1    Simari, R.D.2
  • 40
    • 79957562794 scopus 로고    scopus 로고
    • Vascular wall-resident CD44 +  multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation
    • Klein D, Weisshardt P, Kleff V, Jastrow H, Jakob HG, Ergun S. Vascular wall-resident CD44 +  multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One. 2011;6:e20540.
    • (2011) PLoS One , vol.6
    • Klein, D.1    Weisshardt, P.2    Kleff, V.3    Jastrow, H.4    Jakob, H.G.5    Ergun, S.6
  • 41
    • 34547187823 scopus 로고    scopus 로고
    • Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells
    • Pasquinelli G, Tazzari PL, Vaselli C et al. Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells. 2007;25:1627–1634.
    • (2007) Stem Cells , vol.25 , pp. 1627-1634
    • Pasquinelli, G.1    Tazzari, P.L.2    Vaselli, C.3
  • 42
    • 84863306840 scopus 로고    scopus 로고
    • Differentiation of multipotent vascular stem cells contributes to vascular diseases
    • Tang Z, Wang A, Yuan F et al. Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nat Commun. 2012;3:875.
    • (2012) Nat Commun , vol.3 , pp. 875
    • Tang, Z.1    Wang, A.2    Yuan, F.3
  • 43
    • 84904753091 scopus 로고    scopus 로고
    • Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature
    • Psaltis PJ, Puranik AS, Spoon DB et al. Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature. Circ Res. 2014;115:364–375.
    • (2014) Circ Res , vol.115 , pp. 364-375
    • Psaltis, P.J.1    Puranik, A.S.2    Spoon, D.B.3
  • 44
    • 15944381205 scopus 로고    scopus 로고
    • Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells
    • Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood. 2005;105:2783–2786.
    • (2005) Blood , vol.105 , pp. 2783-2786
    • Ingram, D.A.1    Mead, L.E.2    Moore, D.B.3    Woodard, W.4    Fenoglio, A.5    Yoder, M.C.6
  • 46
    • 85047694430 scopus 로고    scopus 로고
    • Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice
    • Hu Y, Zhang Z, Torsney E et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest. 2004;113:1258–1265.
    • (2004) J Clin Invest , vol.113 , pp. 1258-1265
    • Hu, Y.1    Zhang, Z.2    Torsney, E.3
  • 48
    • 79751515787 scopus 로고    scopus 로고
    • Vascular smooth muscle progenitor cells: building and repairing blood vessels
    • Majesky MW, Dong XR, Regan JN, Hoglund VJ. Vascular smooth muscle progenitor cells: building and repairing blood vessels. Circ Res. 2011;108:365–377.
    • (2011) Circ Res , vol.108 , pp. 365-377
    • Majesky, M.W.1    Dong, X.R.2    Regan, J.N.3    Hoglund, V.J.4
  • 50
    • 79961230399 scopus 로고    scopus 로고
    • Pericytes: developmental, physiological, and pathological perspectives, problems, and promises
    • Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21:193–215.
    • (2011) Dev Cell , vol.21 , pp. 193-215
    • Armulik, A.1    Genove, G.2    Betsholtz, C.3
  • 51
    • 0242405617 scopus 로고    scopus 로고
    • Endothelial-pericyte interactions in angiogenesis
    • Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 2003;314:15–23.
    • (2003) Cell Tissue Res , vol.314 , pp. 15-23
    • Gerhardt, H.1    Betsholtz, C.2
  • 53
    • 80053561101 scopus 로고    scopus 로고
    • Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132
    • Katare R, Riu F, Mitchell K et al. Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ Res. 2011;109:894–906.
    • (2011) Circ Res , vol.109 , pp. 894-906
    • Katare, R.1    Riu, F.2    Mitchell, K.3
  • 54
    • 84874337055 scopus 로고    scopus 로고
    • Human pericytes for ischemic heart repair
    • Chen CW, Okada M, Proto JD et al. Human pericytes for ischemic heart repair. Stem Cells. 2013;31:305–316.
    • (2013) Stem Cells , vol.31 , pp. 305-316
    • Chen, C.W.1    Okada, M.2    Proto, J.D.3
  • 56
    • 84961664602 scopus 로고    scopus 로고
    • Primitive embryonic macrophages are required for coronary development and maturation
    • Leid J, Carrelha J, Boukarabila H, Epelman S, Jacobsen SE, Lavine KJ. Primitive embryonic macrophages are required for coronary development and maturation. Circ Res. 2016;118:1498–1511.
    • (2016) Circ Res , vol.118 , pp. 1498-1511
    • Leid, J.1    Carrelha, J.2    Boukarabila, H.3    Epelman, S.4    Jacobsen, S.E.5    Lavine, K.J.6
  • 57
    • 84938811415 scopus 로고    scopus 로고
    • De-novo collateral formation following acute myocardial infarction: dependence on CCR2(+) bone marrow cells
    • Zhang H, Faber JE. De-novo collateral formation following acute myocardial infarction: dependence on CCR2(+) bone marrow cells. J Mol Cell Cardiol. 2015;87:4–16.
    • (2015) J Mol Cell Cardiol , vol.87 , pp. 4-16
    • Zhang, H.1    Faber, J.E.2
  • 59
    • 79959944642 scopus 로고    scopus 로고
    • Vascularizing the heart
    • Riley PR, Smart N. Vascularizing the heart. Cardiovasc Res. 2011;91:260–268.
    • (2011) Cardiovasc Res , vol.91 , pp. 260-268
    • Riley, P.R.1    Smart, N.2
  • 60
    • 84927169682 scopus 로고    scopus 로고
    • Cellular origin and developmental program of coronary angiogenesis
    • Tian X, Pu WT, Zhou B. Cellular origin and developmental program of coronary angiogenesis. Circ Res. 2015;116:515–530.
    • (2015) Circ Res , vol.116 , pp. 515-530
    • Tian, X.1    Pu, W.T.2    Zhou, B.3
  • 61
    • 28744445970 scopus 로고    scopus 로고
    • Formation of the coronary vasculature during development
    • Tomanek RJ. Formation of the coronary vasculature during development. Angiogenesis. 2005;8:273–284.
    • (2005) Angiogenesis , vol.8 , pp. 273-284
    • Tomanek, R.J.1
  • 62
    • 0026701709 scopus 로고
    • Coronary artery development in the chick: origin and deployment of smooth muscle cells, and the effects of neural crest ablation
    • Hood LC, Rosenquist TH. Coronary artery development in the chick: origin and deployment of smooth muscle cells, and the effects of neural crest ablation. Anat Rec. 1992;234:291–300.
    • (1992) Anat Rec , vol.234 , pp. 291-300
    • Hood, L.C.1    Rosenquist, T.H.2
  • 63
    • 84930639373 scopus 로고    scopus 로고
    • Cardiac lymphatics are heterogeneous in origin and respond to injury
    • Klotz L, Norman S, Vieira JM et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature. 2015;522:62–67.
    • (2015) Nature , vol.522 , pp. 62-67
    • Klotz, L.1    Norman, S.2    Vieira, J.M.3
  • 64
    • 46449089721 scopus 로고    scopus 로고
    • A myocardial lineage derives from Tbx18 epicardial cells
    • Cai CL, Martin JC, Sun Y et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature. 2008;454:104–108.
    • (2008) Nature , vol.454 , pp. 104-108
    • Cai, C.L.1    Martin, J.C.2    Sun, Y.3
  • 65
    • 0037447925 scopus 로고    scopus 로고
    • Inhibition of a4-integrin stimulates epicardial-mesenchymal transformation and alters migration and cell fate of epicardially derived mesenchyme
    • Dettman RW, Pae S, Morabito C, Bristow J. Inhibition of a4-integrin stimulates epicardial-mesenchymal transformation and alters migration and cell fate of epicardially derived mesenchyme. Dev Biol. 2003;257:315–328.
    • (2003) Dev Biol , vol.257 , pp. 315-328
    • Dettman, R.W.1    Pae, S.2    Morabito, C.3    Bristow, J.4
  • 67
    • 84863229669 scopus 로고    scopus 로고
    • Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells
    • Katz TC, Singh MK, Degenhardt K et al. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev Cell. 2012;22:639–650.
    • (2012) Dev Cell , vol.22 , pp. 639-650
    • Katz, T.C.1    Singh, M.K.2    Degenhardt, K.3
  • 68
    • 0029133086 scopus 로고
    • Retroviral targeting of FGF and FGFR in cardiomyocytes and coronary vascular cells during heart development
    • Mikawa T. Retroviral targeting of FGF and FGFR in cardiomyocytes and coronary vascular cells during heart development. Ann N Y Acad Sci. 1995;752:506–516.
    • (1995) Ann N Y Acad Sci , vol.752 , pp. 506-516
    • Mikawa, T.1
  • 69
    • 0029964385 scopus 로고    scopus 로고
    • Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ
    • Mikawa T, Gourdie RG. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol. 1996;174:221–232.
    • (1996) Dev Biol , vol.174 , pp. 221-232
    • Mikawa, T.1    Gourdie, R.G.2
  • 70
    • 84955286490 scopus 로고    scopus 로고
    • Pericytes are progenitors for coronary artery smooth muscle
    • Volz KS, Jacobs AH, Chen HI et al. Pericytes are progenitors for coronary artery smooth muscle. Elife. 2015;4. e10036.
    • (2015) Elife , vol.4
    • Volz, K.S.1    Jacobs, A.H.2    Chen, H.I.3
  • 71
    • 0033020504 scopus 로고    scopus 로고
    • Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium
    • Vrancken Peeters MP, Gittenberger-de Groot AC, Mentink MMT, Poelmann RE. Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anat Embryol. 1999;199:367–378.
    • (1999) Anat Embryol , vol.199 , pp. 367-378
    • Vrancken Peeters, M.P.1    Gittenberger-de Groot, A.C.2    Mentink, M.M.T.3    Poelmann, R.E.4
  • 72
    • 46449138664 scopus 로고    scopus 로고
    • Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart
    • Zhou B, Ma Q, Rajagopal S et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008;454:109–113.
    • (2008) Nature , vol.454 , pp. 109-113
    • Zhou, B.1    Ma, Q.2    Rajagopal, S.3
  • 73
    • 0030801279 scopus 로고    scopus 로고
    • Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos
    • Perez-Pomares JM, Macias D, Garcia-Garrido L, Munoz-Chapuli R. Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos. Dev Dyn. 1997;210:96–105.
    • (1997) Dev Dyn , vol.210 , pp. 96-105
    • Perez-Pomares, J.M.1    Macias, D.2    Garcia-Garrido, L.3    Munoz-Chapuli, R.4
  • 74
    • 0345019793 scopus 로고    scopus 로고
    • The origin of the subepicardial mesenchyme in the avian embryo: an immunohistochemical and quail-chick chimera study
    • Perez-Pomares JM, Macias D, Garcia-Garrido L, Munoz-Chapuli R. The origin of the subepicardial mesenchyme in the avian embryo: an immunohistochemical and quail-chick chimera study. Dev Biol. 1998;200:57–68.
    • (1998) Dev Biol , vol.200 , pp. 57-68
    • Perez-Pomares, J.M.1    Macias, D.2    Garcia-Garrido, L.3    Munoz-Chapuli, R.4
  • 75
    • 84963705843 scopus 로고    scopus 로고
    • Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls
    • Zhang H, Pu W, Li G et al. Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. Circ Res. 2016;118:1880–1893.
    • (2016) Circ Res , vol.118 , pp. 1880-1893
    • Zhang, H.1    Pu, W.2    Li, G.3
  • 76
    • 13544259652 scopus 로고    scopus 로고
    • Myocardial heterogeneity in permissiveness for epicardium-derived cells and endothelial precursor cells along the developing heart tube at the onset of coronary vascularization
    • Lie-Venema H, Eralp I, Maas S, Gittenberger-de Groot AC, Poelmann RE, DeRuiter MC. Myocardial heterogeneity in permissiveness for epicardium-derived cells and endothelial precursor cells along the developing heart tube at the onset of coronary vascularization. Anat Rec A Discov Mol Cell Evol Biol. 2005;282A:120–129.
    • (2005) Anat Rec A Discov Mol Cell Evol Biol , vol.282A , pp. 120-129
    • Lie-Venema, H.1    Eralp, I.2    Maas, S.3    Gittenberger-de Groot, A.C.4    Poelmann, R.E.5    DeRuiter, M.C.6
  • 77
    • 0027227849 scopus 로고
    • Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras
    • Poelmann RE, Gittenberger-de Groot AC, Mentink MM, Bokenkamp R, Hogers B. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res. 1993;73:559–568.
    • (1993) Circ Res , vol.73 , pp. 559-568
    • Poelmann, R.E.1    Gittenberger-de Groot, A.C.2    Mentink, M.M.3    Bokenkamp, R.4    Hogers, B.5
  • 78
    • 0026767366 scopus 로고
    • Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels
    • Mikawa T, Fischman DA. Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. Proc Natl Acad Sci USA. 1992;89:9504–9508.
    • (1992) Proc Natl Acad Sci USA , vol.89 , pp. 9504-9508
    • Mikawa, T.1    Fischman, D.A.2
  • 79
    • 84870043996 scopus 로고    scopus 로고
    • Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling
    • Wu B, Zhang Z, Lui W et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell. 2012;151:1083–1096.
    • (2012) Cell , vol.151 , pp. 1083-1096
    • Wu, B.1    Zhang, Z.2    Lui, W.3
  • 80
    • 68349157530 scopus 로고    scopus 로고
    • Endocardial cells are a distinct endothelial lineage derived from Flk1+ multipotent cardiovascular progenitors
    • Misfeldt AM, Boyle SC, Tompkins KL, Bautch VL, Labosky PA, Baldwin HS. Endocardial cells are a distinct endothelial lineage derived from Flk1+ multipotent cardiovascular progenitors. Dev Biol. 2009;333:78–89.
    • (2009) Dev Biol , vol.333 , pp. 78-89
    • Misfeldt, A.M.1    Boyle, S.C.2    Tompkins, K.L.3    Bautch, V.L.4    Labosky, P.A.5    Baldwin, H.S.6
  • 82
    • 84923220418 scopus 로고    scopus 로고
    • Cardiac endothelial cells express Wilms’ tumor-1: Wt1 expression in the developing, adult and infarcted heart
    • Duim SN, Kurakula K, Goumans MJ, Kruithof BP. Cardiac endothelial cells express Wilms’ tumor-1: Wt1 expression in the developing, adult and infarcted heart. J Mol Cell Cardiol. 2015;81:127–135.
    • (2015) J Mol Cell Cardiol , vol.81 , pp. 127-135
    • Duim, S.N.1    Kurakula, K.2    Goumans, M.J.3    Kruithof, B.P.4
  • 83
    • 0036636107 scopus 로고    scopus 로고
    • The Wilms’ tumor suppressor Wt1 is expressed in the coronary vasculature after myocardial infarction
    • Wagner KD, Wagner N, Bondke A et al. The Wilms’ tumor suppressor Wt1 is expressed in the coronary vasculature after myocardial infarction. FASEB J. 2002;16:1117–1119.
    • (2002) FASEB J , vol.16 , pp. 1117-1119
    • Wagner, K.D.1    Wagner, N.2    Bondke, A.3
  • 85
    • 29444451293 scopus 로고    scopus 로고
    • Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation
    • Merki E, Zamora M, Raya A et al. Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc Natl Acad Sci USA. 2005;102:18455–18460.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 18455-18460
    • Merki, E.1    Zamora, M.2    Raya, A.3
  • 86
    • 84887962527 scopus 로고    scopus 로고
    • Epicardial function of canonical Wnt-, Hedgehog-, Fgfr1/2-, and Pdgfra-signalling
    • Rudat C, Norden J, Taketo MM, Kispert A. Epicardial function of canonical Wnt-, Hedgehog-, Fgfr1/2-, and Pdgfra-signalling. Cardiovasc Res. 2013;100:411–421.
    • (2013) Cardiovasc Res , vol.100 , pp. 411-421
    • Rudat, C.1    Norden, J.2    Taketo, M.M.3    Kispert, A.4
  • 87
    • 84858775764 scopus 로고    scopus 로고
    • An epicardial floor plan for building and rebuilding the mammalian heart
    • Riley PR. An epicardial floor plan for building and rebuilding the mammalian heart. Curr Top Dev Biol. 2012;100:233–251.
    • (2012) Curr Top Dev Biol , vol.100 , pp. 233-251
    • Riley, P.R.1
  • 88
    • 77950237662 scopus 로고    scopus 로고
    • Coronary arteries form by developmental reprogramming of venous cells
    • Red-Horse K, Ueno H, Weissman IL, Krasnow MA. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010;464:549–553.
    • (2010) Nature , vol.464 , pp. 549-553
    • Red-Horse, K.1    Ueno, H.2    Weissman, I.L.3    Krasnow, M.A.4
  • 89
    • 84911489742 scopus 로고    scopus 로고
    • The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis
    • Chen HI, Sharma B, Akerberg BN et al. The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development. 2014;141:4500–4512.
    • (2014) Development , vol.141 , pp. 4500-4512
    • Chen, H.I.1    Sharma, B.2    Akerberg, B.N.3
  • 90
    • 84875061404 scopus 로고
    • Embryological origin of the endocardium and derived valve progenitor cells: from developmental biology to stem cell-based valve repair
    • Puceat M. Embryological origin of the endocardium and derived valve progenitor cells: from developmental biology to stem cell-based valve repair. Biochim Biophys Acta. 1833;917–922:2013.
    • (1833) Biochim Biophys Acta , vol.917-922 , pp. 2013
    • Puceat, M.1
  • 91
    • 84883318758 scopus 로고    scopus 로고
    • Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries
    • Tian X, Hu T, Zhang H et al. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res. 2013;23:1075–1090.
    • (2013) Cell Res , vol.23 , pp. 1075-1090
    • Tian, X.1    Hu, T.2    Zhang, H.3
  • 92
    • 65549111271 scopus 로고    scopus 로고
    • Coronary vessel development and insight towards neovascular therapy
    • Smart N, Dube KN, Riley PR. Coronary vessel development and insight towards neovascular therapy. Int J Exp Pathol. 2009;90:262–283.
    • (2009) Int J Exp Pathol , vol.90 , pp. 262-283
    • Smart, N.1    Dube, K.N.2    Riley, P.R.3
  • 93
    • 84964997228 scopus 로고    scopus 로고
    • Hippo signaling mediators Yap and Taz Are required in the epicardium for coronary vasculature development
    • Singh A, Ramesh S, Cibi DM et al. Hippo signaling mediators Yap and Taz Are required in the epicardium for coronary vasculature development. Cell Rep. 2016;15:1384–1393.
    • (2016) Cell Rep , vol.15 , pp. 1384-1393
    • Singh, A.1    Ramesh, S.2    Cibi, D.M.3
  • 94
    • 0035827727 scopus 로고    scopus 로고
    • Vascular endothelial growth factor and basic fibroblast growth factor differentially modulate early postnatal coronary angiogenesis
    • Tomanek RJ, Sandra A, Zheng W, Brock T, Bjercke RJ, Holifield JS. Vascular endothelial growth factor and basic fibroblast growth factor differentially modulate early postnatal coronary angiogenesis. Circ Res. 2001;88:1135–1141.
    • (2001) Circ Res , vol.88 , pp. 1135-1141
    • Tomanek, R.J.1    Sandra, A.2    Zheng, W.3    Brock, T.4    Bjercke, R.J.5    Holifield, J.S.6
  • 95
    • 0025797684 scopus 로고
    • Myocardial capillaries: increase in number by splitting of existing vessels
    • van Groningen JP, Wenink AC, Testers LH. Myocardial capillaries: increase in number by splitting of existing vessels. Anat Embryol. 1991;184:65–70.
    • (1991) Anat Embryol , vol.184 , pp. 65-70
    • van Groningen, J.P.1    Wenink, A.C.2    Testers, L.H.3
  • 96
    • 84903703870 scopus 로고    scopus 로고
    • Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart
    • Tian X, Hu T, Zhang H et al. Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science. 2014;345:90–94.
    • (2014) Science , vol.345 , pp. 90-94
    • Tian, X.1    Hu, T.2    Zhang, H.3
  • 97
    • 84907487533 scopus 로고    scopus 로고
    • Connecting the coronaries: how the coronary plexus develops and is functionalized
    • Dyer L, Pi X, Patterson C. Connecting the coronaries: how the coronary plexus develops and is functionalized. Dev Biol. 2014;395:111–119.
    • (2014) Dev Biol , vol.395 , pp. 111-119
    • Dyer, L.1    Pi, X.2    Patterson, C.3
  • 98
    • 2142650739 scopus 로고    scopus 로고
    • Formation and remodeling of the coronary vascular bed in the embryonic avian heart
    • Kattan J, Dettman RW, Bristow J. Formation and remodeling of the coronary vascular bed in the embryonic avian heart. Dev Dyn. 2004;230:34–43.
    • (2004) Dev Dyn , vol.230 , pp. 34-43
    • Kattan, J.1    Dettman, R.W.2    Bristow, J.3
  • 99
    • 0036449067 scopus 로고    scopus 로고
    • The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development
    • Poelmann RE, Lie-Venema H, Gittenberger-de Groot AC. The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development. Tex Heart Inst J. 2002;29:255–261.
    • (2002) Tex Heart Inst J , vol.29 , pp. 255-261
    • Poelmann, R.E.1    Lie-Venema, H.2    Gittenberger-de Groot, A.C.3
  • 100
    • 58149392309 scopus 로고    scopus 로고
    • Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations
    • Mellgren AM, Smith CL, Olsen GS et al. Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circ Res. 2008;103:1393–1401.
    • (2008) Circ Res , vol.103 , pp. 1393-1401
    • Mellgren, A.M.1    Smith, C.L.2    Olsen, G.S.3
  • 101
    • 79958799319 scopus 로고    scopus 로고
    • Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling/novelty and significance
    • Smith CL, Baek ST, Sung CY, Tallquist MD. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling/novelty and significance. Circ Res. 2011;108:e15–e26.
    • (2011) Circ Res , vol.108 , pp. e15-e26
    • Smith, C.L.1    Baek, S.T.2    Sung, C.Y.3    Tallquist, M.D.4
  • 102
    • 84938877573 scopus 로고    scopus 로고
    • Developmental origin of age-related coronary artery disease
    • Wei K, Diaz-Trelles R, Liu Q et al. Developmental origin of age-related coronary artery disease. Cardiovasc Res. 2015;107:287–294.
    • (2015) Cardiovasc Res , vol.107 , pp. 287-294
    • Wei, K.1    Diaz-Trelles, R.2    Liu, Q.3
  • 103
    • 84960364577 scopus 로고    scopus 로고
    • Smooth muscle origin of postnatal 2nd CVP is pre-determined in early embryo
    • Liu Q, Zhang H, Tian X et al. Smooth muscle origin of postnatal 2nd CVP is pre-determined in early embryo. Biochem Biophys Res Commun. 2016;471:430–436.
    • (2016) Biochem Biophys Res Commun , vol.471 , pp. 430-436
    • Liu, Q.1    Zhang, H.2    Tian, X.3
  • 104
    • 0036392163 scopus 로고    scopus 로고
    • Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor
    • Chen TH, Chang TC, Kang JO et al. Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. Dev Biol. 2002;250:198–207.
    • (2002) Dev Biol , vol.250 , pp. 198-207
    • Chen, T.H.1    Chang, T.C.2    Kang, J.O.3
  • 105
    • 79959819263 scopus 로고    scopus 로고
    • De novo cardiomyocytes from within the activated adult heart after injury
    • Smart N, Bollini S, Dube KN et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature. 2011;474:640–644.
    • (2011) Nature , vol.474 , pp. 640-644
    • Smart, N.1    Bollini, S.2    Dube, K.N.3
  • 106
    • 79955498411 scopus 로고    scopus 로고
    • Adult mouse epicardium modulates myocardial injury by secreting paracrine factors
    • Zhou B, Honor LB, He H et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Invest. 2011;121:1894–1904.
    • (2011) J Clin Invest , vol.121 , pp. 1894-1904
    • Zhou, B.1    Honor, L.B.2    He, H.3
  • 107
    • 82455186684 scopus 로고    scopus 로고
    • Epicardial epithelial to mesenchymal transition in injured heart
    • Zhou B, Pu WT. Epicardial epithelial to mesenchymal transition in injured heart. J Cell Mol Med. 2011;15:2781–2786.
    • (2011) J Cell Mol Med , vol.15 , pp. 2781-2786
    • Zhou, B.1    Pu, W.T.2
  • 108
    • 84938501945 scopus 로고    scopus 로고
    • Endothelial plasticity drives arterial remodeling within the endocardium after myocardial infarction
    • Miquerol L, Thireau J, Bideaux P, Sturny R, Richard S, Kelly RG. Endothelial plasticity drives arterial remodeling within the endocardium after myocardial infarction. Circ Res. 2015;116:1765–1771.
    • (2015) Circ Res , vol.116 , pp. 1765-1771
    • Miquerol, L.1    Thireau, J.2    Bideaux, P.3    Sturny, R.4    Richard, S.5    Kelly, R.G.6
  • 109
    • 0037073890 scopus 로고    scopus 로고
    • Heart regeneration in zebrafish
    • Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002;298:2188–2190.
    • (2002) Science , vol.298 , pp. 2188-2190
    • Poss, K.D.1    Wilson, L.G.2    Keating, M.T.3
  • 110
    • 33750483609 scopus 로고    scopus 로고
    • A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration
    • Lepilina A, Coon AN, Kikuchi K et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell. 2006;127:607–619.
    • (2006) Cell , vol.127 , pp. 607-619
    • Lepilina, A.1    Coon, A.N.2    Kikuchi, K.3
  • 111
    • 79959427955 scopus 로고    scopus 로고
    • tcf21 +  epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration
    • Kikuchi K, Gupta V, Wang J et al. tcf21 +  epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development. 2011;138:2895–2902.
    • (2011) Development , vol.138 , pp. 2895-2902
    • Kikuchi, K.1    Gupta, V.2    Wang, J.3
  • 112
    • 77954729235 scopus 로고    scopus 로고
    • Epicardium-derived cells (EPDCs) in development, cardiac disease and repair of ischemia
    • Gittenberger-de Groot AC, Winter EM, Poelmann RE. Epicardium-derived cells (EPDCs) in development, cardiac disease and repair of ischemia. J Cell Mol Med. 2010;14:1056–1060.
    • (2010) J Cell Mol Med , vol.14 , pp. 1056-1060
    • Gittenberger-de Groot, A.C.1    Winter, E.M.2    Poelmann, R.E.3
  • 113
    • 84055214880 scopus 로고    scopus 로고
    • Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes
    • Zhou B, Honor LB, Ma Q et al. Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. J Mol Cell Cardiol. 2011;52:43–47.
    • (2011) J Mol Cell Cardiol , vol.52 , pp. 43-47
    • Zhou, B.1    Honor, L.B.2    Ma, Q.3
  • 114
    • 77950871039 scopus 로고    scopus 로고
    • Epicardial-myocardial signaling directing coronary vasculogenesis
    • Olivey HE, Svensson EC. Epicardial-myocardial signaling directing coronary vasculogenesis. Circ Res. 2010;106:818–832.
    • (2010) Circ Res , vol.106 , pp. 818-832
    • Olivey, H.E.1    Svensson, E.C.2
  • 115
    • 84555190764 scopus 로고    scopus 로고
    • The epicardium as a candidate for heart regeneration
    • Smart N, Riley PR. The epicardium as a candidate for heart regeneration. Future Cardiol. 2012;8:53–69.
    • (2012) Future Cardiol , vol.8 , pp. 53-69
    • Smart, N.1    Riley, P.R.2
  • 117
    • 33745129425 scopus 로고    scopus 로고
    • Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development
    • Lavine KJ, White AC, Park C et al. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev. 2006;20:1651–1666.
    • (2006) Genes Dev , vol.20 , pp. 1651-1666
    • Lavine, K.J.1    White, A.C.2    Park, C.3
  • 118
    • 0032964554 scopus 로고    scopus 로고
    • Vascular endothelial growth factor expression coincides with coronary vasculogenesis and angiogenesis
    • Tomanek RJ, Ratajska A, Kitten GT, Yue X, Sandra A. Vascular endothelial growth factor expression coincides with coronary vasculogenesis and angiogenesis. Dev Dyn. 1999;215:54–61.
    • (1999) Dev Dyn , vol.215 , pp. 54-61
    • Tomanek, R.J.1    Ratajska, A.2    Kitten, G.T.3    Yue, X.4    Sandra, A.5
  • 119
    • 84961964289 scopus 로고    scopus 로고
    • Genetic lineage tracing identifies endocardial origin of liver vasculature
    • Zhang H, Pu W, Tian X et al. Genetic lineage tracing identifies endocardial origin of liver vasculature. Nat Genet. 2016;48:537–543.
    • (2016) Nat Genet , vol.48 , pp. 537-543
    • Zhang, H.1    Pu, W.2    Tian, X.3
  • 120
    • 84880780215 scopus 로고    scopus 로고
    • Accelerated coronary angiogenesis by vegfr1-knockout endocardial cells
    • Zhang Z, Zhou B. Accelerated coronary angiogenesis by vegfr1-knockout endocardial cells. PLoS One. 2013;8:e70570.
    • (2013) PLoS One , vol.8
    • Zhang, Z.1    Zhou, B.2
  • 122
    • 77955426828 scopus 로고    scopus 로고
    • Vascular endothelial growth factor (VEGF)-A: role on cardiac angiogenesis following myocardial infarction
    • Zhao T, Zhao W, Chen Y, Ahokas RA, Sun Y. Vascular endothelial growth factor (VEGF)-A: role on cardiac angiogenesis following myocardial infarction. Microvasc Res. 2010;80:188–194.
    • (2010) Microvasc Res , vol.80 , pp. 188-194
    • Zhao, T.1    Zhao, W.2    Chen, Y.3    Ahokas, R.A.4    Sun, Y.5
  • 123
    • 77954313786 scopus 로고    scopus 로고
    • Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells
    • Yang Z, von Ballmoos MW, Faessler D et al. Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells. Atherosclerosis. 2010;211:103–109.
    • (2010) Atherosclerosis , vol.211 , pp. 103-109
    • Yang, Z.1    von Ballmoos, M.W.2    Faessler, D.3
  • 124
    • 33746836891 scopus 로고    scopus 로고
    • Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury
    • Takahashi M, Li TS, Suzuki R et al. Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am J Physiol Heart Circ Physiol. 2006;291:H886–H893.
    • (2006) Am J Physiol Heart Circ Physiol , vol.291 , pp. H886-H893
    • Takahashi, M.1    Li, T.S.2    Suzuki, R.3
  • 125
    • 84958050716 scopus 로고    scopus 로고
    • Study on the expression of VEGF and HIF-1alpha in infarct area of rats with AMI
    • Cheng C, Li P, Wang YG, Bi MH, Wu PS. Study on the expression of VEGF and HIF-1alpha in infarct area of rats with AMI. Eur Rev Med Pharmacol Sci. 2016;20:115–119.
    • (2016) Eur Rev Med Pharmacol Sci , vol.20 , pp. 115-119
    • Cheng, C.1    Li, P.2    Wang, Y.G.3    Bi, M.H.4    Wu, P.S.5
  • 126
    • 1542378240 scopus 로고    scopus 로고
    • Angiopoietin 1 expression levels in the myocardium direct coronary vessel development
    • Ward NL, Van SP, Sturk C, Cruz M, Dumont DJ. Angiopoietin 1 expression levels in the myocardium direct coronary vessel development. Dev Dyn. 2004;229:500–509.
    • (2004) Dev Dyn , vol.229 , pp. 500-509
    • Ward, N.L.1    Van, S.P.2    Sturk, C.3    Cruz, M.4    Dumont, D.J.5
  • 127
    • 0037062491 scopus 로고    scopus 로고
    • Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF)
    • Visconti RP, Richardson CD, Sato TN. Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc Natl Acad Sci USA. 2002;99:8219–8224.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 8219-8224
    • Visconti, R.P.1    Richardson, C.D.2    Sato, T.N.3
  • 128
    • 0041374212 scopus 로고    scopus 로고
    • Increased expression of angiopoietin-2 and Tie2 receptor in a rat model of myocardial ischaemia/reperfusion
    • Shyu KG, Chang CC, Wang BW, Kuan P, Chang H. Increased expression of angiopoietin-2 and Tie2 receptor in a rat model of myocardial ischaemia/reperfusion. Clin Sci. 2003;105:287–294.
    • (2003) Clin Sci , vol.105 , pp. 287-294
    • Shyu, K.G.1    Chang, C.C.2    Wang, B.W.3    Kuan, P.4    Chang, H.5
  • 129
    • 79958269792 scopus 로고    scopus 로고
    • Circulating angiopoietins-1 and -2, angiopoietin receptor Tie-2 and vascular endothelial growth factor-A as biomarkers of acute myocardial infarction: a prospective nested case-control study
    • Iribarren C, Phelps BH, Darbinian JA et al. Circulating angiopoietins-1 and -2, angiopoietin receptor Tie-2 and vascular endothelial growth factor-A as biomarkers of acute myocardial infarction: a prospective nested case-control study. BMC Cardiovasc Disord. 2011;11:31.
    • (2011) BMC Cardiovasc Disord , vol.11 , pp. 31
    • Iribarren, C.1    Phelps, B.H.2    Darbinian, J.A.3
  • 131
    • 85006778840 scopus 로고    scopus 로고
    • Fibroblast growth factor 2 is an essential cardioprotective factor in a closed-chest model of cardiac ischemia-reperfusion injury
    • House SL, Wang J, Castro AM, Weinheimer C, Kovacs A, Ornitz DM. Fibroblast growth factor 2 is an essential cardioprotective factor in a closed-chest model of cardiac ischemia-reperfusion injury. Physiol Rep. 2015;3.
    • (2015) Physiol Rep , vol.3
    • House, S.L.1    Wang, J.2    Castro, A.M.3    Weinheimer, C.4    Kovacs, A.5    Ornitz, D.M.6
  • 132
    • 80055044236 scopus 로고    scopus 로고
    • Acidic and basic fibroblast growth factors involved in cardiac angiogenesis following infarction
    • Zhao T, Zhao W, Chen Y, Ahokas RA, Sun Y. Acidic and basic fibroblast growth factors involved in cardiac angiogenesis following infarction. Int J Cardiol. 2010;152:307–313.
    • (2010) Int J Cardiol , vol.152 , pp. 307-313
    • Zhao, T.1    Zhao, W.2    Chen, Y.3    Ahokas, R.A.4    Sun, Y.5
  • 133
    • 84983609840 scopus 로고    scopus 로고
    • Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury
    • House SL, Castro AM, Lupu TS et al. Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2016;310:H559–H571.
    • (2016) Am J Physiol Heart Circ Physiol , vol.310 , pp. H559-H571
    • House, S.L.1    Castro, A.M.2    Lupu, T.S.3
  • 134
    • 78649872745 scopus 로고    scopus 로고
    • Metformin against TGFbeta-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis
    • Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Martin-Castillo B, Joven J, Menendez JA. Metformin against TGFbeta-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis. Cell Cycle. 2010;9:4461–4468.
    • (2010) Cell Cycle , vol.9 , pp. 4461-4468
    • Cufi, S.1    Vazquez-Martin, A.2    Oliveras-Ferraros, C.3    Martin-Castillo, B.4    Joven, J.5    Menendez, J.A.6
  • 136
    • 0037007226 scopus 로고    scopus 로고
    • Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors
    • Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke DP. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J. 2002;21:1743–1753.
    • (2002) EMBO J , vol.21 , pp. 1743-1753
    • Goumans, M.J.1    Valdimarsdottir, G.2    Itoh, S.3    Rosendahl, A.4    Sideras, P.5    ten Dijke, D.P.6
  • 137
    • 77949915371 scopus 로고    scopus 로고
    • Involvement of the MEKK1 signaling pathway in the regulation of epicardial cell behavior by hyaluronan
    • Craig EA, Parker P, Austin AF, Barnett JV, Camenisch TD. Involvement of the MEKK1 signaling pathway in the regulation of epicardial cell behavior by hyaluronan. Cell Signal. 2010;22:968–976.
    • (2010) Cell Signal , vol.22 , pp. 968-976
    • Craig, E.A.1    Parker, P.2    Austin, A.F.3    Barnett, J.V.4    Camenisch, T.D.5
  • 138
    • 33644989417 scopus 로고    scopus 로고
    • Transforming growth factor-beta stimulates epithelial-mesenchymal transformation in the proepicardium
    • Olivey HE, Mundell NA, Austin AF, Barnett JV. Transforming growth factor-beta stimulates epithelial-mesenchymal transformation in the proepicardium. Dev Dyn. 2006;235:50–59.
    • (2006) Dev Dyn , vol.235 , pp. 50-59
    • Olivey, H.E.1    Mundell, N.A.2    Austin, A.F.3    Barnett, J.V.4
  • 139
    • 34047148354 scopus 로고    scopus 로고
    • The role of TGF-beta signaling in myocardial infarction and cardiac remodeling
    • Bujak M, Frangogiannis NG. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res. 2007;74:184–195.
    • (2007) Cardiovasc Res , vol.74 , pp. 184-195
    • Bujak, M.1    Frangogiannis, N.G.2
  • 140
    • 79551614815 scopus 로고    scopus 로고
    • Molecular and cellular mechanisms involved in cardiac remodeling after acute myocardial infarction
    • Vilahur G, Juan-Babot O, Pena E, Onate B, Casani L, Badimon L. Molecular and cellular mechanisms involved in cardiac remodeling after acute myocardial infarction. J Mol Cell Cardiol. 2011;50:522–533.
    • (2011) J Mol Cell Cardiol , vol.50 , pp. 522-533
    • Vilahur, G.1    Juan-Babot, O.2    Pena, E.3    Onate, B.4    Casani, L.5    Badimon, L.6
  • 141
    • 77954979362 scopus 로고    scopus 로고
    • Cardiac malformations in Pdgfralpha mutant embryos are associated with increased expression of WT1 and Nkx2.5 in the second heart field
    • Bax NA, Bleyl SB, Gallini R et al. Cardiac malformations in Pdgfralpha mutant embryos are associated with increased expression of WT1 and Nkx2.5 in the second heart field. Dev Dyn. 2010;239:2307–2317.
    • (2010) Dev Dyn , vol.239 , pp. 2307-2317
    • Bax, N.A.1    Bleyl, S.B.2    Gallini, R.3
  • 142
    • 0035894383 scopus 로고    scopus 로고
    • Coronary smooth muscle differentiation from proepicardial cells requires rhoA-mediated actin reorganization and p160 rho-kinase activity
    • Lu J, Landerholm TE, Wei JS et al. Coronary smooth muscle differentiation from proepicardial cells requires rhoA-mediated actin reorganization and p160 rho-kinase activity. Dev Biol. 2001;240:404–418.
    • (2001) Dev Biol , vol.240 , pp. 404-418
    • Lu, J.1    Landerholm, T.E.2    Wei, J.S.3
  • 143
    • 33845220020 scopus 로고    scopus 로고
    • The role of platelet-derived growth factor signaling in healing myocardial infarcts
    • Zymek P, Bujak M, Chatila K et al. The role of platelet-derived growth factor signaling in healing myocardial infarcts. J Am Coll Cardiol. 2006;48:2315–2323.
    • (2006) J Am Coll Cardiol , vol.48 , pp. 2315-2323
    • Zymek, P.1    Bujak, M.2    Chatila, K.3
  • 144
    • 0032824560 scopus 로고    scopus 로고
    • Inactivation of erythropoietin leads to defects in cardiac morphogenesis
    • Wu H, Lee SH, Gao J, Liu X, Iruela-Arispe ML. Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development. 1999;126:3597–3605.
    • (1999) Development , vol.126 , pp. 3597-3605
    • Wu, H.1    Lee, S.H.2    Gao, J.3    Liu, X.4    Iruela-Arispe, M.L.5
  • 145
    • 77953223654 scopus 로고    scopus 로고
    • Sonic hedgehog is a critical mediator of erythropoietin-induced cardiac protection in mice
    • Ueda K, Takano H, Niitsuma Y et al. Sonic hedgehog is a critical mediator of erythropoietin-induced cardiac protection in mice. J Clin Invest. 2010;120:2016–2029.
    • (2010) J Clin Invest , vol.120 , pp. 2016-2029
    • Ueda, K.1    Takano, H.2    Niitsuma, Y.3
  • 146
    • 77955136355 scopus 로고    scopus 로고
    • Vascular endothelial growth factor is crucial for erythropoietin-induced improvement of cardiac function in heart failure
    • Westenbrink BD, Ruifrok WP, Voors AA et al. Vascular endothelial growth factor is crucial for erythropoietin-induced improvement of cardiac function in heart failure. Cardiovasc Res. 2010;87:30–39.
    • (2010) Cardiovasc Res , vol.87 , pp. 30-39
    • Westenbrink, B.D.1    Ruifrok, W.P.2    Voors, A.A.3
  • 147
    • 84878128660 scopus 로고    scopus 로고
    • Serum erythropoietin: a useful biomarker for coronary collateral development and potential target for therapeutic angiogenesis among the patients with coronary chronic total occlusion
    • Xu W, Guo Z, Mi L, Wang G. Serum erythropoietin: a useful biomarker for coronary collateral development and potential target for therapeutic angiogenesis among the patients with coronary chronic total occlusion. Biomarkers. 2013;18:343–348.
    • (2013) Biomarkers , vol.18 , pp. 343-348
    • Xu, W.1    Guo, Z.2    Mi, L.3    Wang, G.4
  • 148
    • 84992107946 scopus 로고    scopus 로고
    • Erythropoietin stimulates the coronary collateral development in patients with coronary chronic total occlusion
    • Yuksel IO, Cagirci G, Koklu E et al. Erythropoietin stimulates the coronary collateral development in patients with coronary chronic total occlusion. Neth Heart J. 2016;24:609–616.
    • (2016) Neth Heart J , vol.24 , pp. 609-616
    • Yuksel, I.O.1    Cagirci, G.2    Koklu, E.3
  • 149
    • 41049085948 scopus 로고    scopus 로고
    • Regulation of angiogenesis by homotypic and heterotypic notch signalling in endothelial cells and pericytes: from basic research to potential therapies
    • Sainson RC, Harris AL. Regulation of angiogenesis by homotypic and heterotypic notch signalling in endothelial cells and pericytes: from basic research to potential therapies. Angiogenesis. 2008;11:41–51.
    • (2008) Angiogenesis , vol.11 , pp. 41-51
    • Sainson, R.C.1    Harris, A.L.2
  • 150
    • 80052015813 scopus 로고    scopus 로고
    • Molecular control of endothelial cell behaviour during blood vessel morphogenesis
    • Herbert SP, Stainier DY. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol. 2011;12:551–564.
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 551-564
    • Herbert, S.P.1    Stainier, D.Y.2
  • 151
    • 79954797681 scopus 로고    scopus 로고
    • Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis
    • del Monte G, Casanova JC, Guadix JA et al. Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res. 2011;108:824–836.
    • (2011) Circ Res , vol.108 , pp. 824-836
    • del Monte, G.1    Casanova, J.C.2    Guadix, J.A.3
  • 152
    • 20244378183 scopus 로고    scopus 로고
    • Activation of Notch signaling pathway precedes heart regeneration in zebrafish
    • Raya A, Koth CM, Buscher D et al. Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proc Natl Acad Sci USA. 2003;100(Suppl 1):11889–11895.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 11889-11895
    • Raya, A.1    Koth, C.M.2    Buscher, D.3
  • 153
    • 59649083972 scopus 로고    scopus 로고
    • Control of the adaptive response of the heart to stress via the Notch1 receptor pathway
    • Croquelois A, Domenighetti AA, Nemir M et al. Control of the adaptive response of the heart to stress via the Notch1 receptor pathway. J Exp Med. 2008;205:3173–3185.
    • (2008) J Exp Med , vol.205 , pp. 3173-3185
    • Croquelois, A.1    Domenighetti, A.A.2    Nemir, M.3
  • 155
    • 84926455846 scopus 로고    scopus 로고
    • Sequential delivery of angiogenic growth factors improves revascularization and heart function after myocardial infarction
    • Awada HK, Johnson NR, Wang Y. Sequential delivery of angiogenic growth factors improves revascularization and heart function after myocardial infarction. J Control Release. 2015;207:7–17.
    • (2015) J Control Release , vol.207 , pp. 7-17
    • Awada, H.K.1    Johnson, N.R.2    Wang, Y.3
  • 156
    • 1942437406 scopus 로고    scopus 로고
    • DITPA stimulates arteriolar growth and modifies myocardial postinfarction remodeling
    • Zheng W, Weiss RM, Wang X et al. DITPA stimulates arteriolar growth and modifies myocardial postinfarction remodeling. Am J Physiol Heart Circ Physiol. 2004;286:H1994–H2000.
    • (2004) Am J Physiol Heart Circ Physiol , vol.286 , pp. H1994-H2000
    • Zheng, W.1    Weiss, R.M.2    Wang, X.3
  • 158
    • 84945921247 scopus 로고    scopus 로고
    • Role of microRNAs in vascular remodeling
    • Fang YC, Yeh CH. Role of microRNAs in vascular remodeling. Curr Mol Med. 2015;15:684–696.
    • (2015) Curr Mol Med , vol.15 , pp. 684-696
    • Fang, Y.C.1    Yeh, C.H.2
  • 159
    • 85018214575 scopus 로고    scopus 로고
    • Functional long non-coding RNAs in vascular smooth muscle cells
    • Leung A, Stapleton K, Natarajan R. Functional long non-coding RNAs in vascular smooth muscle cells. Curr Top Microbiol Immunol. 2016;394:127–141.
    • (2016) Curr Top Microbiol Immunol , vol.394 , pp. 127-141
    • Leung, A.1    Stapleton, K.2    Natarajan, R.3
  • 160
    • 84905668188 scopus 로고    scopus 로고
    • miRNAs and lncRNAs in vascular injury and remodeling
    • Song X, Shan D, Chen J, Jing Q. miRNAs and lncRNAs in vascular injury and remodeling. Sci China Life Sci. 2014;57:826–835.
    • (2014) Sci China Life Sci , vol.57 , pp. 826-835
    • Song, X.1    Shan, D.2    Chen, J.3    Jing, Q.4
  • 161
    • 84924134321 scopus 로고    scopus 로고
    • Long noncoding RNAs in cardiovascular diseases
    • Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res. 2015;116:737–750.
    • (2015) Circ Res , vol.116 , pp. 737-750
    • Uchida, S.1    Dimmeler, S.2
  • 162
    • 84967223701 scopus 로고    scopus 로고
    • The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease
    • Chistiakov DA, Orekhov AN, Bobryshev YV. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J Mol Cell Cardiol. 2016;97:47–55.
    • (2016) J Mol Cell Cardiol , vol.97 , pp. 47-55
    • Chistiakov, D.A.1    Orekhov, A.N.2    Bobryshev, Y.V.3
  • 163
    • 33846243239 scopus 로고    scopus 로고
    • Thymosin b4 induces adult epicardial progenitor mobilization and neovascularization
    • Smart N, Risebro CA, Melville AAD et al. Thymosin b4 induces adult epicardial progenitor mobilization and neovascularization. Nature. 2007;445:177–182.
    • (2007) Nature , vol.445 , pp. 177-182
    • Smart, N.1    Risebro, C.A.2    Melville, A.A.D.3
  • 164
    • 84867342938 scopus 로고    scopus 로고
    • Myocardial regeneration: expanding the repertoire of thymosin beta4 in the ischemic heart
    • Smart N, Bollini S, Dube KN et al. Myocardial regeneration: expanding the repertoire of thymosin beta4 in the ischemic heart. Ann N Y Acad Sci. 2012;1269:92–101.
    • (2012) Ann N Y Acad Sci , vol.1269 , pp. 92-101
    • Smart, N.1    Bollini, S.2    Dube, K.N.3
  • 165
    • 77951782307 scopus 로고    scopus 로고
    • Thymosin beta4 facilitates epicardial neovascularization of the injured adult heart
    • Smart N, Risebro CA, Clark JE et al. Thymosin beta4 facilitates epicardial neovascularization of the injured adult heart. Ann N Y Acad Sci. 2010;1194:97–104.
    • (2010) Ann N Y Acad Sci , vol.1194 , pp. 97-104
    • Smart, N.1    Risebro, C.A.2    Clark, J.E.3
  • 166
    • 84904640712 scopus 로고    scopus 로고
    • Re-activated adult epicardial progenitor cells are a heterogeneous population molecularly distinct from their embryonic counterparts
    • Bollini S, Vieira JM, Howard S et al. Re-activated adult epicardial progenitor cells are a heterogeneous population molecularly distinct from their embryonic counterparts. Stem Cells Dev. 2014;23:1719–1730.
    • (2014) Stem Cells Dev , vol.23 , pp. 1719-1730
    • Bollini, S.1    Vieira, J.M.2    Howard, S.3
  • 167
    • 33845457194 scopus 로고    scopus 로고
    • Multipotent embryonic isl1 +  progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification
    • Moretti A, Caron L, Nakano A et al. Multipotent embryonic isl1 +  progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006;127:1151–1165.
    • (2006) Cell , vol.127 , pp. 1151-1165
    • Moretti, A.1    Caron, L.2    Nakano, A.3
  • 168
    • 42149109739 scopus 로고    scopus 로고
    • Prokineticin receptor-1 induces neovascularization and epicardial-derived progenitor cell differentiation
    • Urayama K, Guilini C, Turkeri G et al. Prokineticin receptor-1 induces neovascularization and epicardial-derived progenitor cell differentiation. Arterioscler Thromb Vasc Biol. 2008;28:841–849.
    • (2008) Arterioscler Thromb Vasc Biol , vol.28 , pp. 841-849
    • Urayama, K.1    Guilini, C.2    Turkeri, G.3
  • 169
    • 80054092076 scopus 로고    scopus 로고
    • Prokineticin receptor-1 (PKR1) signaling in cardiovascular and kidney functions
    • Boulberdaa M, Urayama K, Nebigil CG. Prokineticin receptor-1 (PKR1) signaling in cardiovascular and kidney functions. Cardiovasc Res. 2011;92:191–198.
    • (2011) Cardiovasc Res , vol.92 , pp. 191-198
    • Boulberdaa, M.1    Urayama, K.2    Nebigil, C.G.3
  • 170
    • 84885172335 scopus 로고    scopus 로고
    • Driving vascular endothelial cell fate of human multipotent Isl1(+) heart progenitors with VEGF modified mRNA
    • Lui KO, Zangi L, Silva EA et al. Driving vascular endothelial cell fate of human multipotent Isl1(+) heart progenitors with VEGF modified mRNA. Cell Res. 2013;23:1172–1186.
    • (2013) Cell Res , vol.23 , pp. 1172-1186
    • Lui, K.O.1    Zangi, L.2    Silva, E.A.3
  • 171
    • 84885676364 scopus 로고    scopus 로고
    • Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction
    • Zangi L, Lui KO, von Gise A et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol. 2013;31:898–907.
    • (2013) Nat Biotechnol , vol.31 , pp. 898-907
    • Zangi, L.1    Lui, K.O.2    von Gise, A.3
  • 172
    • 84922153362 scopus 로고    scopus 로고
    • Cardiac-specific overexpression of human stem cell factor promotes epicardial activation and arteriogenesis after myocardial infarction
    • Xiang FL, Liu Y, Lu X, Jones DL, Feng Q. Cardiac-specific overexpression of human stem cell factor promotes epicardial activation and arteriogenesis after myocardial infarction. Circ Heart Fail. 2014;7:831–842.
    • (2014) Circ Heart Fail , vol.7 , pp. 831-842
    • Xiang, F.L.1    Liu, Y.2    Lu, X.3    Jones, D.L.4    Feng, Q.5
  • 173
    • 77649272521 scopus 로고    scopus 로고
    • Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: role of the pericardial fluid
    • Limana F, Bertolami C, Mangoni A et al. Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: role of the pericardial fluid. J Mol Cell Cardiol. 2010;48:609–618.
    • (2010) J Mol Cell Cardiol , vol.48 , pp. 609-618
    • Limana, F.1    Bertolami, C.2    Mangoni, A.3
  • 174
    • 37349012572 scopus 로고    scopus 로고
    • Identification of myocardial and vascular precursor cells in human and mouse epicardium
    • Limana F, Zacheo A, Mocini D et al. Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res. 2007;101:1255–1265.
    • (2007) Circ Res , vol.101 , pp. 1255-1265
    • Limana, F.1    Zacheo, A.2    Mocini, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.